(3.230.154.160) 您好!臺灣時間:2021/05/07 18:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳介銘
研究生(外文):Chieh-Ming Wu
論文名稱:發展熱危害與日光紫外線暴露之健康危害生理指標
論文名稱(外文):Developing Biological Indicators for Alerting Health Hazards of Exposure to Thermal Stress and Solar UV Irradiation
指導教授:黃彬芳黃彬芳引用關係
指導教授(外文):Bing-Fang Hwang
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:職業安全衛生學系碩士班
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:314
中文關鍵詞:紫外光指數皮膚暴露經皮水分散失度皮膚生理指標主觀熱感知
外文關鍵詞:Global solar UV Indexskin exposuretransepidermal water lossskin physiological indicatorsthermal sensation
相關次數:
  • 被引用被引用:2
  • 點閱點閱:338
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
受到都市熱島效應及因大氣臭氧層破壞產生地表暖化之影響,人類於生活環境遭受紫外線及熱危害等物理性危害因子暴露之健康風險漸次提高。紫外光指數(ultraviolet index, UVI)與綜合溫度熱指數(Wet-Bulb Globe Temperature Index, WBGT)分別為針對日光紫外光與熱環境暴露中廣泛應用之危害通識工具。UVI以級量數區分暴露之潛在危害,並據以建議對應之防護措施。WBGT則警示熱因子物理力於室內或戶外環境出現之強度。但該二系統目前並無依據級量數或暴露強度提供因暴露生成健康危害之量化資訊,致使使用者無法充分瞭解過度暴露時可遭受之傷害。
本研究旨在探討於日常活動中因遭受熱危害因子及自然紫外光暴露時,人體皮膚生理反應與主觀熱舒適感之變化趨勢與反應幅度,並評估以此作為暴露危害警示指標之可行性。研究所選定之皮膚生理反應參數包含:經皮水分散失度(transepidermal water loss, TEWL)、皮膚溫度(skin temperature)、皮膚濕度(moisture)、紅斑生成指數(erythema-index, E-index)與色素沉澱指數(melanin-index, M-index);主觀熱舒適感則以美國冷凍空調技師協會(American Society of Heating, Refrigerating, and Air-conditioning Engineers, ASHRAE) Standard 55標準問卷為基礎發展之中文問卷調查。本研究共含三主要階段。第一階段(前置實驗)為於環境暴露艙內測量實驗參與者之生理反應參數值,以篩選於後續實驗中適用之皮膚暴露點(exposure site)與控制點(control site)。第二階段(暴露艙量測實驗)為於預設環境溫溼度之人工氣候暴露艙量測各皮膚生理指標與人體熱舒適感隨環境溫濕度改變所產生之變化,以分析生理指標與熱暴露間之劑量-反應關係(dose-response relationship)、生理指標間之反應-時程關係(time-course relationship)、以及主、客觀指標間之可能差異。第三階段(自然日光照射實驗)為於戶外定點、定時進行為期六週之實驗;實驗量測人體皮膚接受短期與長期之日光紫外光輻射後上項生理指標之改變,以建立生理指標與物理力間之劑量-反應關係、以及熱感知與生理指標間之異同。實驗過程中同時收集中央氣象局台中氣象站每日台中地區即時紫外光指數作為評估日光紫外光短期與長期輻射強度之基準。
研究結果顯示:參與人員上臂內側衣袖遮蓋處與前臂外側皮膚之各項生理指標測量值相近且穩定,故在第二與第三階段中以前臂外側作為實驗暴露點、上臂內側作為實驗對照點。暴露艙實驗結果發現顯示:TEWL與皮膚溫度顯著地隨環境溫度呈線性變化,但較不受相對濕度之作用;皮膚濕度為各生理指標中唯一可同時反應環境溫度與濕度影響者。依實驗觀察推論,上述三指標間反應時程關係為:皮膚溫度直接反應環境溫度,其次因應散熱需求表皮濕度顯著上升;而後隨皮膚濕度漸趨飽和,TEWL顯著上升增加水分排出。E-index與M-index未因環境溫濕度改變而有明顯變化。熱感知投票值(thermal sensation vote, TSV)隨環境溫濕度上升而增加,尤以溫度效應最為明顯,且TSV與皮膚溫度之相關性最高(r > 0.868)。日光照射實驗結果則顯示:皮膚濕度與黑色素沈澱現象分別為警示因遭受短期(急性)與長期(累積性)紫外線輻射生成健康危害之較佳生理指標。紅斑生成現象明顯反應女性皮膚所接受之累積性日光曝曬;但未反應短期曝曬可能產生之曬傷,推測因與研究進行期間台中地區日光紫外線輻射未達產生曬傷強度有關。戶外活動時之熱感知受輻射熱顯著影響,主客觀指標間之差異在熱適應期或熱佔留區最為顯著。本研究同時透過以E-index對UVI、及以M-index對紫外線累積輻射量(irradiance)進行之線性迴歸,建立於暴露危害評估適用之劑量(紫外光暴露劑量)—反應(皮膚生理指標變化)量化關係。
The exposure of human skin to physical agents present in the environment—solar UV radiation and heat stress—has long been recognized as a health risk, and in the last decades this risk has been exacerbated with the formation of urban heat island effect and the global warming due to depletion of stratospheric ozone. Currently, the Global Solar UV Index (UVI) system and Wet-Bulb Globe Temperature (WBGT) are the predominant tools of communication for the hazards resulting from over-exposure to UV irradiation and heat stress, respectively. The UVI ranks the potential hazard of exposure based on the solar irradiance reaching the earth’s surface and correspondingly suggests recommendations of protection. The WBGT reports the intensity of thermal factors present in the indoor or ambient environment. As of current, both systems do not causally relate, in (semi-)quantitative terms, the exposure level to the potential human health impact that may arise from over-exposure to solar UV irradiation or heat stress. Consequently, these systems in their current formats are limited from providing warnings to information users on the health hazard resulting from excess exposure to UV irradiation, heat stress, or both.
This thesis aims to quantitatively investigate the changes in human skin physiology and in thermal sensation in response to exposure to various thermal factors in the environment, including solar UV radiation, so to evaluate the applicability of these changes as an indicator to health hazards from over-exposure. The skin physiological responses attempted as biomarkers included transepidermal water loss (TEWL), skin temperature, skin moisture, erythema (reported as erythema-index, E-index), and melanogenesis (reported as melanin-index, M-index). Subjective thermal sensation was gauged using a standardized questionnaire developed by the American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE) Standard 55. The research as described in this thesis was conducted in three major stages. In the first stage (the preliminary study), study participants were investigated for the changes in the aforementioned physiological indicators in a climatic chamber to determine the skin exposure and control sites appropriate for evaluation in the succeeding stages. The second stage (the exposure chamber study) assessed the variations in objective biomarkers and subjective sensation in response to alternation in environmental temperature and relative humidity (RH); the results were then analyzed to establish the dose-response relationships between physiological indicators and thermal exposure, the time-course relationships among physiological indicators, and the potential variance between physiological and psychological indicators. The third stage, the solar UV exposure study, was conducted outdoors on campus twice a week for a total period of six weeks. In this stage, the biomarkers were evaluated for their changes following short- and long-term solar UV radiation, and, similar to the second stage, attempts were made to develop dose-response relationships between biomarkers and examined physical forces and to investigate any variations between physiological and psychological indicators. Simultaneously collected in this stage were the hourly UVI forecasts monitored in the Taichung area by the Central Weather Bureau, Taichung Meteorological Station for evaluation of immediate and cumulative solar UV irradiance reaching the campus where the study took place.
The results show: among all evaluated positions, the skin at outer forearm and sleeve-covered inner upper arm shared a similar level of stable response in all examined skin physiological indicators upon thermal challenge, thus were selected as the exposure and control sites in all succeeding studies. Based on the results of exposure chamber study, TEWL and skin temperature changed significantly with environmental temperature, but responded less to RH. The skin moisture was the only of the above indicators that reflected the alteration in both environmental temperature and RH. The events of physiological changes as suggested by experimental observations were: 1) skin temperature directly tracked the change in environmental temperature; 2) skin moisture increased in response to requirement of heat dissipation; and 3) as skin moisture peaked TEWL rose remarkably and eventually leading to substantial sweating-resembling evaporation. The E-index and M-index did not change with varying environmental temperature and RH. As for the psychological indicator, the thermal sensation votes (TSVs) of the participants were influenced proportionally by alterations in the examined thermal factors, particularly the environmental temperature. The TSV was most significantly correlated to skin temperature (r > 0.868). The results from solar exposure study show that skin moisture and melanogenesis were better indicators of potential health hazards from single and cumulative solar UV radiation, respectively, than the others. Erythema as reported in M-index corresponded linearly to cumulative solar UV exposure for the female participants, but did not reflect acute injury if any, possibly due to the low intensity of solar UV radiation at Taichung during the period of investigation. The outdoor thermal sensation was markedly influenced by the radiant heat; the variation between the physiological and psychological indicators was most significant when the participants were in the period of thermal adaptation or in a thermal transition zone. The distributions of E-index against UVI and M-index against cumulative UV irradiance were linearly regressed to establish dose (UV irradiance)-response (quantifiable biomarker change) relationships that may be applied in hazard exposure assessments and as a warning tool of harmful UV exposures.
誌謝 I
中文摘要 III
ABSTRACT VI
目錄 X
表目錄 XV
圖目錄 XXII
第一章 緒論 1
第一節 研究背景 1
第二節 研究之重要性 9
第三節 研究目的 10
第四節 研究假設 11
第五節 名詞界定 12
第二章 文獻探討 16
第一節 經皮水分散失度與皮膚濕度 17
第二節 紅斑與黑色素生成 19
第三節 經皮水分散失度、皮膚濕度、紅斑生成與黑素沉澱受溫度影響之測量 20
第四節 日光曝曬對主觀熱舒適影響與男女熱感知差異 22
第五節 常用調查熱感知之工具 24
第六節 總結 25
第七節 研究架構 26
第三章 研究方法 29
第一節 研究設計 29
3.1.1 前置實驗 29
3.1.2 暴露艙量測實驗 30
3.1.3 自然日光照射實驗 30
第二節 研究對象 31
3.2.1 基本人體計測資料 32
3.2.2 皮膚生理狀況自我評估 32
3.2.3 夏季戶外活動狀況 35
3.2.4 夏季衣著量 37
第三節 研究儀器設備與工具 39
第四節 資料收集 40
3.4.1 前置實驗流程 40
3.4.2 暴露艙量測實驗流程 43
3.4.3 自然日光照射實驗流程 43
3.4.4 日光紫外線指數與累積輻射劑量之計算 47
第五節 資料統計與分析 48
3.5.1 前置實驗結果統計分析 48
3.5.2 暴露艙量測實驗結果統計分析 48
3.5.3 自然日光照射實驗結果統計分析 51
3.5.4 室內與戶外皮膚生理指標變化之比較 53
第四章 研究結果與討論 54
第一節 前置實驗結果 54
第二節 暴露艙量測實驗結果 58
4.2.1 室內環境熱因子對TEWL之影響 58
4.2.2 室內環境熱因子對皮膚溫度之影響 83
4.2.3 室內環境熱因子對皮膚濕度之影響 104
4.2.4 室內環境熱因子對紅斑生成之影響 126
4.2.5 室內環境熱因子對黑色素生成之影響 140
4.2.6 皮膚生理指標間因應環境熱因子變化之反應-時程關係 154
4.2.7 環境熱因子對人體主觀熱感知之影響 165
4.2.8 人體主觀熱感知與客觀生理指標之比較 172
4.2.9 室內環境物理因子與性別對於主客觀熱舒適指標之綜合影響分析 190
第三節 自然日光照射實驗結果 193
4.3.1 日光紫外線輻射對TEWL之影響 193
4.3.2 日光紫外光輻射對皮膚濕度之影響 199
4.3.3 日光紫外光輻射對紅斑生成之影響 207
4.3.4 日光紫外線輻射對黑素沉澱之影響 215
4.3.5 日光紫外線輻射對主觀熱感知之影響 220
4.3.6 戶外環境物理因子與性別對於主客觀指標之綜合影響分析 227
4.3.7 日光照射實驗與暴露艙量測實驗中皮膚生理指標之差異 .........................................................................................232
第五章 結論與建議 236
第一節 結論 236
第二節 研究限制 240
第三節 應用與建議 240
參考文獻 244
附錄A 實驗受試者基本資料調查 252
附錄B 環境熱舒適問卷 261
附錄C 台灣中部地區97年夏季每日紫外線指數即時測報資料 263
附錄D 前置實驗結果圖 271
附錄E 暴露艙量測實驗結果圖 278
附錄F 全體人員、男性、女性上臂內側與前臂外側皮膚於各溫濕度組合下紅斑指數之檢定 295
附錄G 全體人員、男性、女性上臂內側與前臂外側皮膚於各溫濕度組合下黑素指數之檢定 302
附錄H 皮膚生理指標間因應環境熱因子變化之非線性反應-時程關係 308
1.World Health Organization (WHO). 2006. Solar Ultraviolet Radiation―Global Burden of Disease from Solar Ultraviolet Radiation. Environmental Burden of Disease Series, No. 13. Geneva, Switzerland: World Health Organization.
2.World Health Organization (WHO). 1994. Ultraviolet Radiation. Environmental Health Criteria 160. Geneva, Switzerland: World Health Organization.
3.Diffey BL. 2002. Source and measurement of ultraviolet radiation. Methods 28:4-13.
4.Farr PM, Diffey BL. 1985. The erythemal response of human skin to ultraviolet radiation. Br J Dermatol 113:65-76.
5.Nordlund JJ, Collins CE, Rheins LA. 1981. The proliferative and toxic side effects of ultraviolet light and inflammation on epidermal pigment cells. J Invest Dermatol 77:361-368.
6.Kondo S, Kono T, Sauder DN, McKenzie RC. 1993. IL-8 gene expression and production in human keratinocytes and in their modulation by UVB. J Invest Dermatol 101:690-694.
7.Schwarz A, Bhardwaj R, Aragane Y, Mahnke K, Riemann H, Metze D, et al. 1995. Ultraviolet-B-induced apoptosis of keratinocytes: evidence for partial involvement of tumor necrosis factor-α in the formation of sunburn cells. J Invest Dermatol 104:922-927.
8.Aufiero BM, Talwar H, Young C, Krishnan M, Hatfield JS, Lee HK, et al. 2006. Narrow-band UVB induces apoptosis in human keratinocytes. J Photochem Photobiol B:Biol 82:132-139.
9.Stanojević M, Stanojević Z, Jovanović D, Stojiljković M. 2004. Ultraviolet radiation and melanogenesis. Arch Oncol 12:203-205.
10.Mommaas AM, Mulder AA, Vermeer BJ. 1993. Short-term and long-term UVB induced immunosupression in human skin exhibit different ultrastructural features. Eur J Morphol 31:30-34.
11.Narbutt J, Lesiak A, Skibinska M, Wozniacka A, van Loveren H, Sysa-Jedrzejowska A, et al. 2005. Suppression of contact hypersensitivity after repeated exposures of humans to low doses of solar simulated radiation. Photochem Photobiol Sci 4:517-522.
12.Steerenberg PA, Daamen F, Weesendorp E, Van Loveren H. 2006. No adaptation to UV-induced immunosuppression and DNA damage following exposure of mice to chronic-UV exposure. J Photochem Photobiol B:Biology 84:28-37.
13.World Meteorological Organization (WMO). 2007. Scientific Assessment of Ozone Depletion: 2006, Pursuant to Article 6 of the Montreal Protocol on Substances that Deplete the Ozone Layer. Global Ozone Research and Monitoring Project―Report No. 50. Geneva, Switzerland: World Meteorological Organization.
14.U.S. Environmental Protection Agency (USEPA). 2006. Human Health Benefits of Stratospheric Ozone Protection. Washington, DC: U.S. Environmental Protection Agency, Office of Air and Radiation, Global Programs Division.
15.Bernard TE. 2002. Thermal stress. In: Fundamentals of Industrial Hygiene, 5th ed (Plog BA, Quinlan PJ, eds). Itasca, IL: National Safety Council, 327-356.
16.American Conference of Governmental Industrial Hygienists (ACGIH). 2006. Heat stress and strain. In: Documentation of the TLVs?? and BEIs?? with Other Worldwide Occupational Exposure Values, 2006 CD-ROM. Cincinnati, OH: American Conference of Governmental Industrial Hygienists.
17.World Health Organization (WHO). 2002. Global Solar UV Index: a Practical Guide. WHO/SDE/OEH/02.2. Geneva, Switzerland: World Health Organization.
18.National Institute for Occupational Safety and Health (NIOSH). 1997. Criteria for a Recommended Standard—Occupational Exposure to Hot Environments. DHHS (NIOSH) Pub. No. 97-106. Cincinnati, OH: U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health.
19.International Organization for Standardization (ISO). 1982. Hot Environments—Estimation of Heat Stress on Working Man Based on the WBGT Index (Wet Bulb Globe Temperature). ISO 7243. Geneva, Switzerland: International Organization for Standardization.
20.Fluhr JW, Feingold, KR, Elias PM. 2006. Transepidermal water loss reflects permeability barrier status: validation in human and rodent in vivo and ex vivo models. Exp Dermatol 15:483-492.
21.Hwang RL, Yang KH, Chen CP, Wang ST. 2008. Subjective responses and comfort reception in transitional spaces for guests versus staff. Build Environ 43:2013-2021.
22.Hodder SG, Ken P. 2006. The effects of solar radiation on thermal comfort. Int J Biometeorol 51:233-250.
23.National Institute for Occupational Safety and Health (NIOSH). 2007. A Strategy for Improvement of Skin Notations, Draft Document. Cincinnati, OH: U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health.
24.Haratake A, Uchida Y, Schmuth M, Tanno O, Yasuda R, Epstein JH, et al. 1997. UVB-induced alterations in permeability barrier function: roles of epidermal hyperproliferation and thymocyte-mediated response. J Invest Dermatol 108:769-775.
25.Bissett DL, Hannon DP, Orr TV. 1987. An animal model of solar-aged skin: histological, physical, and visible changes in UV-irradiated hairless mouse skin. Photochem Photobiol 46:367-378.
26.Bronaugh RL, Stewart R. 1985. Methods for in vitro percutaneous absorption studies V: permeation through damaged skin. J Pharm Sci 74:1062-1066.
27.Meguro S, Arai Y, Masukawa Y, Uie K, Tokimitsu I. 2000. Relationship between covalently bound ceramides and transepidermal water loss. Arch Dermatol Res 292:463-468.
28.Akitomo Y, Akamatsu H, Okano Y, Masaki H, Horio T. 2003. Effects of UV irradiation on the sebaceous gland and sebum secretion in hamsters. J Dermatol Sci 31:151-159.
29.Jiang SJ, Chen JY, Lu ZF, Yao J, Che DF, Zhou XJ. 2006. Biophysical and morphological changes in the stratum corneum lipids induced by UVB irradiation. J Dermatol Sci 44:29-36.
30.Li MJ, Lin SY, Liang RC. 1999. Change in the skin moisture contents, skin color, and skin protein conformational structures of Sprague-Dawley rats after Ultraviolate B irradiation. Skin Pharmacol Appl Skin Physiol 12:336-343.
31.Fitzpatrick TB. 1988. The validity and practicality of sun-reaction skin types I through VI. Arch Dermatol 124:869-871.
32.Takiwaki H, Shirai S, Kohno H, Soh H, Arase S. 1994. The degree of UVB-induced erythema and pigmentation correlate linearly and are reduced in a parallel manner by topical anti-inflammatory agents. J Invest Dermatol 103:642-646.
33.Diffey BL, Farr PM, Oakley AM. 1987. Quantitative studies on UVA-induced erythema in human skin. Br J Dermatol 117:57-66.
34.Park S-B, Huh C-H, Choe, Y-B, Youn J-I. 2002. Time course of ultraviolet-induced skin reactions evaluated by two different reflectance spectrophotometers: DermaSepctrophotometer?? and Minolta spectrophotometer CM-2002??. Photodermatol Photoimmunol Photomed 18:23-28.
35.Suh K-S, Roh H-J, Choi S-Y, Jeon Y-S, Doh K-S, Bae J-H, et al. 2007. Long-term evaluation of erythema and pigmentation induced by ultraviolet radiations of different wavelengths. Skin Res Technol 13:154-161.
36.Youn CS, Kwon OS, Hwang EJ, Jo SJ, Lee MJ, Lee HS, et al. 2005. The effects of heating and cooling on ultraviolet radiation-induced erythema and pigmentation in human skin. Photodermatol Photoimmunol Photomed 21:198-203.
37.Thiele JJ, Dreher F, Maibach HI, Packer L. 2003. Impact of ultraviolet radiation and ozone on the transepidermal water loss as a function of skin temperature in hairless mice. Skin Pharmacol Appl Skin Physiol 16:283-290.
38.Shea CR, Parrish JA. 1982. Effects of temperature on ultraviolet-induced erythema of human skin. Arch Dermatol Res 273:233-239.
39.Maglinger PE, Sessler DI, Lenhardt R. 2005. Cutaneous heat loss with three surgical drapes, one impervious to moisture. Aneth Analg 100:738-742.
40.Petrofsky JS, McLellan K, Bains G, Prowse M, Ethiraju G, Lee S, et al. In press. The influence of diabetes on the ability of the skin to dissipate heat; the impact of skin thickness and subcutaneous. J Appl Res.
41.Shvartz E, Bhattacharya A, Sperinde SJ, Brock PJ, Sciaraffa D, Van Beaumont W. 1979. Sweating responses during heat acclimation and moderate conditioning. J Appl Physiol 46:675-680.
42.McLellan K, Petrofsky JS., Bains G, Zimmerman G, Prowse M, Lee S. 2008. The effects of skin moisture and subcutaneous fat thickness on the ability of the skin to dissipate heat in young and old subjects, with and without diabetes, at three environmental room temperatures. Medical Engineering and Physics 31:165-172.
43.Nartia C, Tanabe S, Ozeki Y, Konishi M. 2001. Effects of spectral property of solar radiation on thermal sensation at the back of hands. In: Moving Thermal Comfort Standards into the 21st Century, Conference Proceedings, 393-400.
44.Ogawa T, Sugenoya J, Ohnishi N, Natsume K, Ochiai M, Nishida M, et al. 1991. Dynamic sweating response of man to infrared irradiation in various spectral regions. Int Biometeorol 35: 18-23.
45.Hwang RL, Lin TP, Kuo NJ. 2005. Field experiments on thermal comfort in campus classrooms in Taiwan. Energy Build 38: 53-62.
46.Lan L, Lian Z, Liu W, Liu Y. 2007. Investigation of gender difference in thermal comfort for Chinese people. Eur J Appl Physiol 102: 471-480.
47.American society of heating, refrigerating, and air-conditioning engineers, Inc. (ASHRAE). 2004. Thermal environmental conditions for human occupancy. ANSI/ASHRAE 55-2004. Atlanta, GA: American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc.
48.Cheng V, Ng E. 2006. Comfort temperatures for naturally ventilated buildings in Hong Kong. Arch Sci Rev 49:179-182.
49.Corgnati SP, Filippi M, Viazzo S. 2007. Perception of the thermal environment in high school and university classrooms: subjective preferences and thermal comfort. Build Environ 42:951-959.
50.de Dear RJ, Brager G.S. 2002. Thermal comfort in naturally ventilated buildings: revisions to ASHRAE Standard 55. Energ Build 34:549-561.
51.Trane, Inc. 1983. Psychrometric chart (SI units). Pub. No. 1-43.196. La Crosse, WI:Trane, Inc.
52.Rosner B. 2006. Fundamentals of Biostatistics. 6th ed. Belmont, CA:Thomson Brook/Cole.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔