(3.236.222.124) 您好!臺灣時間:2021/05/13 21:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳仁昭
研究生(外文):Jen-Chao Chen
論文名稱:黑腹果蠅的視覺辨識與類化
論文名稱(外文):Visual discrimination and generalization in Drosophila melanogaster
指導教授:簡惠玲簡惠玲引用關係
指導教授(外文):Sarina Hui-Lin Chien
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:神經科學與認知科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:76
中文關鍵詞:黑腹果蠅知覺類化視覺辨識T型管
外文關鍵詞:Drosophila melanogasterperceptual generalizationvisual discriminationT-maze
相關次數:
  • 被引用被引用:0
  • 點閱點閱:238
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Lashley (1938)發現,若在訓練階段訓練老鼠辨識以明亮度定義的水平和垂直線段,老鼠在測試階段可以辨識排列成水平和垂直方向的點,證實老鼠可以在之前的學習中萃取出方向的訊息,並類推到之前從未見過的新圖形之中。Hebb定義這樣的能力為「知覺類化」,而這樣的能力大多在哺乳類動物身上發現。Srinivasan, Zhang & Rolfe (1993)訓練蜜蜂辨識水平和垂直的實線條紋,發現蜜蜂在測試階段可以辨識排列成水平和垂直方向的點,證實「知覺類化」的能力不只侷限於較高等的哺乳類動物,較低等的有機體如蜜蜂也具有「知覺類化」的能力。
本研究主要目的便是探討黑腹果蠅是否也擁有「知覺類化」的能力,我們設計兩種圖形來檢證我們的假設,一是完形律中的連續律,二是開放和封閉的圖形。本研究利用果蠅具有趨光性的天性,以嫌惡制約的方式,在黑暗的環境中以類似T形管的儀器訓練並測試果蠅辨識由黑底白字構成的不同圖形。實驗一的結果顯示,在訓練階段被訓練以辨識明亮度定義的十字和圓圈的果蠅,在測試階段中可以顯著的辨識以完型律中的連續律定義所構成的十字和圓圈,反之亦然。而輔助的實驗也說明,這樣的結果並非是因為果蠅無法辨識由明亮度定義或連續律定義所構成的圖形,或是對某特定圖形具有天生的偏好所造成的。實驗二的結果顯示,在訓練階段訓練果蠅辨識封閉的和開放的圓圈,在測試階段中,果蠅也可以顯著的辨識封閉的和開放的三角形。所以,綜合兩個實驗的結果來看,本研究支持黑腹果蠅可以學習辨識簡單的圖形,並類化到新的辨識情況之中。因此黑腹果蠅具有Donald Hebb所說的「知覺類化」能力。
Lashley (1938) showed that rats originally trained with solid-lined vertical and horizontal bars could recognize dotted-lined patterns in the test phase, suggesting that the rats could extract the invariant orientation information. Hebb (1949) recaptured this ability as “perceptual generalization”, which is found mostly in mammals. Srinivasan, Zhang & Rolfe (1993) showed that honeybees trained with solid stripes could successfully distinguish between dotted patterns that were arranged horizontally or vertically. Thus, it demonstrated that “perceptual generalization” exists in lower organisms like honeybees. The purpose of the present study was to explore whether “perceptual generalization” also exist in fruit flies.
We trained and tested fruit flies to discriminate simple shapes by used their phototaxis in T-maze like device (Tully & Quinn,1985), and all of experiments were done in dark room. Results of Experiment 1 showed that when trained with solid-lined shapes, flies displayed significant learning behaviors for the dotted-lined shapes and vice versa. Results of Experiment 2 showed that when trained with one pair of closed vs. open forms, flies exhibited learning transfer for a different pair of closed vs. open forms. In addition, these findings cannot be attributed to a lack of discrimination between the solid-lined and the dotted-lined shapes (or between the open vs. closed forms), or a difference in spontaneous preference. In conclusion, our findings support the notion that Drosophila melanogaster can learn to discriminate simple shapes and generalize them to novel recognition conditions. Thus, the ability of “perceptual generalization” exists in fruit flies.
緒論---------------------------------------------------------------------------------------01
問題起源:模板論的困境---------------------------------------------------03
更具彈性的知覺類化理論-------------------------------------------------07
文獻回顧:昆蟲的視覺學習與認知----------------------------------------------09
蜜蜂具有知覺類化能力----------------------------------------------------09
先前經驗可以幫助蜜蜂辨識圖形---------------------------------------13
蜜蜂的數量類化能力--------------------------------------------------------14
蜜蜂的複雜記憶--------------------------------------------------------------17
果蠅的視覺學習能力--------------------------------------------------------20
果蠅面對矛盾線索時的選擇行為---------------------------------------23
果蠅視覺具有網膜位置的不變性---------------------------------------26
研究動機與目的----------------------------------------------------------------------28
研究方法--------------------------------------------------------------------------------32
實驗概論------------------------------------------------------------------------32
材料,儀器與刺激圖形------------------------------------------------------33
實驗程序------------------------------------------------------------------------37
結果---------------------------------------------------------------------------------------41
實驗一結果---------------------------------------------------------------------41
實驗二結果---------------------------------------------------------------------49
綜合討論--------------------------------------------------------------------------------59
未來展望--------------------------------------------------------------------------------70
參考文獻--------------------------------------------------------------------------------73
Anderson, A. M. (1977). Shape perception in the honey bee. Animal Behavior, 25, 67-79.
Bear, M. K., Connors, B.W., & Paradiso, M. A..(2007). Neuroscience: Exploring The Brain. 3rd Ed. Lippincott Williams & Wilkins.
Campbell, H. R., & Strausfeld, N. J. (2001). Learned discrimination of pattern orientation in walking flies. The Journal of Experimental Biology, 204, 1-14.
Cartwright, B. A., & Collett, T. S. (1979). How honey bees know their distance from a near-by visual mark. Journal of Comparative Physiology, 161, 335-355.
Cartwright, B. A., & Collett, T. S. (1983). Landmark learning in bees. Journal of Comparative Physiology, 151, 521-543.
Cartwright, B. A., & Collett, T. S. (1987). Landmark maps for honeybees. Biological Cybernetics, 57, 85-93.
Chen, J. C., Lin, W. Y., Kuo, W. Y., & Chien, S. H. L. (2008, Oct). Insect visual learning: Can Drosophila melanogaster recognize novel shapes by generalized perceptual grouping? Paper presented at the 47th Taiwanese Psychological Association Annual Conference: Cognition III, Taipei, Taiwan (*corresponding author).
Chen, L. (1982). Topological structure in visual perception. Science, 218, 699-700.
Chen, L., Zhang, S. W., & Srinivasan, M. V. (2003). Global perception in small brains: Topological pattern recognition in honey bees. Proceedings of the National Academy of Sciences USA, 100, 6884-6889.
Chien, S. H. L., Lin, W. Y., Chen, J. C., & Lai, H. C. (2008). Can Drosophila learn to recognize the shapes of a circle and a cross? Abstract presented at the 2008 annual meeting of the Asian-Pacific Conferences on Vision, Brisbane, Australia.
Dill, M., Wolf, R., & Heisenberg, M. (1993). Visual pattern recognition in Drosophila involves retinotopic matching. Nature, 365, 751-753.
Dill, M. & Heisenberg, M. (1995). Visual pattern memory without shape recognition. Philosophical Transactions: Biological Sciences, 349, 143-152.,
Ernst, R., & Heisenberg, M. (1999). The memory template in Drosophila pattern vision at the flight simulator. Vision Research, 39, 3920-3933.
Gross, H. J. et al. (2009). Number-based visual generalisation in the honeybee. PLOS ONE 4(1): e4263. doi:10.1371/journal.pone.0004263)
Goldstein, E. B. (2007). Sensation and Perception, seventh edition. Thomson Wadsworth, Belmont, CA.
Guo, J., & Guo, A. (2005). Crossmodal interactions between olfactory and visual learning in Drosophila, Science, 309, 307-310.
Hateren, J. H., Srinivasan, M. V., & Wait, P. B. (1990). Pattern recognition in bees: orientation discrimination. Journal of Comparative Physiology A, 167, 649-654.
Heisenberg, M. (1995). Pattern recognition in insects. Current Biology, 5, 475-481.
Hebb, D. O. (1949). The Organization of Behavior. Wiley and Son, New York.
Kanizsa, G. (1955). Margini quasi-percettivi in campi con stimolazione omogenea. Rivista di Psicologia, 49, 7-30
Lashley, K. S. (1938). The mechanism of vision: XV. Preliminary studies of the rat''s capacity for detail vision. Journal of General Psychology, 18, 123-193.
Reinhard, J., Srinivasan, M. V., & Zhang, S. W. (2006). Complex memories in honeybees: Can there be more than two? Journal of Comparative Physiology A, 192, 409-416.
Reinhard, J., Srinivasan, M. V., & Zhang, S. W. (2004a). Scent-triggered navigation in honeybees. Nature, 427, 411.
Reinhard, J., Srinivasan, M. V., Guez, D., & Zhang, S. W. (2004b). Floral scents induce recall of navigational and visual memories in honeybees. Journal of Experimental Biology, 207, 4371-4381.
Rookes,P., & Willson, J. (2000). Perception: Theory, development and organization. Routledge, member of the Taylor & Francis Group, London.
Selfridge, O. G. (1959). Pandemonium: A paradigm for learning. In The Mechanization of Thought Processes. Her Majesty’s Stationery Office, London.
Selfridge, O. G., & Neisser, U. (1960), Pattern recognition by machine. Scientific American, 203, 60-68.
Srinivasan, M. V., Zhang, S. W., & Rolfe B. (1993). Is pattern vision in insects mediated by “cortical” processing? Nature, 362, 539-540.
Srinivasan, M. V. (2006). Vision, navigation, perception, learning and memory in honeybees, and applications to robotics. Plenary lecture. International Congress of the International Union for the Study of Social Insects, Washington D.C., USA.
Tanaka, J. W., & Presnell, L. M. (1999). Color diagnosticity in object recognition. Perception & Psychophysics, 61, 1140-1153.
Tanaka, J., Weiskopf, D., &Williams, P. (2001). The role of color in high-level vision. Trends in Cognitive Sciences, 5, 211-215.
Tang, S., & Guo, A. (2001). Choice behavior of Drosophila facing contradictory visual cues. Science, 294, 1543-1547.
Tang, S., Wolf, R., Xu, S., & Heisenberg, M. (2004). Visual pattern recognition in Drosophila is invariant for retinal position. Science, 305, 1020-1022.
Tinbergen, N. (1951). The Study of Instinct. Oxford: Clarendon Press.
Ting, C. Y., & Lee, C. H. (2007).Visual circuit development in Drosophila. Current Opinion in Neurobiology, 17, 65-72.
Tully, T., & Quinn, W. G. (1985). Classical conditioning and retention in normal and mutant Drosophila melanogaster. Journal of Comparative Physiology A, 157, 263-277.
Turati, C., Simion, F., & Zanon, L. (2003). Newborns’ perceptual categorization for closed and open geometric forms. Infancy, 4, 309-325.
Von Frisch, K. (1915). Der Farhensinn und Formensinn der Bienen. Zool Jb Abt allg Zool Physiol, 35, 1-182. [Title translation: The senses of color and form in the honeybee.]
Wehner, R. (1969). Der Mecbanismus der optischen Winkelmessong heider Biene (Apis mellifica). Zool Anz Supp, 33, 586-592. [Title translation: Mechanisms of measurement of angles in thehoneybee pattern vision.]
Wehner, R. (1972). Dorsoventral asymmetry in the visual field of the bee, Apis mellifica. Journal of Comparative Physiology, 77, 256-277.
Wolf, R., & Heisenberg, M. (1991). Basic organization of operant behavior as revealed in Drosophila flight orientation. Journal of Comparative Physiology A, 169, 699-705.
Zhang, S. W., & Srinivasan, M. V. (1994). Prior experience enhances pattern discrimination in insect vision. Nature, 368, 330-333.
Zhang, S. W., Srinivasan, M. V., & Collett, T. (1995). Convergent processing in honeybee vision: multiple channels for the recognition of shape. Proceedings of the National Academy of Sciences USA, 92, 3029-3031.
水波誠(2008)。《探索昆蟲微小腦》。台北縣:世茂。陳玉華譯。
鄭昭明(2006)。《認知心理學-理論與實踐 修訂三版》。台北市:桂冠。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔