(3.238.173.209) 您好!臺灣時間:2021/05/12 13:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李依樺
研究生(外文):Yi-Hua Li
論文名稱:以UNIFAC方法來預測閃火點
論文名稱(外文):Flash point prediction by UNIFAC approach
指導教授:廖宏章廖宏章引用關係
指導教授(外文):Horng-Jang Liaw
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:職業安全衛生學系碩士班
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:75
中文關鍵詞:閃火點化學品全球調合制度閃火點預測模式UNIFACDortmund-UNIFACLyngby-UNIFAC
外文關鍵詞:Flash pointGHSFlash point prediction modelactivity coefficientUNIFACDortmund-UNIFACLyngby-UNIFAC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:305
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
化學品分類及標示全球調合系統(GHS)的實施在國際上已成為必然的驅勢,而我國也於2008年全面實施GHS。於GHS的實施中,混合物的危害性質為化學品危害分類的關鍵性步驟,其中易燃液體的分類以液體的閃火點為主要依據,因此,針對混合液體的閃火點,若能發展出一閃火點預測模式,則可快速有效且便宜的預測不同溶液及不同組成下的溶液閃火點,對於推動GHS中的危害分類有重要的幫助。
現今,國內已面臨GHS實施後易燃溶液分類的問題,立即且迫切的需要解決易燃液體分類的問題。易燃液體分類的主要依據參數為閃火點值,因此本研究目的為解決易燃液體中混合物分類時所面臨到的閃火點值缺乏的問題,而在過去文獻中所提出的閃火點預測模式會使用到活性係數,但這些模式使用到的活性係數均需要相平衡的數據以迴歸其所需參數,若所欲估算閃火點的混合溶液文獻上未有相關參數,則無法有效利用閃火點預測模式估算其閃火點,因此針對文獻中現有閃火點預測模式的缺點,利用描述液體混合物活性係數UNIFAC (Universal Quasi-chemical Functional Group Activity Coefficient) 方程式、Dortmund-UNIFAC方程式和 Lyngby-UNIFAC方程式,建立發展一閃火點預測模式,而本研究以互溶溶液為對象。
研究結果顯示,針對不同的混合物質,建議使用不同類型的UNIFAC方程式估算其活性係數,使其可以真實的反應混合物的性質,並透過預測閃火點模型,準確的估算其閃火點值。
除了學術上的價值外,本研究的成果亦可協助政府和產業界推動GHS,並可應用在化學製程中本質安全設計上,避免火災爆炸的危害。
The implementation of GHS (Globally Harmonized System of Classification and Labeling of Chemicals) is the international trend, and Taiwan has implemented GHS since 2008. In the implementation of GHS, the flash point of mixtures is the critical property to classify flammable liquids. The flash point value of liquids is the primary parameter in hazard classification for the flammable liquids. If a flash point prediction model for mixtures is developed, the flash point of mixtures can be estimated rapidly and economically, and it is helpful in the promotion of GHS.
The problem of classification of flammable liquids was faced in 2008 in Taiwan, and it is urgently and immediately necessary to be resolved. This study is to give a solution for the estimation of flash point for mixtures, the necessity for classification of flammable liquids. The traditional models for predicting flash point of mixtures usually by the activity coefficient approach. However, the parameters of activity coefficient were regressed from phase equilibrium data in the literatures. If there is no such parameter in literatures for the desired mixture, the model cannot predict the flash point oft hat mixture. Thus, this research aims at the improvement of deficiency of the flash point prediction models in the literatures by useing UNIFAC (Universal Quasi-chemical Functional Group Activity Coefficient) equation, Dortmund-UNIFAC equation and Lyngby-UNIFAC equation. In this study, we were aim at the prediction model for miscible mixtures.
From the result, it is suggested to use different type of UNIFAC equation to estimast activivity coefficient in the predition of flash point for different mixture type.
In addition to the academic value, the result can be applied to help the government and industries to promote the implementation of GHS. Potential application for the model concerns the assessment of fire and explosion hazards, and the development of inherently safer designs for chemical processes.
第一章、緒論 1
第一節 研究動機 1
第二節 研究目的 7
第二章、 文獻回顧 8
第一節 閃火點 8
第二節 閃火點測定方法 9
第三節 燃燒界限 10
第四節 氣液平衡方程式(14) 11
第五節 閃火點預測模式 13
第六節 活性係數 16
第三章、 研究方法 24
第一節 雙成份互溶溶液閃火點預測模式 24
第二節 多成份互溶溶液的閃火點預測模式 30
第四章、研究結果與討論 34
第一節 各項參數 34
第二節 閃火點預測模式 44
第五章、結論與建議 65
第一節 結論 65
第二節 研究應用與建議 66
六、參考文獻 68
附錄一、利用UNIFAC方程式計算活性係數流程範例 74
1.工業技術研究院 ( Industrial Technology Research Institute ):物質安全資料表 ( MSDS ), 2002.
2.D.A. Crowl, J.F. Louvar, Chemical Process Safety: Fundamentals with Applications, Prentice Hall PTR, New Jersey, 2002.
3.H.-J. Liaw, Y.-H. Lee, C.-L. Tang, H.-H. Hsu, J.-H. Liu, A mathematical model for predicting the flash point of binary solutions,J. Loss Prevent. Proc. 15(2002) 429-438.
4.H.-J. Liaw, T.-P. Lee, J.-S. Tasi, W.-H. Hsiao, M.-H. Chen, T.-T. Hsu, Binary liquid solutions exhibiting minimum flash-point behavior, J. Loss Prevent. Proc. 16(2003) 173-186.
5.H.-J. Liaw, Y.-Y. Chiu, The prediction of the flash point for binary aqueous-organic solutions, J. Hazard. Mater. 101(2003) 83-106.
6.廖宏章:可燃性液體火災爆炸性質之分析,環保月刊 2002;10:77-85.
7.公共危險物品及可燃性高壓氣體設置標準暨安全管理辦法 , 中華民國九十六年五月。
8.49 CFR 172.101, Purpose and use of hazardous materials table.
9.蘇德勝,張益國:化學品全球調和制度(GHS)國際推動現況與展望,工業安全科技61。
10.F.P. Lees, Loss Prevention in the Process Industries, Vol.1, second ed., Butterworth-Heinemann, Oxford, U.K., 1996.
11.SFPE. The SFPE Handbook of Fire Protection Engineering (2nded.). Boston: Society of Fire Protection Engineers. 1995.
12.S. S. Que Hee, Hazardous waste analysis. Rockville, MD: Government Institutes. 1999.
13.中華民國工業安全衛生學會,勞工安全管理師 2001.
14.呂德寶:化工熱力學,台北:鼎茂圖書出版有限公司1997.
15.G.M. Wilson, Vapor liquid equilibrium. XI, A new expression for the excess free energy of mixing, J. Am. Chem. Soc. 86(1964) 127-130.
16.H. Renon, J.M. Prausnitz, Local compositions in thermodynamic excess functions for liquid mixtures, AIChE J. 14(1968) 135-144.
17.D.S. Abrams, J.M. Prausnitz, Statistical thermodynamics of liquid mixtures: new expression for the excess Gibbs energy of partly or completely miscible systems, AIChE J. 21(1975) 116-128.
18.R.C. Reid, J.M. Prausnitz, T.K. Sherwood, The Properties of Gases and Liquids. (3rded.) , New York: McGraw-Hill. 1977.
19.H.-J. Liaw, Y.-Y. Chiu, A general model for predicting the flash point of miscible mixture, J. Hazard. Mater. 137(2006) 38-46
20.T. Katayama, T. Tsuboka, Modified Wilson equation for vapor-liquid and liquid-liquid equilibria, J. Chem. Eng. Japan 8 (1975) 181-187.
21.W.A. Affens, G.W. McLaren, Flammability properties of hydrocarbon solutions in air, J Chem. Eng. Data. 17(1972) 482-488.
22.D. White, C.L. Beyler, C. Fulper, J. Leonard, Flame spread on aviation fuels, Fire Safety J. 28(1997) 1-31.
23.CCPS / AIChE, Guidelines for Engineering Design for Process Safety, AIChE, New York, 1993.
24.Le Chatelier H. Estimation of firedamp by flammability limits, Ann. Mines. 19(1891) 388-395.
25.R.W. Garland, M.O. Malcolm, Evaluating vent manifold inerting requirements: flash point modeling for organic acid-water mixtures, Process Saf. Prog. 21(2002) 254-260.
26.H.-J. Liaw, C.-L. Tang, J.-S. Lai, A model for predicting the flash point of ternary flammable solutions of liquid, Combust. Flame 138(2004) 308-319.
27.H.-J. Liaw, W.-H. Lu, V. Gerbaud, C.-C. Chen, Flash-point prediction for binary partially miscible mixtures of flammable solvents, J. Hazard. Mater. 153(2008) 1165-1175.
28.H.-J. Liaw, T.-A. Wang, A non-ideal model for predicting the effect of dissolved salt on the flash point of solvent mixtures, J. Hazard. Mater. 141(2007) 193-201
29.H.-J. Liaw, C.-T. Chen, V. Gerbaud, C.-C. Chen, Flash-Point Prediction for Binary Partially Miscible Mixtures of Aqueous-Organic System, Chem. Eng. Sci. 63(2008) 4543-4554.
30.Aa. Fredenslund, R. L. Jones, J. M. Prausnitz, Group-Contribution Estimation of Activity Coefficients in Nonideal Liquid Mixtures, AIChE Journal. 21(1975) 1086-1099.
31.E. C. Voutsas , D. P. Tassios, Prediction of Infinite-Dilution Activity Coefficients in Binary Mixtures with UNIFAC. A Critical Evaluation, Ind. Eng. Chem. Res. 35(1996) 1438-1445.
32.B. L. Larsen, P. Rasmussen , A. Fredenslund, A Modified UNIFAC Group-Contribution Model for Prediction of Phase Equilibria and Heats of Mixing, Ind. Eng. Chem. Res. 26(1987) 2274-2286.
33.U. Weidlicht, J. Gmehling, A Modified UNIFAC Model. 1. Prediction of VLE, hE,and γ∞, Ind. Eng. Chem. Res. 26(1987) 1372-1381.
34.J. C. Bastos, M. E.Soares, and A. G. Medina, Infinite Dilution Activity Coefficients Predicted by UNIFAC Group Contribution, Ind. Eng. Chem. Res. 27(1988) 1269-1277.
35.I. Kikic, P. Alessi, P. Rasmussen, Aa. Fredenslund, On the Combinatorial Part of the UNIFAC and UNIQUAC Models, Can. J. Chem. Eng. 58(1980) 253.
36.T. Magnussen, P. Rasmussen, Aa. Fredenslund, UNIFAC Parameter Table for Prediction of Liquid-Liquid Equilibria, Ind. Eng. Chem. Process Des. Dev. 20(1981) 331-339.
37.H. H. Hooper, S. M., J. M. Prausnitz, Correlation of Liquid-Liquid Equilibria for Some Water-Organic Liquid Systems in the Region 20-250℃, Ind. Eng. Chem. Res. 27(1988) 2182-2187.
38.J. Gmehllng, P Rasmussen, A Fredenslund, Flash Points of Flammable Liquid Mixtures Using UNIFAC, Ind Eng Chem. Fundam. 21(1982) 186-188.
39.J. Gmehllng, J. Li, M. Schiller, A Modified UNIFAC Model. 2. Present Parameter Matrix and Results for Different Thermodynamic Properties, Ind Eng Chem. Res. 32(1993) 178-193
40.J.A. Riddick, W.B. Bunger, T.K. Sakano, Organic Solvents, 4th ed., Wiley, New York, 1986.
41.T. Boublik, V. Fried, E. Hala, The Vapor Pressures of Pure Substances, 2nd ed., Elsevier, Amsterdam, 1984.
42.R.C. Reid, J.M. Prausnitz, T.K. Sherwood, The Properties of Gases and Liquids, 3rd ed., McGraw-Hill, New York, 1977.
43.M. Hirata, S. Ohe, K. Nagahama, Computer Aided Data Book of Vapor–Liquid Equilibria, Elsevier, Tokyo, 1975.
44.T Hiaki, K Tatsuhana, T Tsuji, M Hongo,Vapor-liquid equilibria for 2-methoxy-2- methylpropane+ethanol+octane and constituent binary systems at 101.3 kPa, J. Chem. Eng. Data 44, (1999)323–327.
45.R.C. Reid, J.M. Prausnitz, T.K. Sherwood, The Properties of Gases and Liquids, 3rd ed., McGraw-Hill, New York, 1977.
46.J. Gmehling, U. Onken,W. Arlt, Vapor–liquid equilibrium data collection, Part 2b, vol. 1, DECHEMA, Frankfurt, Germany, 1978.
47.M. Vidal, W. J. Rogers, M. S. Mannan, Prediction of Minimum Flash Point Behaviour for Binary Mixtures, Process Safety and Environmental Protection 84(2006) 1–9
48.H-J Liaw, S-C Lin, Binary mixtures exhibiting maximum lash-point behavior. J. Hazard. Mater. 140(2007) 155-164
49.J Wisniak, G Embon, R Shafir, H Segura, Phase equilibria in the ternary system ethyl 1,1-dimethylethylther+heptane+octane, Fluid Phase Equilibria. 154(1999), 213–222.
50.CH Tu, YS Wu, TL Liu. Isobaric vapor-liquid equilibria of the methanol, methyl acetate and methyl acrylate system at atmospheric pressure, Fluid Phase Equilibria. 135(1997), 97–108.
51.T Hiaki, A Taniguchi, T Tsuji, M Hongo, K Kojima. Isobaric vapor-liquid equilibria of octane+1-butanol, +2-butanol, and +2-methyl-2-propanol at 101.3 kPa, J. Chem. Eng. Data 41(1996), 1087–1090.
52.T Hiaki, K Tatsuhana, T Tsuji, M Hongo. Isobaric vapor-liquid equilibria for 2-methoxy-2-methylpropane+ethanol+octane and constituent binary systems at 101.3 kPa, J. Chem. Eng. Data 44 (1999), 23–327.
53.A. Arce, A. Blanco, A. Soto, I. Vidal, Phase equilibria of water + methanol + hexyl acetate mixtures, Fluid Phase Equilib. 128 (1997) 261–270.
54.A. Arce, J. Martinez-Ageitos, J. Mendoza, A. Soto, Water + ethanol + 2-methoxy-2-methylbutane: Properties of mixing at 298.15 K and isobaric vapour-liquid equilibria at 101.32 kPa , Fluid Phase Equilib. 141 (1997) 207–220.
55.R.A. Dawe, D.M.T. Newsham, S.B. Ng, Vapor-liquid equilibriums in mixtures of water, 1-propanol, and 1-butanol, J. Chem. Eng. Data 18 (1973) 44–49.
56.B. Khalfaoui, A.H. Meniai, R. Borja, Thermodynamic properties of water + normal alcohols and vapor-liquid equilibria for binary systems of methanol or 2-propanol with water, Fluid Phase Equilib. 127 (1997) 181–190.
57.J. Gmehling, U. Onken, Vapor–Liquid Equilibrium Data Collection, vol. 1, part 2a, DECHEMA, Frankfurt, Germany 1977
58.K. Kurihara, M. Nakamichi, K. Kojima, Isobaric vapor–liquid equilibria for methanol + ethanol +water and the three constituent systems, J. Chem. Eng. Data 38 (1993) 446–449.
59.J. Gmehling, U. Onken, W. Arlt, Vapor–Liquid Equilibrium Data Collection, Part 1a,vol. 1, DECHEMA, Frankfurt, Germany, 1981.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔