(3.238.173.209) 您好!臺灣時間:2021/05/16 19:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:郭慧君
研究生(外文):Hui-Chun Kuo
論文名稱:台灣產骨碎補類藥材之神經保護作用與抗氧化活性之關係
論文名稱(外文):The relation between neuroprotective effect and antioxidant activity of Gusuibu in Taiwan
指導教授:邱泰惠邱泰惠引用關係
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:藥學系碩士班
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:129
中文關鍵詞:骨碎補抗氧化
外文關鍵詞:B356-OHDA
相關次數:
  • 被引用被引用:2
  • 點閱點閱:263
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
巴金森氏症為一種常見之神經退化性疾病。於研究顯示,因自由基形成氧化壓力而對神經細胞造成之氧化損傷在神經退化性疾病中扮演了極重要的角色。本實驗採用俗名為骨碎補的五種骨碎補科與兩種水龍骨科之近源植物作為實驗材料,進行抗氧化成分含量與活性評估,並以離體方式探討其對6-OHDA所誘導神經細胞損傷之保護作用與機制。
首先,測定上述七種植物水抽取物總多酚類之含量,結果顯示以海州骨碎補、鱗軸小膜蓋蕨含量最多;在多種抗氧化活性測定中,亦以鱗軸小膜蓋蕨、海州骨碎補具較佳之活性。但於氫氧自由基之清除能力,則以大葉骨碎補、海州骨碎補具有較佳活性。接著,進行6-OHDA自我氧化產生p-quinone的清除能力試驗,結果顯示海州骨碎補、槲蕨具有較佳的清除效果。因此,進一步探討海州骨碎補、鱗軸小膜蓋蕨及槲蕨之水抽取物對6-OHDA誘發B35神經細胞氧化損傷之保護效果。結果顯示,以海州骨碎補提高6-OHDA誘導B35神經細胞損傷後之存活率最好。其作用機制可能與其總酚類抗氧化活性及能有效地降低細胞內氧化壓力及細胞損傷有關。
Parkinson’s disease is a progressive neurodegenerative disorder. Many researches reveal the overproduction of free radical caused by oxidative stress plays an important role in this disease. In this study, the antioxidant components, antioxidative activity of five species of Davalliaceae plants and two polypodiaceae plants were investigated first by microtiter spectrophotometric and fluorescent methods. Then the protective effects of these plants on 6-OHDA-induced neuronal damage in B35 cells were investigated.
The experimental results suggested that Davallia mariesii and Araiostegia parvipinnata have enriched antioxidant components and better antioxidative activity. However, Davallia divaricata and Davallia mariesii had better hydroxyl radical scavenging activity than the others. Furthermore, Davallia mariesii, Drynaria fortunei and Araiostegia parvipinnata had better inhibitive capability in the production of p-quinone from 6-OHDA.
Davallia mariesii has the hightest protective effects among the aqueous extracts of these three plants on the neuronal oxidative damage induced by 6-OHDA in B35 neuroblastoma cell. The neuroprotective mechanism of Davallia mariesii might be due to its phenolic antioxidative activity, and efficiently decreased intracellular oxidative stress and damage induced by 6-OHDA.
目 錄 I
略字表 IV
圖目錄 VI
表目錄 VIII
摘要 IX
Abstract XI
第一章 緒論 1
第二章 總論 3
第一節 骨碎補之文獻考察 3
一、 骨碎補類藥材之本草學考察 3
二、 骨碎補類藥材之藥用植物學考察 12
三、 骨碎補類藥材之生藥學考察 21
四、 骨碎補類藥材之成分考察 25
五、 骨碎補類藥材之藥理作用考察 30
第二節 自由基之文獻考察 34
一、 自由基之定義與特性 34
二、 抗氧化防禦系統 39
第三節 氧化壓力與自由基之關係 43
一、 氧化壓力 43
二、 巴金森氏症 44
三、 氧化壓力與巴金森氏症之關聯 52
第三章 實驗材料與方法 54
第一節 實驗材料 54
一、 骨碎補類藥材之水粗抽液製備 54
二、 實驗試劑 54
三、 實驗試劑之製備 56
四、 實驗儀器 57
五、 細胞培養 58
第二節 實驗方法 59
一、 骨碎補類藥材之抗氧化成分含量測定 59
二、 骨碎補類藥材之抗氧化活性分析 60
三、 鱗軸小膜蓋蕨、槲蕨、海州骨碎補對6-OHDA誘導神經細胞氧化損傷之保護作用 62
四、 海州骨碎補對6-OHDA誘導神經細胞凋亡之保護機制 65
第三節 統計分析 67
第四章 實驗結果 68
一、 骨碎補類藥材之抗氧化成分含量測定 68
二、 骨碎補類藥材之抗氧化活性分析 72
三、 鱗軸小膜蓋蕨、槲蕨、海州骨碎補對6-OHDA誘導神經細胞氧化損傷之保護作用 80
四、 海州骨碎補對6-OHDA誘導神經細胞凋亡之保護機制 96
第五章 討論 102
謝 辭 116
參考文獻 117
1.Harris, M. K., Shneyder, N., Borazanci, A., Korniychuk, E., Kelley, R. E., Minagar, A. Movement disorders. Med Clin N Am, 2009; 93: 371–88.
2.Andersen, J. K. Oxidative stress in neurodegeneration: cause or consequence? Nat Rev Neurosci, 2004; s18-25.
3.Simpkins, N., Jankovic, J. Neuroprotection in Parkinson disease. Arch Intern Med, 2003; 163: 1650-4.
4.Zhou, C., Huang, Y., Przedborski, S. Oxidative stress in Parkinson''s disease: a mechanism of pathogenic and therapeutic significance. Ann N Y Acad Sci, 2008; 1147: 93-104.
5.陳順、關延彬:骨碎補藥理作用的研究進展。醫學導報 2006;25 (7):685-7。
6.唐陳藏器撰、那琦、謝文全、林麗玲重輯:重輯本草拾遺,華夏文獻資料出版社,台中,1988;p113。
7.尚志鈞:《證類本草》引“雷公曰”藥物出處分析。現代中藥研究與實踐 1997;11 (03):4-5。
8.明李時珍:本草綱目,國立中國醫藥研究所,台北,1988;p800。
9.顏正華:中藥學,人民衛生出版社,北京,1991;pp794-5。
10.宋唐慎微撰、艾晟刊訂、尚志鈞點校:大觀本草 第一版,安徽科學技術出版社,合肥,2002;p395。
11.涂慶業:骨碎補類藥材之生藥學研究,中國醫藥大學 藥學院 中國藥學研究所 碩士論文,2000。
12.張宏祺:台灣產骨碎補類藥材之生藥學研究,中國醫藥大學 藥學院 中國藥學研究所 博士論文,2007。
13.宋唐慎微撰、尚志鈞點校:証類本草 重修政和經史証類備用本草,華夏出版社,北京,1993;p321-2。
14.周富榮、張小茜:3種骨碎補的品質評價研究。中國中藥雜志 1994;19 (05):261-3。
15.現代實用本草編委會:現代實用本草 (上冊),人民衛生出版社,北京,1996;pp659-69。
16.行政院農業委員會:臺灣維管束植物簡誌 第壹卷,台北,1997;pp33-6,74-5,121-2。
17.甘偉松:台灣藥用植物誌 卷 上,國立中國醫藥研究所,台北,1985;pp21-8。
18.郭孟城:蕨類圖鑑:台灣三百多種蕨類生態圖鑑,遠流出版社,台北,2001;pp221-93。
19.國家中醫藥管理局《中華本草》編委會編:中華本草,上海科學技術出版社,上海,1999;p216-8,60-65。
20.台灣植物誌第二版編輯委員會編著:台灣植物誌 (1) 第二版,行政院國家科學委員會,台北,1994;pp188-93, pp 484-5。
21.國家藥典委員會:中華人民共和國藥典 第三冊,化學工業出版社,北京,2005;p179。
22.毛菊敏、李麗香:骨碎補的真偽優劣鑒別。中草藥 2004;35 (9):1066。
23.王允、劉毅、姚干:骨碎補提取與含量測定研究概況。中國藥業 2007;16 (06):63。
24.張紅旭、郭輝:HPLC法測定骨碎補酊中柚皮苷含量。西北藥學雜志 2006;21 (2):63。
25.楊中林、韋英杰、何執靜、唐登峰:骨碎補不同炮制品中總黃酮及柚皮苷含量測定。中國中藥雜志 2001;26 (10):682-4。
26.蔣金和、張雲梅、王利勤、陳業高:骨碎補屬植物化學成分及生物活性研究進展。西北植物學報 2007;27 (5):859-63。
27.周銅水、周榮漢:骨碎補類生藥原植物調查與分類鑑定研究。中國藥科大學學報 1993;24 (2):70。
28.徐樹楠:中藥臨床應用大全,河北科學技術出版社,石家莊,1999;pp633-4。
29.馬克昌、高子范、馮坤等:骨碎補提取液小雞骨發育的促進作用。中醫正骨 1990;2 (4):7-9。
30.王華松、黃瓊霞、許申明:骨碎補對骨折愈合中血生化指標及TGF-β1表達的影響。中醫正骨 2001;13 (05):6-8。
31.高焱:骨碎補總黃酮治療骨折延遲愈合和骨不連。中醫正骨 2007;19 (07):11-2。
32.鄧展生、張璇、鄒冬青、許宇霞、胡懿合:骨碎補各種提取成分對人骨髓間充質干細胞的影響。中國現代醫學雜志 2005;15 (16):2426-9。
33.劉宏澤、王文瑞:丹參與骨碎補注射液防治激素誘發股骨頭壞死的實驗研究。中國骨傷 2003;16 (12):726-8。
34.馬克昌、高子范、張靈菊:骨碎補對大白鼠骨質疏鬆模型的影響。中醫正骨 1992;4 (4):3-4。
35.徐展望、張建新、譚國慶、張鵬、常峰:中藥骨碎補提取液對兔骨髓基質細胞體外成骨分化的影響。中醫正骨 2006;18 (06):15-6。
36.戴小牛、童素琴、賈淑萍、陶艷梅:骨碎補對鏈霉素耳毒性解毒作用的實驗研究。南京鐵道醫學院學報 2000;19 (4):248-9。
37.王玉亮、胡增茹、李風婷:骨碎補防治鏈霉素毒副作用的臨床應用。臨床薈萃 2000;15 (15):694。
38.劉劍剛、謝雁鳴、鄧文龍、徐哲:骨碎補總黃酮抗炎作用的實驗研究。中國天然藥物 2004;2 (04):232-4。
39.Halliwell, B. Reactive oxygen species and the central nervous system. J Neurochem, 1992; 59 (5): 1609-23.
40.Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T. D., Mazur, M., Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol, 2007; 39 (1): 44-84.
41.Nordberg, J., Arnér, E. S. J. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med, 2001; 31 (11): 1287-312.
42.Rubbo, H., Trostchansky, A., O''Donnell, V. B. Peroxynitrite-mediated lipid oxidation and nitration: mechanisms and consequences. Arch Biochem Biophys, 2009; 484 (2): 167-72.
43.Finkel, T., Holbrook, N. J. Oxidants, oxidative stress and the biology of ageing. Nature, 2000; 408 (6809): 239-47.
44.Chong, Z. Z., Li, F., Maiese, K. Oxidative stress in the brain: Novel cellular targets that govern survival during neurodegenerative disease. Prog Neurobiol, 2005; 75 (3): 207–46.
45.Yang, J. L., Weissman, L., Bohr, V., Mattson, M. P. Mitochondrial DNA damage and repair in neurodegenerative disorders. DNA Repair (Amst), 2008; 7 (7): 1110–20.
46.Lin, M., Beal, MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 2006; 443: 787-95.
47.Henchcliffe, C., Beal, M. F. Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat Clin Pract Neurol, 2008; 4 (11): 600-9.
48.Funayama, M., Li, Y., Tomiyama, H., Yoshino, H., Imamichi, Y., Yamamoto, M., Murata, M., Toda, T., Mizuno, Y., Hattori, N. Leucine-rich repeat kinase 2 G2385R variant is a risk factor for Parkinson disease in Asian population. Neuroreport, 2007; 18: 273-5.
49.Schapira, A. H. Molecular and clinical pathways to neuroprotection of dopaminergic drugs in Parkinson disease. Neurology, 2009; 72 (7 Suppl): S44-50.
50.Martin Fernandez, F., Martin Gonzalez, T. Pathological gambling and hypersexuality due to dopaminergic treatment in Parkinson''s disease. Actas Esp Psiquiatr, 2009; 37 (2): 118-22.
51.廖志飛編譯:最新人體藥理學 上冊,合記出版社,台北,2000;pp388-92。
52.Chinta, S. J., Andersen, J. K. Redox imbalance in Parkinson''s disease. Biochim Biophys Acta, 2008; 1780: 1362-7.
53.Mandel, S., Grünblatt, E., Riederer, P., Gerlach, M., Levites, Y., Youdim, M. B. H. Neuroprotective strategies in Parkinson’s disease. CNS Drugs, 2003; 17 (10): 729-62.
54.Dudonné, S., Vitrac, X., Coutiére, P., Woillez, M. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J Agric Food Chem, 2009; 57 (5): 1768-74.
55.Kim, S. H., Joo, M. H., Yoo, S. H. Structural identification and antioxidant properties of major anthocyanin extracted from Omija (Schizandra chinensis) fruit. J Food Sci, 2009; 74 (2): C134-40.
56.Sousa, C., Pereira, D. M., Valentaão, P., Ferreres, F., Pereira, J., Seabra, R. M., Andrade, P. B. Pieris brassicae inhibits xanthine oxidase. J Agric Food Chem, 2009; 57 (6): 2288-94.
57.Pazdzioch-Czochra, M., Widenska, A. Spectrofluorimetric determination of hydrogen peroxide scavenging activity. Anal Chim Acta, 2002; 452 (2): 177-84.
58.Cheng, Z. Determination of antioxidant activity of phenolic antioxidants in a Fenton-type reaction system by chemiluminescence assay. Anal Bioanal Chem, 2003; 375 (3): 376-80.
59.Saito, Y., Nishio, K., Ogawa, Y., Kinumi, T., Yoshida, Y., Masuo, Y., Niki, E. Molecular mechanisms of 6-hydroxydopamine-induced cytotoxicity in PC12 cells: involvement of hydrogen peroxide-dependent and -independent action. Free Radic Biol Med, 2007; 42 (5): 675-85.
60.Tian, L. L., Wang, X.J., Sun, Y.N., Li, C.R., Xing, Y.L., Zhao, H.B., Duan, M., Zhou, Z., Wang, S.Q. Salvianolic acid B, an antioxidant from Salvia miltiorrhiza, prevents 6-hydroxydopamine induced apoptosis in SH-SY5Y cells. Int J Biochem Cell Biol, 2008; 40 (3): 409-22.
61.Junn, E., Mouradian, M. M. Apoptotic signaling in dopamine-induced cell death: the role of oxidative stress, p38 mitogen-activated protein kinase, cytochrome c and caspases. J Neurochem, 2001; 78 (2): 374-83.
62.Chee, J. L. Y., Guan, X. L., Lee, J. Y., Dong, B., Leong, S. M., Ong, E. H., Liou, A. K. F., Lim, T. M. Compensatory caspase activation in MPP+-induced cell death in dopaminergic neurons. Cell Mol Life Sci, 2005; 62 (2): 227-38.
63.Lu, Z., Nie, G., Belton, P. S., Tang, H., Zhao, B. Structure-activity relationship analysis of antioxidant ability and neuroprotective effect of gallic acid derivatives. Neurochem Int, 2006; 48 (4): 263-74.
64.Sheng, J. Z., Wang, D., Braun, A. P. DAF-FM (4-amino-5-methylamino-2'',7''-difluorofluorescein) diacetate detects impairment of agonist-stimulated nitric oxide synthesis by elevated glucose in human vascular endothelial cells: reversal by vitamin c and L-sepiapterin. J Pharmacol Exp Ther, 2005; 315 (2): 931-40.
65.Wisessmith, W., Phansuwan-Pujito, P., Govitrapong, P., Chetsawang, B. Melatonin reduces induction of Bax, caspase and cell death in methamphetamine-treated human neuroblastoma SH-SY5Y cultured cells. J Pineal Res, 2009; 46 (4): 433-40.
66.Wang, G., Qi, C., Fan, G.H., Zhou, H.Y., Chen, S.D. PACAP protects neuronal differentiated PC12 cells against the neurotoxicity induced by a mitochondrial complex I inhibitor, rotenone. FEBS Letters, 2005; 579 (18): 4005-11.
67.Haque, M. E., Asanuma, M., Higashi, Y., Miyazaki, I., Tanaka, K., Ogawa, N. Overexpression of Cu-Zn superoxide dismutase protects neuroblastoma cells against dopamine cytotoxicity accompanied by increase in their glutathione level. Neurosci Res, 2003; 47 (1): 31-7.
68.Moon, J. K., Shibamoto, T. Antioxidant assays for plant and food components. J Agric Food Chem, 2009; 57 (5): 1655-66.
69.Magalhães, L. M., Segundo, M. A., Reis, S., Lima, J. L. F. C. Methodological aspects about in vitro evaluation of antioxidant properties. Analytica Chimica Acta, 2008; 613 (1): 1-19.
70.Aarsland, D., Zaccai, J., Brayne, C. A systematic review of prevalence studies of dementia in Parkinson''s disease. Mov Disord, 2005; 20 (10): 1255-63.
71.Sayre, L., Perry, G., Smith, MA. Oxidative stress and neurotoxicity. Chem Res Toxicol, 2007; 21 (1): 172-88.
72.Tawaha, K., Alali, FQ., Gharaibeh, M., Mohammad, M., El-Elimat, T. Antioxidant activity and total phenolic content of selected Jordanian plant species. Food Chem, 2007; 104 (4): 1372-8.
73.Burns, J., Gardner, PT., O''Neil, J., Crawford, S., Morecroft, I., McPhail, DB., Lister, C., Matthews, D., MacLean, MR., Lean, MEJ. Relationship among antioxidant activity, vasodilation capacity, and phenolic content of red wines. J Agric Food Chem, 2000; 48 (2): 220-30.
74.Cheung, L. M., Cheung, P.C.K., Ooi, V.E.C. Antioxidant activity and total phenolics of edible mushroom extracts. Food Chem, 2003; 81 (2): 249-55.
75.Valko, M., Rhodes, CJ., Moncol, J., Izakovic, M., Mazur, M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact, 2006; 160 (1): 1-40.
76.Emerit, J., Edeas, M., Bricaire, F. Neurodegenerative diseases and oxidative stress. Biomed Pharmacother, 2004; 58 (1): 39-46.
77.Ischiropoulos, H., Beckman, JS. Oxidative stress and nitration in neurodegeneration: cause, effect, or association? J Clin Invest, 2003; 111 (2): 163-9.
78.Dexter, D. T., Carter, C. J., Wells, F. R., Javoyagid, F., Agid, Y. Basal lipid peroxidation in substantia nigra is increased in Parkinson''s disease. J Neurochem, 1989; 52: 381-9.
79.Yoritaka, A., Hattori, N., Uchida, K., Tanaka, M., Stadtman, E. R., Mizuno, Y. Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease. Proc Natl Acad Sci USA, 1996; 93: 2696-701.
80.Alam, Z. I., Jenner, A., Daniel, S. E., Lee, A. J., Cairns, N., Marsden, C. D., Jenner, P., Halliwell, B. Oxidative DNA damage in the parkinsonian brain:An apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J Neurochem, 1997; 69: 1196-203.
81.Pearce, R. K. B., Owen, A., Daniel, S., Jenner, P., Marsden, C. D. Alterations in the distribution of glutathione in the substantia nigra in Parkinson''s disease. J Neural Transm, 1997; 104: 661-77.
82.Dauer, W., Przedborski, S. Parkinson''s disease: mechanisms and models. Neuron, 2003; 39 (6): 889-909.
83.Chen, P., Li, A., Zhang, M., He, M., Chen, Z., Wu, X., Zhao, C., Wang, S., Liang, L. Protective effects of a new metalloporphyrin on paraquat-induced oxidative stress and apoptosis in N27 cells. Acta Biochim Biophys Sin, 2008; 40 (2): 125.
84.Zhao, D. L., Zou, L.B., Lin, S., Shi, J.G., Zhu, H.B. Anti-apoptotic effect of esculin on dopamine-induced cytotoxicity in the human neuroblastoma SH-SY5Y cell line. Neuropharmacology, 2007; 53: 724-32.
85.Glinka, Y., Gassen, M., Youdim, MB. Mechanism of 6-hydroxydopamine neurotoxicity. J Neural Transm Suppl, 1997; 50: 55.
86.Luthman, J., Fredriksson, A., Sundstrom, E., Jonsson, G., Archer, T. Selective lesion of central dopamine or noradrenaline neuron systems in the neonatal rat: motor behavior and monoamine alterations at adult stage. Behav Brain Res, 1989; 33 (3): 267-77.
87.Otey, C. A., Boukhelifa M., Maness P. B35 neuroblastoma cells:An easily transfected, cultured cell model of central nervous system neurons. Methods Cell Biol, 2003; 71: 287-304.
88.Schubert, D., Heinemann, S., Carlisle, W., Tarikas, H., Kimes, B., Patrick, J., Steinbach, J.H., Culp, W., Brandt, B.L. Clonal cell lines from the rat central nervous system. Nature, 1974; 249: 224-7.
89.Izumi, Y., Sawada, H., Sakka, N., Yamamoto, N., Kume, T., Katsuki, H., Shimohama, S., Akaike, A. p-Quinone mediates 6-hydroxydopamine-induced dopaminergic neuronal death and ferrous iron accelerates the conversion of p-quinone into melanin extracellularly. J Neurosci Res, 2005; 79: 849-60.
90.Guo, S. H., Bezard, E., Zhao, B. L. Protective effect of green tea polyphenols on the SH-SY5Y cells against 6-OHDA induced apoptosis through ROS-NO pathway. Free Radic Biol Med, 2005; 39: 682-95.
91.Blum, D., Torch, S., Lanmbeng, N., Lambeng, N., Nissou, M. F., Benabid, A. L., Sadoul, R., Verna, J. M. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson''s disease. Prog Neurobiol, 2001; 65 (2): 135-72.
92.Lui, Y. B., Schubert, D. Cytotoxic amyloid peptides inhibit cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction by enhancing MTT formazan exocytosis. J Neurochem, 1997; 69: 2285-93.
93.Shoemaker, M., Cohen, I., Campbell, M. Reduction of MTT by aqueous herbal extracts in the absence of cells. J Ethnopharmacol, 2004; 93: 381-4.
94.Ferger, B., Themann, C., Rose, S., Halliwell, B., Jenner, P. 6-hydroxydopamine increases the hydroxylation and nitration of phenylalanine in vivo: implication of peroxynitrite formation. J Neurochem, 2001; 78 (3): 509.
95.Henze, C., Earl, C., Sautter, J., Schmidt, N., Themann, C., Hartmann, A., Oertel, W. H. Reactive oxidative and nitrogen species in the nigrostriatal system following striatal 6-hydroxydopamine lesion in rats. Brain Research, 2005; 1052 (1): 97-104.
96.Gomez-Lazaro, M., Galindo, M. F., Concannon, C. G., Segura, M. F., Fernandez-Gomez, F. J., Llecha, N., Comella, J. X., Prehn, J. H. M., Jordan, J. . 6-Hydroxydopamine activates the mitochondrial apoptosis pathway through p38 MAPK-mediated, p53-independent activation of Bax and PUMA. J Neurochem, 2008; 104 (6): 1599-612.
97.Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S. M., Ahmad, M. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell, 2004; S116: 479-89.
98.Yuan, J., Yankner, BA. Apoptosis in the nervous system. Nature, 2000; 407 (6805): 802-9.
99.Nagao, M., Hayashi, H. Glycogen synthase kinase-3beta is associated with Parkinson''s disease. Neurosci Lett, 2008; 449: 103-7.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top