(3.236.214.19) 您好!臺灣時間:2021/05/09 23:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳韻如
研究生(外文):Yun-ru
論文名稱:木樨草素抑癌活性與調控細胞組蛋白乙醯化之關聯研究
論文名稱(外文):Involvement of histone acetylation by luteolin in anti-cancer activity
指導教授:曾翠華曾翠華引用關係
指導教授(外文):Tsui-Hwa Tseng
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:生化暨生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:85
相關次數:
  • 被引用被引用:0
  • 點閱點閱:86
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
木樨草素(Luteolin, 3'',4'',5,7-tetrahydroxyflavone)是一種普遍存在於各種植物的類黃酮,屬類黃酮當中的黃酮,在傳統醫學裡被應用於治療各種疾病,包括高血壓、發炎和癌症。而組蛋白乙醯化可以調控基因的表現,許多癌症產生的原因可能涉及了由於組蛋白去乙醯化作用所產生的染色質濃縮,因而造成許多抑癌基因的轉錄抑制,然而,目前對於木樨草素所具有的抑癌作用與經由組蛋白修飾作用調控基因表現是否有關連性並不清楚;在本實驗中發現木樨草素(35 μM)可以誘導HL-60細胞走向細胞凋亡,為了證實其中的分子機制,在此利用西方點墨法、DNA電泳、聚合酶鏈鎖反應、反轉錄聚合酶鏈鎖反應、染色質免疫沉澱法等技術觀察,結果我們發現,木樨草素可以經由活化JNK MAPK pathway促使轉錄因子c-jun往核內移動,同時增加組蛋白乙醯基轉移酶:p300與FasL基因操縱子區域結合,造成FasL基因操縱子區域高度乙醯化,改變染色質結構而增加FasL轉錄活性,促使FasL新合成而活化Caspase 8、Caspase 3,並進一步造成PARP斷裂導致HL-60細胞走向細胞凋亡;另一方面,我們也發現,木樨草素也能藉由活化Caspase 7造成HDAC 3斷裂而抑制HDAC對組蛋白的去乙醯基酶活性,這可能是造成Fas基因操縱子區域的高度乙醯化而增加其轉錄活性,共同引發外源途徑的細胞凋亡。綜合以上結果,我們知道,木樨草素誘導HL-60血癌細胞細胞凋亡是透過活化訊息傳遞JNK/c-Jun signaling pathway與組蛋白的修飾作用。另外,我們也比較木樨草素對於固體腫瘤是否也具有類似的抗癌活性,發現對MDA-MB-231乳癌細胞處理低劑量(35 μM)木樨草素能夠引起細胞周期停滯,而處理高劑量(75 μM)木樨草素能夠引發細胞凋亡,而兩種劑量處理下都會引起組蛋白H3的乙醯化。綜合以上結果,本研究首度提出木樨草素的抗癌機制與組蛋白修飾作用有密切關係。

Luteolin, 3'',4'',5,7-tetrahydroxyflavone, is a common flavonoid that exists in many types of plants including fruits, vegetables, and medicinal herbs. Plants rich in luteolin have been used in Chinese traditional medicine for treating various diseases such as hypertension, inflammatory disorders, and cancer. Histone acetylation can modulate gene expression. Many cancers are involved in the chromatin condensation caused by histone deacetylaton which makes transcriptional repression of several tumor suppressor genes. However, the relationship between histone modification mediating gene regulation and the mechanism of the luteolin-induced apoptosis have not yet been clarified. Here, we found that luteolin was able to induce HL-60 cells apoptosis. For further understanding of this molecular mechanism we applied western blot, DNA electrophoresis, PCR, RT-PCR and ChIP assay. As a result we discovered that luteolin activated JNK MAPK pathway facilitating c-jun transcription factor translocation from cytosol to nuclear which concomitant with integration of histone acetyltransferase, p300 to FasL promoter region. This caused hyperacetylation of FasL promoter and change chromatin structure which increased transcriptional activity of FasL. This de novo FasL induced caspase 8 and caspase 3 activation and PARP cleavage in regulating the luteolin-induced apoptosis. On the other hand, we also discovered, interestingly, that histone decetylase 3 (HDAC 3) was cleaved follow caspase 7 activation. This could be the main reason of the hyperacetylated Fas promoter which induced apoptotsis through extrinsic pathway. Taken together, luteolin induced HL-60 cells apoptosis through JNK/c-Jun signaling pathway and histone modification. Besides cystic tumor, we also evaluated the anti-tumor activity of luteolin on solid tumor. It showed that while 35 μM luteolin led to cell cycle arrest and 75μM luteolin induced apoptosis of MDA-MB-231 cells. No matter low or high dose of luteolin both can cause histone H3 acetylation. Overall, luteolim presents antitumor activity involving mediating histone H3 acetylation.

縮寫表………………………………………………………………… Ⅱ
中文摘要……………………………………………………………… 01
英文摘要……………………………………………………………… 02
壹、 緒論……………………………………………………… 04
一、 背景介紹………………………………………………… 04
二、 藥物簡介………………………………………………… 07
三、 訊息傳遞與細胞凋亡…………………………………… 09
四、 組蛋白修飾調控基因表現……………………………… 11
貳、 研究動機………………………………………………… 14
參、 研究架構………………………………………………… 15
肆、 實驗材料與方法………………………………………… 16
伍、 結果……………………………………………………… 30
陸、 討論……………………………………………………… 41
柒、 參考文獻………………………………………………… 45
捌、 圖表與說明……………………………………………… 51
玖、 附圖……………………………………………………… 82


Alcaraz, M. J., & Ferrandiz, M. L. (1987). Modification of arachidonic metabolism by flavonoids. J Ethnopharmacol, 21(3), 209-229.

Altieri, D. C. (2003). Validating survivin as a cancer therapeutic target. Nat Rev Cancer, 3(1), 46-54.

Billon, N., Carlisi, D., Datto, M. B., van Grunsven, L. A., Watt, A., Wang, X. F., et al. (1999). Cooperation of Sp1 and p300 in the induction of the CDK inhibitor p21WAF1/CIP1 during NGF-mediated neuronal differentiation. Oncogene, 18(18), 2872-2882.

Bolden, J. E., Peart, M. J., & Johnstone, R. W. (2006). Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov, 5(9), 769-784.

Cameron, E. E., Bachman, K. E., Myohanen, S., Herman, J. G., & Baylin, S. B. (1999). Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet, 21(1), 103-107.

Cantero, G., Campanella, C., Mateos, S., & Cortes, F. (2006). Topoisomerase II inhibition and high yield of endoreduplication induced by the flavonoids luteolin and quercetin. Mutagenesis, 21(5), 321-325.

Carew, J. S., Giles, F. J., & Nawrocki, S. T. (2008). Histone deacetylase inhibitors: mechanisms of cell death and promise in combination cancer therapy. Cancer Lett, 269(1), 7-17.

Chan, H. M., & La Thangue, N. B. (2001). p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J Cell Sci, 114(Pt 13), 2363-2373.

Cohen, G. M. (1997). Caspases: the executioners of apoptosis. Biochem J, 326 ( Pt 1), 1-16.

Cohen, S. M., Cordeiro-Stone, M., & Kaufman, D. G. (2007). Early replication and the apoptotic pathway. J Cell Physiol, 213(2), 434-439.

Elmore, S. (2007). Apoptosis: a review of programmed cell death. Toxicol Pathol, 35(4), 495-516.

Erickson, P., Gao, J., Chang, K. S., Look, T., Whisenant, E., Raimondi, S., et al. (1992). Identification of breakpoints in t(8;21) acute myelogenous leukemia and isolation of a fusion transcript, AML1/ETO, with similarity to Drosophila segmentation gene, runt. Blood, 80(7), 1825-1831.

Escaffit, F., Vaute, O., Chevillard-Briet, M., Segui, B., Takami, Y., Nakayama, T., et al. (2007). Cleavage and cytoplasmic relocalization of histone deacetylase 3 are important for apoptosis progression. Mol Cell Biol, 27(2), 554-567.

Ewen, M. E., & Miller, S. J. (1996). p53 and translational control. Biochim Biophys Acta, 1242(3), 181-184.

Ferrandiz, M. L., & Alcaraz, M. J. (1991). Anti-inflammatory activity and inhibition of arachidonic acid metabolism by flavonoids. Agents Actions, 32(3-4), 283-288.

Ferrandiz, M. L., Nair, A. G., & Alcaraz, M. J. (1990). Inhibition of sheep platelet arachidonate metabolism by flavonoids from Spanish and Indian medicinal herbs. Pharmazie, 45(3), 206-208.

Gao, Z., Chiao, P., Zhang, X., Lazar, M. A., Seto, E., Young, H. A., et al. (2005). Coactivators and corepressors of NF-kappaB in IkappaB alpha gene promoter. J Biol Chem, 280(22), 21091-21098.

Harbeck, N. (2008). Never too late: reducing late breast cancer relapse risk. Curr Med Res Opin, 24(12), 3295-3305.

Hertog, M. G., Feskens, E. J., Hollman, P. C., Katan, M. B., & Kromhout, D. (1993). Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet, 342(8878), 1007-1011.

Hertog, M. G., Kromhout, D., Aravanis, C., Blackburn, H., Buzina, R., Fidanza, F., et al. (1995). Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study. Arch Intern Med, 155(4), 381-386.

Huang, W., Tan, D., Wang, X., Han, S., Tan, J., Zhao, Y., et al. (2006). Histone deacetylase 3 represses p15(INK4b) and p21(WAF1/cip1) transcription by interacting with Sp1. Biochem Biophys Res Commun, 339(1), 165-171.

Huang, Y. T., Hwang, J. J., Lee, P. P., Ke, F. C., Huang, J. H., Huang, C. J., et al. (1999). Effects of luteolin and quercetin, inhibitors of tyrosine kinase, on cell growth and metastasis-associated properties in A431 cells overexpressing epidermal growth factor receptor. Br J Pharmacol, 128(5), 999-1010.

Huang, Z., Wang, R., Xie, H., Shang, W., Manicassamy, S., & Sun, Z. (2008). Stabilized beta-catenin potentiates Fas-mediated T cell apoptosis. J Immunol, 180(10), 6586-6592.

Hupp, T. R., Meek, D. W., Midgley, C. A., & Lane, D. P. (1992). Regulation of the specific DNA binding function of p53. Cell, 71(5), 875-886.

Jia, L., Yu, W., Wang, P., Li, J., Sanders, B. G., & Kline, K. (2008). Critical roles for JNK, c-Jun, and Fas/FasL-Signaling in vitamin E analog-induced apoptosis in human prostate cancer cells. Prostate, 68(4), 427-441.

Kardassis, D., Papakosta, P., Pardali, K., & Moustakas, A. (1999). c-Jun transactivates the promoter of the human p21(WAF1/Cip1) gene by acting as a superactivator of the ubiquitous transcription factor Sp1. J Biol Chem, 274(41), 29572-29581.

Karin, M. (1998). Mitogen-activated protein kinase cascades as regulators of stress responses. Ann N Y Acad Sci, 851, 139-146.

Kavurma, M. M., & Khachigian, L. M. (2003). Signaling and transcriptional control of Fas ligand gene expression. Cell Death Differ, 10(1), 36-44.

Kim, D. I., Lee, T. K., Lim, I. S., Kim, H., Lee, Y. C., & Kim, C. H. (2005). Regulation of IGF-I production and proliferation of human leiomyomal smooth muscle cells by Scutellaria barbata D. Don in vitro: isolation of flavonoids of apigenin and luteolin as acting compounds. Toxicol Appl Pharmacol, 205(3), 213-224.

Kimijima, I. (2008). Recent topics in endocrine therapy for hormone-dependent breast cancer: basic research and clinical applications. Breast Cancer, 15(4), 253-255.

Lai, A., Lee, J. M., Yang, W. M., DeCaprio, J. A., Kaelin, W. G., Jr., Seto, E., et al. (1999). RBP1 recruits both histone deacetylase-dependent and -independent repression activities to retinoblastoma family proteins. Mol Cell Biol, 19(10), 6632-6641.

Landolfi, R., Mower, R. L., & Steiner, M. (1984). Modification of platelet function and arachidonic acid metabolism by bioflavonoids. Structure-activity relations. Biochem Pharmacol, 33(9), 1525-1530.

Laughton, M. J., Evans, P. J., Moroney, M. A., Hoult, J. R., & Halliwell, B. (1991). Inhibition of mammalian 5-lipoxygenase and cyclo-oxygenase by flavonoids and phenolic dietary additives. Relationship to antioxidant activity and to iron ion-reducing ability. Biochem Pharmacol, 42(9), 1673-1681.

Lee, W. J., Wu, L. F., Chen, W. K., Wang, C. J., & Tseng, T. H. (2006). Inhibitory effect of luteolin on hepatocyte growth factor/scatter factor-induced HepG2 cell invasion involving both MAPK/ERKs and PI3K-Akt pathways. Chem Biol Interact, 160(2), 123-133.

Lim do, Y., Jeong, Y., Tyner, A. L., & Park, J. H. (2007). Induction of cell cycle arrest and apoptosis in HT-29 human colon cancer cells by the dietary compound luteolin. Am J Physiol Gastrointest Liver Physiol, 292(1), G66-75.

Liu, T., Kuljaca, S., Tee, A., & Marshall, G. M. (2006). Histone deacetylase inhibitors: multifunctional anticancer agents. Cancer Treat Rev, 32(3), 157-165.

Martinez-Balbas, M. A., Bauer, U. M., Nielsen, S. J., Brehm, A., & Kouzarides, T. (2000). Regulation of E2F1 activity by acetylation. EMBO J, 19(4), 662-671.

Mori, T., Kim, J., Yamano, T., Takeuchi, H., Huang, S., Umetani, N., et al. (2005). Epigenetic up-regulation of C-C chemokine receptor 7 and C-X-C chemokine receptor 4 expression in melanoma cells. Cancer Res, 65(5), 1800-1807.

Mottet, D., & Castronovo, V. (2008). Histone deacetylases: target enzymes for cancer therapy. Clin Exp Metastasis, 25(2), 183-189.
Nightingale, K. P., O''Neill, L. P., & Turner, B. M. (2006). Histone modifications: signalling receptors and potential elements of a heritable epigenetic code. Curr Opin Genet Dev, 16(2), 125-136.

Nijveldt, R. J., van Nood, E., van Hoorn, D. E., Boelens, P. G., van Norren, K., & van Leeuwen, P. A. (2001). Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr, 74(4), 418-425.

Nishida, H., Suzuki, T., Kondo, S., Miura, H., Fujimura, Y., & Hayashizaki, Y. (2006). Histone H3 acetylated at lysine 9 in promoter is associated with low nucleosome density in the vicinity of transcription start site in human cell. Chromosome Res, 14(2), 203-211.

Owen, G. I., Richer, J. K., Tung, L., Takimoto, G., & Horwitz, K. B. (1998). Progesterone regulates transcription of the p21(WAF1) cyclin- dependent kinase inhibitor gene through Sp1 and CBP/p300. J Biol Chem, 273(17), 10696-10701.

Paroni, G., Mizzau, M., Henderson, C., Del Sal, G., Schneider, C., & Brancolini, C. (2004). Caspase-dependent regulation of histone deacetylase 4 nuclear-cytoplasmic shuttling promotes apoptosis. Mol Biol Cell, 15(6), 2804-2818.

Pulukuri, S. M., Gorantla, B., & Rao, J. S. (2007). Inhibition of histone deacetylase activity promotes invasion of human cancer cells through activation of urokinase plasminogen activator. J Biol Chem, 282(49), 35594-35603.

Sadoul, K., Boyault, C., Pabion, M., & Khochbin, S. (2008). Regulation of protein turnover by acetyltransferases and deacetylases. Biochimie, 90(2), 306-312.

Seelinger, G., Merfort, I., & Schempp, C. M. (2008). Anti-oxidant, anti-inflammatory and anti-allergic activities of luteolin. Planta Med, 74(14), 1667-1677.

Seelinger, G., Merfort, I., Wolfle, U., & Schempp, C. M. (2008). Anti-carcinogenic effects of the flavonoid luteolin. Molecules, 13(10), 2628-2651.

Shi, R. X., Ong, C. N., & Shen, H. M. (2004). Luteolin sensitizes tumor necrosis factor-alpha-induced apoptosis in human tumor cells. Oncogene, 23(46), 7712-7721.

Sowa, Y., Orita, T., Hiranabe-Minamikawa, S., Nakano, K., Mizuno, T., Nomura, H., et al. (1999). Histone deacetylase inhibitor activates the p21/WAF1/Cip1 gene promoter through the Sp1 sites. Ann N Y Acad Sci, 886, 195-199.

Stefani, E. D., Boffetta, P., Deneo-Pellegrini, H., Mendilaharsu, M., Carzoglio, J. C., Ronco, A., et al. (1999). Dietary antioxidants and lung cancer risk: a case-control study in Uruguay. Nutr Cancer, 34(1), 100-110.

Strahl, B. D., & Allis, C. D. (2000). The language of covalent histone modifications. Nature, 403(6765), 41-45.

Weiss, C., Schneider, S., Wagner, E. F., Zhang, X., Seto, E., & Bohmann, D. (2003). JNK phosphorylation relieves HDAC3-dependent suppression of the transcriptional activity of c-Jun. EMBO J, 22(14), 3686-3695.

Weston, C. R., & Davis, R. J. (2002). The JNK signal transduction pathway. Curr Opin Genet Dev, 12(1), 14-21.

Xia, Y., Wang, J., Liu, T. J., Yung, W. K., Hunter, T., & Lu, Z. (2007). c-Jun downregulation by HDAC3-dependent transcriptional repression promotes osmotic stress-induced cell apoptosis. Mol Cell, 25(2), 219-232.

Yamashita, H. (2008). Current research topics in endocrine therapy for breast cancer. Int J Clin Oncol, 13(5), 380-383.

Yee, S. B., Lee, J. H., Chung, H. Y., Im, K. S., Bae, S. J., Choi, J. S., et al. (2003). Inhibitory effects of luteolin isolated from Ixeris sonchifolia Hance on the proliferation of HepG2 human hepatocellular carcinoma cells. Arch Pharm Res, 26(2), 151-156.

Zhao, Y., Lu, S., Wu, L., Chai, G., Wang, H., Chen, Y., et al. (2006). Acetylation of p53 at lysine 373/382 by the histone deacetylase inhibitor depsipeptide induces expression of p21(Waf1/Cip1). Mol Cell Biol, 26(7), 2782-2790.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 高俊雄 (1996c)。運動員休閒參與、休閒利益與自覺訓練效果之比較研究。戶外遊憩研究,12(3),43-61。
2. 周佳慧 (2001)。休閒活動與休閒阻礙。中華體育。15(3),144-149。
3. 高俊雄 (1996c)。運動員休閒參與、休閒利益與自覺訓練效果之比較研究。戶外遊憩研究,12(3),43-61。
4. 高俊雄 (1996b)。休閒概念面面觀。國立體育學院論叢,6(1),69-78。
5. 高俊雄 (1996b)。休閒概念面面觀。國立體育學院論叢,6(1),69-78。
6. 高俊雄 (1995)。休閒利益三因素模式。戶外遊憩研究。8(1),15-28。
7. 高俊雄 (1995)。休閒利益三因素模式。戶外遊憩研究。8(1),15-28。
8. 翁萃芳 (2002a)。台灣地區警察人員休閒活動參與及相關因素之分析。中央警察大學警學叢刊,33(3),25-60。
9. 翁萃芳 (2002a)。台灣地區警察人員休閒活動參與及相關因素之分析。中央警察大學警學叢刊,33(3),25-60。
10. 林素麗 (1977)。休閒的理論與研究。思與言雙月刊。15(1),27-35。
11. 林素麗 (1977)。休閒的理論與研究。思與言雙月刊。15(1),27-35。
12. 林月桂 (1991)。台北市立醫療院所護理人員工作滿意度之研究。公共衛生。18(3),262-273。
13. 林月桂 (1991)。台北市立醫療院所護理人員工作滿意度之研究。公共衛生。18(3),262-273。
14. 林一真 (1995)。休閒輔導模式與休閒輔導實務。學生輔導通訊。39,24-31。
15. 林一真 (1995)。休閒輔導模式與休閒輔導實務。學生輔導通訊。39,24-31。
 
系統版面圖檔 系統版面圖檔