跳到主要內容

臺灣博碩士論文加值系統

(100.28.227.63) 您好!臺灣時間:2024/06/15 01:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王顗婷
研究生(外文):Yi-Ting Wang
論文名稱:台灣中部空品區秋冬期間之大氣超細微粒數量濃度粒徑分佈及排放源研究
論文名稱(外文):Number-size distributions and sources of ambient ultrafine particles in the central Taiwan airshed during cold months
指導教授:楊禮豪
指導教授(外文):Li-Hao Young
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:職業安全衛生學系碩士班
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:139
中文關鍵詞:超細微粒數量濃度粒徑分佈中部空品區
外文關鍵詞:ultrafine particlesnumber size distributionthe central Taiwan airshed
相關次數:
  • 被引用被引用:9
  • 點閱點閱:405
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
大氣超細微粒(ultrafine particles, UFPs)為懸浮空氣中且粒徑小於100奈米(nm)之微小顆粒,且因對人體與環境有潛在不良影響而廣受各界的關注。而此不良影響的嚴重程度是反映在微粒數量或表面積濃度上,與傳統以質量為中心的毒理劑量概念截然不同。僅管超細微粒不具顯著質量,卻以高數量濃度廣泛地存在空氣環境中,屬於室外空氣污染物之一部分,並對於一般室內與勞工作業場所空氣品質亦有舉足輕重的影響。然而,臺灣國內相關的研究仍相當缺乏,尤其是進行暴露評估與危害防制所必備之特性基本資料。有鑒於此,本研究目的有二:(1)建立台灣中部空品區大氣超細微粒數量濃度與粒徑之空間與時間分布特性;(2)探討台灣中部空品區大氣超細微粒之主要排放源。
本研究使用掃描電移動度分徑器與凝結核計數器,於97年10月至98年1月間,量測粒徑介於10-1000 nm之大氣微粒。量測地點設置在四個不同類型之環保署空氣品質監測站,包括台中市忠明站(都會區)、彰化縣線西站(工業區)、南投縣竹山站(光化學區)與埔里站(背景區)等進行連續24hr、為期四週之量測,並配合監測站空氣污染物逐時資料進行統計分析。
本研究結果顯示中部空品區超細微粒平均濃度為1.75(±1.14) ?e 104 cm-3,且佔總微粒數量濃度之76%,幾何平均粒徑為50 nm,此平均濃度值較一般室內環境為高,但顯著低於交通路旁之濃度值,且與其它地區大氣研究量測之濃度相當。就時間序列而言,中部空品區超細微粒尖峰濃度一般出現於交通尖峰時段,且與CO及NOX濃度有高的相關性。就空間分布而言,忠明測站的超細微粒數量濃度不但明顯高於其他測站,且幾何平均粒徑為最小(43 nm);而埔里測站濃度最低,但與線西、竹山測站差異性不大。從上述結果可知,移動性污染源為整體中部空品區大氣超細微粒之重要排放源。
Ambient ultrafine particles (UFPs) are those suspended in air with diameters less than 100 nm. Although very small in size, UFPs exist ubiquitously as well as in large numbers in ambient air. Recently, particles are attracting increasing attention from the scientific community due to their potential adverse impact on human at the environmental hazard. The toxicity and effects of UFPs are more related to their number or surface area concentrations, as opposed to conventional mass-based toxicology. As one of the outdoor air pollutants, UFPs also play an important role in indoor/workplace air quality. In Taiwan, however, there are relatively limited of UFP studies, especially in the area of UFP characteristics that are crucial to successful exposure assessment and hazard control. With that in mind, the objective of this study is to characterize the spatial and temporal variations of ambient UFPs, and to identify potential major sources and formation mechanisms of ambient UFPs in the central Taiwan airshed.
Short-term intensive sampling campaigns were carried out at 4 TWEPA air quality sites, with each representing urban, industrial, photochemical, and background area, during October 2008 to January 2009. We used a sequential mobility particle spectrometer and condensation particle counter (SMPS/CPC) to measure the number size distributions of 10 – 1000 nm particles. The aerosol data were analyzed along with on-site air pollutant and meteorological data acquired from the Taiwan EPA to characterize the temporal and spatial distribution, and to identify major sources of UFPs in the central Taiwan airshed.
The measured average (?b standard deviation) UFP number concentration was 1.75 (?b 1.14) ?e 104 cm-3, which is comparable to that observed in many urban cities worldwide. The urban site, in particular, showed substantially higher UFP number concentrations than the other sites, of which the concentrations were similar. Temporally, peak UFP number concentrations consistently coincided with the morning and evening rush-hour periods and, as expected, showed the strongest correlations with CO and NOx. Overall, the results suggest an important contribution from traffic and industrial emissions, to the ambient UFPs in the central Taiwan airshed.
摘要...... II
目錄….. VI
表目錄.. IX
圖目錄.. XI
第一章 緒論 1
1-1 研究緣起 1
1-2 研究目的.......2
第二章 文獻探討 3
2.1 超細微粒的特性 3
2.1.1 超細微粒的來源 3
2.1.2 超細微粒的化學組成分 4
2.1.3 超細微粒數量濃度影響因子 5
2.2 超細微粒之健康影響 6
2.3 戶外環境之超細微粒 10
2.4 台灣中部空氣品質現況 14
2.4.1 中部空品區氣象條件 14
2.4.2 中部空品區空氣污染排放量與排放源 15
2.4.3 中部空品區空氣品質情形 20
2.5 室內工作環境之超細微粒 22
2.6 受體模式之應用 24
第三章 研究方法 37
3.1 研究架構 37
3.2 採樣時間與地點 38
3.3 研究儀器設備 40
3.4 環保署數據收集 42
3.5 品保與品管 44
3.6 資料統計與分析 45
第四章 結果與討論 59
4.1 台中地區交通路旁之研究結果 59
4.2 採樣期間之中部空品區氣象條件及空氣品質狀況 62
4.3 中部空品區之研究結果 63
4.3.1 超細微粒數量濃度與過去研究之比較 63
4.3.2 超細微粒數量濃度與環保署空氣污染物及氣象因子之時間序列變化 63
4.3.3 超細微粒數量濃度與空氣污染物及氣象因子之相關性探討 64
4.3.4 超細微粒數量濃度粒徑分佈 65
4.3.5 不同粒徑微粒與空氣污染物之相關性 66
4.3.6 中部空品區污染源分析 67
4.4 各個採樣點之研究結果 68
4.4.1 忠明測站 69
4.4.2 線西測站 72
4.4.3 埔里測站 74
4.4.4 竹山測站 76
4.5 採樣點個案探討 78
4.5.1 忠明測站 78
4.5.2 線西側站 79
4.5.3 埔里測站 81
4.5.4 竹山測站 82
第五章 結論 127
5.1 結論 127
5.2 研究限制 129
5.3 研究建議 129
參考文獻 130
Abt, E., Suh, H.H., Allen, G., Koutrakis, P., 2000. Characterization of indoor particle sources: a study conducted in the metropolitan Boston Area, Environmental Health Perspectives 108, 35-44.
Agus, E.L., Young, D.T., Lingard, J.J.N., Smalley, R.J., Tate, J.E., Goodman, P.S., Tomlin, A.S., 2007. Factors influencing particle number concentrations, size distributions and modal parameters at a roof-level and roadside site in Leicester, UK . Science of the Total Environment 386, 65-82.
Araujo, J.A., Barajas, B., Kleinman, M., Wang, X., Bennett, B.J., Gong, K.W., Navab, M., Harkema, J., Sioutas, C., Lusis, A.J., Nel, A., 2008. Ambient particulate pollutants in the ultrafine range promote early atherosclerosis and systemic oxidative stress. Circulation Research 102, 589-596.
Batalha, J.R.F., Saldiva, P.H.N., Clarke, R.W., Coull, B.A., Stearns, R.C., Lawrence, J., Murthy, G.G.K., Koutrakis, P., Godleski, J.J., 2002. Concentrated ambient air particles induce vasoconstriction of small pulmonary arteries in rats. Environmental Health Perspectives 110 , 1191-1197.
Bermudez, E., Mangum J.B., Wong, B.A., Asgharian, B., Hext, P.M., Warheit, D.B., Everitt, J.I., 2004. Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicological Sciences 77, 347-57.
Birmili, W., Wiedensohler, A., Plass-Dulmer, C., Berresheim, H., 2000. Evolution of newly formed aerosol particles in the continental boundary layer: a case study including OH and H2SO4 measurements. Geophysical Research Letters 27, 2205-2208.
Birmili, W., Berresheim, H., Plass-D?刜mer, C., Elste, T., Gilge, S., Wiedensohler, A., Uhrner, U., 2003. The Hohenpeissenberg aerosol formation experiment (HAFEX): a long-term study including size-resolved aerosol, H2SO4, OH, and monoterpenes measurements. Atmospheric Chemistry and Physics 3, 361-376
Brown, D.M., Stone, V., Findlay, P., MacNee, W., Donaldson, K., 2000. Increased inflammation and intracellular calcium caused by ultrafine carbon black is independent of transition metals or other soluble components. Occupational and Environmental Medicine 57, 685-91.
Brown, D.M., Wilson, M.R., MacNee, W., Stone, V., Donaldson, K., 2001. Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol 175, 191-199.
Cass, G.R., Hughes , L.A., Bhave , P., Kleeman M.J., Allen J.O., Salmon L.G., 2000. The chemical composition of atmospheric ultrafine particles. Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences 358, 2581-2592.
Cassee, F.R., Muijser, H., Duistermaat, E., Freijer, J.J., Geerse, K.B., Marijnissen, J.C., Arts, J.H., 2002. Particle size-dependent total mass deposition in lungs determines inhalation toxicity of cadmium chloride aerosols in rats. Application of a multiple path dosimetry model. Archives of Toxicology 76, 277-86.
Chang, K.N., Chan, C.C., Huang, S.H., Chan, C.C., Chiang, C.M., 2008. Strategy of using indoor air cleaners in a HVAC office building. International Occupational Hygiene Association International Scientific Conference 7, Taipei, February 18-22.
Chang, S.C., Lee, C.T., 2007. Secondary aerosol formation through photochemical reactions estimated by using air quality monitoring data in Taipei City from 1994-2003. Atmospheric Environment 41, 4002-4017.
Cheng, M.T., Horng, C.L., Lin, Y.C., 2007. Characteristics of atmospheric aerosol and acidic gases from urban and forest sites in central Taiwan. Bulletin of Environmental Contamination and Toxicology 79, 674-677.
Cheng, Y.H., Chao, Y.C., Wu, C.H., Tsai, C.J., Uang, S.N., Shih, T.S., 2008. Measurements of ultrafine particle concentrations and size distribution in an iron foundry. Journal of Hazardous Materials 158, 124-30.
Chio, C.P., Cheng, M.T., Wang, C.F., 2004. Source apportionment to PM10 in different air quality conditions for Taichung urban and coastal areas Taiwan. Atmospheric Environment 38, 6893-6905.
Chuang, K.J., Chan, C.C., Su, T.C., Lee, C.T., Tang, C.S., 2007. The effect of urban air pollution on inflammation, oxidative stress, coagulation, and autonomic dysfunction in young adults. American Journal of Respiratory and Critical Care Medicine 176, 370-376
D’Arcy, J.B., Dasch, J.M., Johnsonv J., Sutherland, J., Carlson, D., 2005. Fine and ultrafine particle emissions from current manufacturing technologies. Proceeding of 2nd International Symposium on Nanotechnology and Occupational Health 31, Minnesota, October 3-6.
Dusek, U., Frank, G.P., Hildebrandt, L., Curtius, J., Schneider, J., Walter, S., Chand, D., Drewnick, F., Hings, S., Jung, D., 2006. Size matters more than chemistry for cloud-nucleating ability of aerosol particles. Science 312, 1375-13758.
Elder, A., Gelein, R., Silv,a V., Feikert, T., Opanashuk, L., Carter, J., Potter, R., Maynard, A., Ito, Y., Finkelstein, J., Oberd?宁ster, G., 2006. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environmental Health Perspectives 114, 1172-11728.
Fang, G.C., Wu, Y.S., Wen, C.C., Lin, C.K., Huang, S.H., Rau, J.Y., Lin, C.P., 2005. Concentrations of nano and related ambient air pollutants at a traffic sampling site. Toxicology and Industrial Health 21, 259-271.
Gavett, S.H., Madison, S.L., Dreher, K.L., Winsett, D.W., McGee, J.K., Costa, D.L., 1997. Metal and sulfate composition of residual oil fly ash determines airway hyperreactivity and lung injury in rats. Environmental Research 72, 162-72.
Ghio, A.J., Stonehuerner, J., Dailey, L.A., Carter, J.D., 1999. Metals associated with both the water-soluble and insoluble fractions of an ambient air pollution particle catalyze an oxidative stress. Inhalation Toxicology 11, 37-49.
Hughes, L.S., Cass, G.R., Gone, J., Ames, M., Olmez, I., 1998. Physical and chemical characterization of atmospheric ultrafine particles in the Los Angeles area. Environmental Science and Technology 32, 1153-1161.
Imhof, D., Weingartner, E., Pr?縹v?瀟, A.S.H., Ord??ńez, C., Kurtenbach, R., Wiesen, P., Rodler, J., Sturm, P., McCrae, I., Sj?丼in, ??., Baltensperger, U., 2005. Aerosol and NOX emission factors and submicron particle number size distributions in two road tunnels with different traffic regimes. Atmospheric Chemistry and Physics Discussions 5, 5127-5166.
Janhall, S., Jonsson, A. M., Molnar, P., Svensson, E. A., Hallquist, M., 2004. Size resolved traffic emission factors of submicrometer particles. Atmospheric Environment 38, 3275-3284.
Janhall, S., Olofson, K.F.G., Andersson, P.U., Pettersson, J.B.C., Hallquist, M., 2006. Evolution of the urban aerosol during winter temperature inversion episodes. Atmospheric Environment 40, 5355-5366.
Jeong, C.H., Hopke, P., Chalupa, D., Markutell, 2004. Characteristics of
nucleation and growth events of ultrafine particles measured in
Rochester, NY. Environmental Science and Technology 38,
1933-1940.
Jeong, C.H., Evans, G.J., Hopke, P.K., Chalupa, D., Utell, M.J., 2006. Influence of atmospheric dispersion and new particle formation events on ambient particle number concentration in Rochester, United States, and Toronto, Canada. Air and Waste Management Association 56, 431- 443.
Kavouras, I.G., Koutrakis, P., Cereceda-Balic, F., Oyola, P., 2001. Source apportionment of PM10 and PM2.5 in five chilean cities using factor analysis. Air and Waste Management Association 51, 451-464.
Ketzel, M., Wahlin, P., Berkowicz, R., Palmgren, F. 2003. Particle and trace gas emission factors under urban driving conditions in Copenhagen based on street and roof-level observations. Atmospheric Environment 37, 2735-2749.
Kipen, H.M., Laskin, D.L., 2005. Smaller is not always better: nanotechnology yields nanotoxicology. American Journal of Physiology. Lung Cell Molecular Physiology 289, 696-697.
Kittelson, D., Watts, W., Ramachandran, G., Paulsen, D., Kreager, C., 2002. Measurement of diesel aerosol exposure: a feasibility study. Health Effects Institute Diesel Epidemiology Working Group 2002, 153-179.
Kulmala, M., Vehkam?驥i, H., Pet?驢??, T., Dal Maso, M., Lauri, A., Kerminen,
V.M., Birmili, W., McMurry, P.H., 2004. Formation and growth rates of ultrafine atmospheric particless: a review of observations. Journal of Aerosol Science 35, 143-176.
Leev, C.W., Hsu, D.J., 2007. Measurements of fine and ultrafine particles formation in photocopy centers in Taiwan. Atmospheric Environment 41, 6598-6609.
Li, Z., Hulderman, T., Salmen, R., Chapman, R., Leonard, S.S., Young, S.H., Shvedova, A., Luster, M.I., Simeonova, P.P., 2007. Cardiovascular Effects of Pulmonary Exposure to Single-Wall Carbon Nanotubes. Environmental Health Perspectives. 115, 377-382.
Lin, Y.C., Lan, Y.Y., Tsuang, B.J., Englinga, G., 2008. Long-term spatial distributions and trends of ambient CO concentrations in the central Taiwan Basin. Atmospheric Environment 42, 4320-4331.
Longley, I.D., Inglis, D.W.F., Gallagher, M.W., Williams, P.I., Allan, J.D. Coe, H., 2005. Using NOX and CO monitoring data to indicate fine aerosol number concentrations and emission factors in three UK conurbations. Atmospheric Environment 28, 5157-5169.
Matson, U., 2005. Indoor and outdoor concentrations of ultrafine particles in some Scandinavian rural and urban areas. Science of the Total Environment 343, 169-176.
Nel, A., 2005. Air pollution–related illness: effects of particles. Science 308, 804-806.
Nel, A., Xia, T., M?黌ler, L., Li, N., 2006. Toxic potential of materials at the nanolevel. Science 311, 622-627.
Ntziachristos, L, Zhi, N., Geller, M.D., Sheesley, R., Schauer, J.J., Sioutas, C., 2007. Fine, ultrafine and nanoparticles trace element and metal composition near a freeway with heavy duty diesel traffic. Atmospheric Environment 41, 5684-5696.
Oberd?宁ster, G., 2000, Toxicology of ultrafine particles: in vivo studies. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 358, 2719-2740.
Oberdorster, G., 2001. Pulmonary effects of inhaled ultrafine particles. International Archives of Occupational and Environmental Health 74, 1-8.
Oberd?宁ster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, A., Kreyling, W., Cox, C., 2004. Translocation of inhaled ultrafine particles to the brain. Inhalation Toxicology 16, 437-445.
Oberdorster, G., Oberdorster, E., Oberdorster, J., 2005. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113, 823-39.
Ogulei, D., Hopke, P.K., Ferro, A.R., Jaques, P.A., 2007. Factor analysis of submicron particle size distributions near a major united states–Canada Trade Bridge. Air and Waste Management Association 57, 190-203.
Pekkanen, J., Timonen, K.L., Ruuskanen, J., Reponen, A., Mirme, A., 1997. Effects of ultrafine and fine particles in urban air on peak expiratory flow among children with asthmatic symptoms. Environmental Research 74, 24-33.
Pope, C.A.III, Burnett, R.T., Thurston, G.D., Thun, M.J., Calle, E.E., Krewski, D., Godleski, J.J., 2004., Cardiovascular mortality and long-term exposure to particulate air pollution: epidemiological evidence of general pathophysiological pathways of disease. Circulation 109, 71-77.
Rahman, Q., Lohani, M., Dopp, E., Pemsel, H., Jonas, L., Weiss, D.G., Schiffmann, D., 2002. Evidence that ultrafine titanium dioxide induces micronuclei and apoptosis in Syrian hamster embryo fibroblasts. Environmental Health Perspectives 110, 797-800.
Schwartz, J., Zanobetti, A., 2000. Using meta-smoothing to estimate dose-response trends across multiple studies, with application to air pollution and daily death. Epidemiology 11, 666-672.
Shi, J.P., Evans, D.E., Khan, A.A., Harrison, R.M., 2001. Sources and concentration of nanoparticles (<10nm diameter) in the urban atmosphere. Atmospheric Environment 35, 1193-1202.
Stanier, C.O., Khlystov, A.Y., Pandis, S.N., 2004a. Ambient aerosol sizedistributions and number concentrations measured during the Pittsburgh airquality study (PAQS). Atmospheric Environment 38, 3275-3284.
Timonen, K.L., Hoek, G., Heinrichv J., Bernard, A., Brunekreef, B., Dehartog, J., H?讜eri, K., Ibald-Mulli, A., Mieme, A., Peters, A., Tittanen, P., Kreyling, W. G., Pekkanen, J., 2004. Daily variation in fine and ultrafine particulate air pollution and urinary concentrations of lung Clara cell protein CC16. Occupational and Environmental Medicine 61, 908-914.
Tsai, Y.I., Cheng, M.T., 1997. Relationship between visibility, meteorological factors, and aerosol compositions in the Taichung near-shore area. Aerosol Technology/ Environmental Measurement and Control, 76-84.
Tsai, Y.I., Cheng, M.T., 2004. Characterization of chemical species in atmospheric aerosols in a metropolitan basin. Chemosphere 54, 1171-1181.
Wake, D., Mark, D., Northage, C., 2002. Ultrafine aerosols in the workplace.
Annals of Occupational Hygiene 46, Supplement 1, 235-238.
Watson, J.G., Chow, J.C., Park, K., Lowenthal, D.H., 2006. Nanoparticle and ultrafine particle events at the Fresno Supersite. Air and Waste Management Association 56, 417-430.
Wehner, B., Wiedensohler, A., 2003. A long-term measurement of submicrometer urban aerosols: statistical analysis for correlations with meteorological conditions and trace gases. Atmospheric Chemistry and Physics 3, 867-879.
Weichenthal, S., Dufresne, A., Infante-Rivard C., 2007. Indoor ultrafine particles and childhood asthma: exploring a potential public health concern. Indoor Air 17, 81-91.
Westerdahl, D., Fruin, S., Sax, T., Fine, P. M., Sioutas, C., 2005. Mobileplatform measurements of ultrafine particles and associated pollutant concentrations on freeways and residential streets in Los Angeles. Atmospheric Environment 39, 3597-3610.
Woo, K.S., Chen, D.R., Pui, D.Y.H., McMurry, P.H., 2001. Measurement of atlanta aerosol size distributions: observations of ultrafine particle events. Aerosol Science and Technology 34, 75-87.
Yang, T.Y., Wu, P.C., Su, H.J., 2008. The effect of indoor activities on indoor particulate characteristics in day-care center. International Occupational Hygiene Association International Scientific Conference 7.
Young, L.H., Keeler, G.J., 2004. Characterization of ultrafine particle number concentration and size distribution during a summer campaign in southwest Detroit. Air and Waste Management Association 54, 1079-1090.
Yu, R.C., Teh, H.W., Jaques, P.A., Sioutas, C., Froines, J.R., 2004. Quality control of semi-continuous mobility size-fractionated particle number concentration data. Atmospheric Environment 38, 3341-3348.
Zhuang, H., Chan, C.K., Fang, M., Wexler, A.S., 1999. Size distributions of particulate sulfate, nitrate and ammonium at a coastal site in Hong Kong. Atmospheric Environment 33, 843-845.
Zhu, Y.F., Hinds, W.C., Krudysz, M., Kuhn, T., Froines, J., Sioutas, C., 2005. Penetration of freeway ultrafine particles into indoor environments. Journal of Aerosol Science 36, 303-322.
Zhu, Y., Hinds, W.C., Kim, S., Sioutas, C., 2002b. Concentration and sizedistribution of ultrafine particles near a major highway. Journal of theAir and Waste Management Association 52, 1032-1042.
黃國珍,1995,土壤重金屬污染之評價及因子分析,國立臺灣大學農業工程學研究所碩士論文。
陳紀綸,1999,台中港地區大氣懸浮微粒污染來源分析,國立中興大學環境工程研究所碩士論文。
黃建源,2000,多變量統計方法在日月潭水庫水質管理之應用,私立逢甲大學土木及水利工程研究所碩士論文。
黃星富,2002,南投地區高臭氧空氣污染事件探討,國立臺灣大學環境工程學研究所碩士論文。
李新峰,2004,以衝擊路徑法評估SO2之外部成本-以中部空品區為例,朝陽科技大學環境工程與管理系碩士論文。
曾元廷,2004,台北捷運站、火車站及公車站超細粒徑懸浮微粒濃度特性之研究,臺灣大學職業醫學與工業衛生所碩士論文。
環保署,2004,九十二年及九十三年度微粒超級監測站操作品保及數據分析計畫93年度年報。
雷侑蓁,2005,空氣懸浮微粒心肺毒性研究,國立臺灣大學職業醫學與
工業衛生研究所博士論文。
吳義林,簡智祥,2006,夏季南部次微米微粒之逐時濃度變化以及粒徑分布.中華民國環境工程學會空氣污染控制技術研討會。
蔡俊鴻,江鴻龍,張立鵬,廖哲甫,2006,超細氣懸微粒水溶性無機離子成份特性變異與前驅物及氣象因子關聯性研究(1/3) 。 行政院國家科學委員會專題研究計畫期中進度報告。
吳承翰,2007,工作場所奈米微粒的暴露研究,國立交通大學國立交通大學碩士論文。
簡智祥,2007,高屏地區冬季奈米微粒分布、來源與成長特性,國立成功大學環境工程研究所碩士論文。
台北市交通處,台中交通流量調查成果查詢,2007年http://traffic.tccg.gov.tw/form/index.asp?m=2&m1=5&m2=20
行政院環境保護署地方環境資料庫,2008年8月
http://edb.epa.gov.tw/localenvdb/index.asp
美國國家海洋和大氣管理局(NOAA)資料庫,2008年10月至2009年1月 http://www.ready.noaa.gov/ready/open/hysplit4.html
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊