(3.235.245.219) 您好!臺灣時間:2021/05/07 20:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡懿玫
研究生(外文):Yi-May
論文名稱:過氧化氫酵素的基因多型性與急性心肌梗塞的關聯性
論文名稱(外文):The association of catalase polymorphism and acute myocardial infarction
指導教授:許立松
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:生化暨生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:48
相關次數:
  • 被引用被引用:0
  • 點閱點閱:85
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近來許多的研究顯示,血管的發炎反應在急性心肌梗塞的發展中,扮演一個重要的角色。低密度脂蛋白(low-density lipoprotein , LDL)滲透並滯留在動脈內膜,在動脈壁引發發炎反應。被氧化的低密度脂蛋白(oxidised low-density lipoprotein, LDLox)已被報導為增加過氧化物生成的媒介,因這個媒介而產生的活性氧(reactive oxygen species, ROS)會造成斑塊的形成。但這些效應可被超氧化物歧化酶(superoxide dismutases, SOD)及過氧化氫酶(catalase)所防止,超氧化物歧化酶(SOD)可以將過氧化陰離子(superoxide anion)轉為過氧化氫,catalase再將過氧化氫還原成水。本篇研究的主要目的,是去檢測catalase基因多型性跟急性心肌梗塞的發生是否有關聯性。我們完成117個含病患組及對照組的案例,其中28個是有發作過急性心肌梗塞的病人,51個沒有急性心肌梗塞的個體,38個則不具有任何會引起傳統心血管疾病危險因子的人。他們的DNA經過PCR放大及Hinf1的作用後,顯示病患組與對照組之間的-21A/T基因多型性,其頻率分佈是類似的,三者沒有關聯性。由實驗結果我們可以推論:catalase –21A/T基因多型性並不直接影響急性心肌梗塞的發生。


Recently many studies have revealed that vascular inflammation plays an important role in the development of acute myocardial infarction (AMI). The infiltration and retention of low-density lipoprotein (LDL)in the arterial intima initiate an inflammatory response in the artery wall. Oxidised low-density lipoprotein(LDLox) have been reported to mediate enhanced superoxide formation . LDLox-mediated formation of reactive oxygen species (ROS)also causes plaque formation.These effects can be prevented by treatment with superoxide dismutases(SOD)and catalase. The SOD, which convert superoxide anion into hydrogen peroxide, catalase, whereas reduces hydrogen peroxide to water. The aim of the study was to examine whether polymorphism of the catalase gene is associated with the risk of AMI. Therefore, we performed a case-control study from 117patients. The study population comprised of 28 AMI patients,51 healthy individuals without AMI disease history (IIA), and 38 personnel don’t have any conventional cardiovascular disease risk factors (IIB). Catalase gene polymorphism was performed by analyzing Hinf1-digested DNA fragment obtained by polymerase chain reaction (PCR).The –21A/T polymorphism frequency of catalase gene was similar in patients and the controls. No association of –21A/T polymorphism was detected in comparisons with control IIA、control IIB and total control .In conclusion, the catalase gene does not appear to be a susceptibility locus for acute myocardial infarction.

項目 頁數
縮寫表 2
中文摘要 4
英文摘要 5
壹、 緒論
一、急性心肌梗塞 6
二、抗氧化酵素catalase和血管疾病關係及作用 17
貳、 研究動機 21
參、 實驗材料與方法
一、材料 23
二、儀器 24
三、實驗方法 25
肆、 結果 29
伍、 討論 31
陸、 參考文獻 33
柒、 圖表 43


1.Thygesen K, A.J., White HD, on behalf of the Joint ESC/ACCF/AHA/WHF Task Force for the Redefinition of Myocardial Infarction., Universal definition of myocardial infarction. J Am Coll Cardiol, 2007. 50: p. 2173–2188.
2.Committee., T.J.E.S.o.C.A.C.o.C., Myocardial infarction redefined—a consensus document of the Joint European Society of Cardiology/American College of Cardiology Committee for the Redefinition of Myocardial Infarction. J Am Coll Cardiol, 2000. 36: p. 959–969.
3.Shaun Senter, M., MS Gary S. Francis, MD, A new, precise definition of acute myocardial infarction. Cleveland clinic journal of medicine, 2009. 76: p. 159-166.
4.Stocker, R. and J.F. Keaney, Jr., Role of oxidative modifications in atherosclerosis. Physiol Rev, 2004. 84(4): p. 1381-478.
5.Renu Virmani, F.D.K., Allen P. Burke, Andrew Farb and Stephen M.Schwartz, Lessons From Sudden Coronary Death : A Comprehensive Morphological Classification Scheme for Atherosclerotic Lesions. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000. 20: p. 1262-1275.
6.Morteza Naghavi, P.L., Erling Falk, et al., From Vulnerable Plaque to Vulnerable Patient: A Call for New Definitions and Risk Assessment Strategies: Part II. Circulation, 2003. 108: p. 1772-1778.
7.Spagnoli, L.G., et al., Role of inflammation in atherosclerosis. J Nucl Med, 2007. 48(11): p. 1800-15.
8.Stephen M. Schwartz, D.d., Edward R. M. O''Brien The Intima Soil for Atherosclerosis and Restenosis Circulation Research, 1995. 77: p. 445-465.
9.GV, R.P.D.M.B., Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet, 1989. 2: p. 941-44.
10.Andrew Farb, M.A.P.B., MD; Anita L. Tang,et al, Coronary plaque erosion without rupture into a lipid core. A frequent cause of coronary thrombosis in sudden coronary death. Circulation, 1996. 93: p. 1354-1363.
11.Mayranpaa MI, H.H., Lindstedt KA, Walls AF, Kovanen PT., Desquamation of human coronary artery endothelium by human mast cell proteases: implications for plaque erosion. Coronary Artery Disease 2006. 17: p. 611-621.
12.Allen P. Burke, M.F.D.K., PhD;et al., Healed Plaque Ruptures and Sudden Coronary Death Evidence That Subclinical Rupture Has a Role in Plaque Progression Circulation, 2001. 103: p. 934-940.
13.Goran K. Hansson, M.D., Ph.D., Inflammation, Atherosclerosis,and Coronary Artery Disease. The new England journal of medicine, 2005. 352: p. 1685-95.
14.Skalen K, G.M., Rydberg EK, et al., Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature, 2001. 417: p. 750-754.
15.N., L., Oxidized phospholipids as modulators of inflammation in atherosclerosis. Curr Opin Lipidol., 2003. 14: p. 421-30.
16.Massberg S, B.K., Gruner S, et al., A Critical Role of Platelet Adhesion in the Initiation of Atherosclerotic Lesion Formation. J Exp Med. , 2002. 196: p. 887–896.
17.Eriksson EE, X.X., Werr J, Thoren P,Lindbom L., Importance of Primary Capture and L-Selectin–dependent Secondary Capture in Leukocyte Accumulation in Inflammation and Atherosclerosis In Vivo. The Journal of Experimental Medicine, 2001. 194: p. 205-218.
18.J D Smith, E.T., M Ginsberg, C Grigaux, J Tian, and M Miyata, Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein E. Proc Natl Acad Sci U S A, 1995. 92: p. 8264-8268
19.Leanne Peiser, S.M.a.S.G., Scavenger receptors in innate immunity. Current Opinion in Immunology 2002. 14: p.123-128.
20.Janeway CA Jr, M.R., Innate immune recognition. Annu Rev Immunol, 2002. 20: p. 197-216.
21.Q., X., Role of heat shock proteins in atherosclerosis. Arterioscler Thromb Vasc Biol, 2002. 22: p. 1547-59.
22.Miller YI, C.M., Binder CJ, Shaw Miller YI, Chang MK, Binder CJ, Shaw, Oxidized low density lipoprotein and innate immune receptors. Curr Opin Lipidol., 2003. 14: p. 437-45.
23.Edfeldt K, S.J., Hansson GK,Yan ZQ., Expression of Toll-Like Receptors in Human Atherosclerotic Lesions Circulation, 2002. 105: p. 1158-61.
24.Bobryshev YV, L.R., Ultrastructural Recognition of Cells with Dendritic Cell Morphology in Human Aortic Intima. Contacting Interactions of Vascular Dendritic Cells in Athero-resistant and Athero-prone Areas of the Normal Aorta. Archives of Histology and Cytology 1995. 58: p. 307-322.
25.Hansson, G.K., Immune Mechanisms in Atherosclerosis Arteriosclerosis, Thrombosis, and Vascular Biology, 2001. 21: p. 1876-1890.
26.S Stemme, B.F., J Holm, O Wiklund, J L Witztum, and G K Hansson, T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proc Natl Acad Sci U S A., 1995. 25: p. 3893–3897.
27.de Boer OJ, v.d.W.A., Houtkamp MA, Ossewaarde JM, Teeling P, Becker AE., Unstable atherosclerotic plaques contain T-cells that respond to Chlamydia pneumoniae. Cardiovascular Research, 2000. 48: p. 402-408.
28.Tupin E, N.A., Elhage R, Rudling M, Ljunggren HG, Hansson GK, Berne GP., CD1d-dependent activation of NKT cells ag aggravates atherosclerosis. J Exp Med, 2004. 199: p. 417-22.
29.Ludewig B, F.S., Jaggi M, et al., Linking immune-mediated arterial inflammation and cholesterol-induced atherosclerosis in a transgenic mouse model. Proc Natl Acad Sci U S A, 2000. 7: p. 12752–12757.
30.Szabo SJ, S.B., Peng SL, Glimcher LH., Molecular mechanisms regulating Th1 immune responses. Annu Rev Immunol, 2003. 21: p. 713-58.
31.Mallat Z, B.S., Duriez M, et al., Protective Role of Interleukin-10 in Atherosclerosis Circulation Research, 1999. 85: p. e17-e24.
32.Pinderski LJ, F.M., Subbanagounder G, et al., Overexpression of Interleukin-10 by Activated T Lymphocytes Inhibits Atherosclerosis in LDL Receptor–Deficient Mice by Altering Lymphocyte and Macrophage Phenotypes Circulation Research, 2002. 90: p. 1064-71.
33.Caligiuri G, R.M., Ollivier V, et al., Interleukin-10 Deficiency Increases Atherosclerosis, Thrombosis, and Low-density Lipoproteins in Apolipoprotein E Knockout Mice. Mol Med., 2003. 9: p. 10–17.
34.Robertson AKL, R.M., Zhou X,Gorelik L, Flavell RA, Hansson GK., Disruption of TGF-β signaling in T cells accelerates atherosclerosis. J Clin Invest., 2003. 112: p. 1342–1350.
35.Caligiuri G, N.A., Poirier B, Hansson GK, Protective immunity against atherosclerosis carried by B cells of hypercholesterolemic mice. J Clin Invest., 2002. 109: p. 745–753.
36.Kovanen PT, K.M., Paavonen T., Infiltrates of Activated Mast Cells at the Site of Coronary Atheromatous Erosion or Rupture in Myocardial Infarction Circulation, 1995. 92: p. 1084-8.
37.AC van der Wal, A.B., CM van der Loos and PK Das Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology Circulation, 1994. 89: p. 36-44.
38.PR Moreno, E.F., IF Palacios, JB Newell, V Fuster and JT Fallon Macrophage infiltration in acute coronary syndromes. Implications for plaque rupture. Circulation, 1994. 90: p. 775-778.
39.Hansson GK, H.M., Rymo L, Rubbla L, Gabbiani G Interferon gamma inhibits both prollferation and expression of differentiation-specific alpha-smooth muscle actin in arterial smooth-muscle cells. Journal of experimental medicine 1989. 170: p. 1595-1608
40.EP Amento, N.E., H Palmer and P Libby Cytokines and growth factors positively and negatively regulate interstitial collagen gene expression in human vascular smooth muscle cells. Arteriosclerosis and Thrombosis, 1991. 1991: p. 1223-1230.
41.Saren P, W.H., Kovanen PT., TNF-alpha and IL-1beta selectively induce expression of 92-kDa gelatinase by human macrophages. J Immunol, 1996. 157: p. 4159-65.
42.Mach F, S.U., Bonnefoy JY, Pober JS, Libby P., Activation of monocyte/macrophage functions related to acute atheroma complication by ligation of CD40: induction of collagenase, stromelysin, and tissue factor. Circulation, 1997. 96: p. 396-9.
43.Gorank.Hansson, e.a., Interferon gamma inhibits both proliferation and expression of differentiation-specific alpha-smooth muscle actin in arterial smooth muscle cells. J Exp Med, 1989. 170: p. 1595–1608.
44.Charles B Jones, D.C.S.a.D.M.H., Matrix metalloproteinases A review of their structure and role in acute coronary syndrome Cardiovascular Research, 2003. 2003: p. 812-8.
45.Shi, J.L.G.K.S.J.-S.S.W.-H.X.P.L.G.-P., Lysosomal Cysteine Proteases in Atherosclerosis Arteriosclerosis, Thrombosis, and Vascular Biology., 2004. 24: p. 1359-66.
46.Giovanna Liuzzo, L.M.B., J. Ruth Gallimore, Rita L. Grillo, Antonio G. Rebuzzi, Mark B. Pepys, and Attilio Maseri The Prognostic Value of C-Reactive Protein and Serum Amyloid A Protein in Severe Unstable Angina. N Engl J Med, 1994. 331: p. 417-424.
47.Biasucci LM, V.A., Liuzzo G, et al., Elevated Levels of Interleukin-6 in Unstable Angina Circulation, 1996. 94: p. 874-877.
48.L, L.B.T.H.S.A.V.P.W., Markers of myocardial damage and inflammation in relation to long-term mortality in unstable coronary artery disease. FRISC Study Group. Fragmin during Instability in Coronary Artery Disease. N Engl J Med, 2000. 343: p. 1139-47.
49.Valko M, L.D., Moncol J, Cronin MT, Mazur M, Telser J, Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol, 2007. 39: p. 44-84.
50.Jarasch ED, G.C., Bruder G, Heid HW, Keenan TW, Franke WW., Localization of xanthine oxidase in mammary-gland epithelium and capillary endothelium. Cell., 1981. 25: p. 67-82.
51.Romano M, C.J., Cyclooxygenase-2 and 5-lipoxygenase converging functions on cell proliferation and tumor angiogenesis: implications for cancer therapy. FASEB J., 2003. 17: p.1986–1995.
52.Griendling KK, S.D., Ushio-Fukai M., NAD(P)H oxidase: role in cardiovascular biology and disease. . Circ Res., 2000. 86: p. 494–501.
53.Vasquez-Vivar J, K.B., Martasek P, Hogg N, Masters BS, Karoui H, Tordo P, Pritchard KA Jr. , Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc Natl Acad Sci USA. , 1998. 95: p. 9220–9225.
54.Xia Y, T.A., Berka V, Zweier JL., Superoxide generation from endothelial nitric-oxide synthase. . J Biol Chem., 1998. 273: p. 25804–25808.
55.Marklund, P.S.K.K.B.O.J.S.L., The Interstitium of the Human Arterial Wall Contains Very Large Amounts of Extracellular Superoxide Dismutase Arteriosclerosis, Thrombosis, and Vascular Biology, 1995. 15: p. 2032-2036.
56.Kazuhiko Takahashi, N.A., John Whitin and Harvey Cohen, Purification and characterization of human plasma glutathione peroxidase: A selenoglycoprotein distinct from the known cellular enzyme. Archives of Biochemistry and Biophysics 1987. 256: p. 677-686
57.Bierl C, V.B., Jin RC, Handy DE, Loscalzo J., Determinants of human plasma glutathione peroxidase (GPx-3) expression. . Biol Chem., 2004. 279: p. 26839–26845.
58.A., H., Antioxidant function of thioredoxin and glutaredoxin systems. . Antioxid Redox Signal., 2000. 2: p. 811–820.
59.Tamer L, E.B., Camsari A, Yildirim H, Cicek D, Sucu N, Ates NA, Atik U. , Glutathione S-transferase gene polymorphism as a susceptibility factor in smoking-related coronary artery disease. Basic Res Cardiol. , 2004. 99: p. 223–229.
60.Yamawaki H, H.J., Berk BC., Thioredoxin: a key regulator of cardiovascular homeostasis. Circ Res., 2003. 93: p. 1029–1033.
61.Hoekstra KA, G.D., Cheng KM. , Protective role of heme oxygenase in the blood vessel wall during atherogenesis. . Biochem Cell Biol., 2004. 82: p. 351–359.
62.Stadtman ER, M.J., Berlett BS, Levine RL. , Cyclic oxidation and reduction of protein methionine residues is an important antioxidant mechanism. Mol Cell Biochem, 2002. 234: p. 3-9.
63.Leopold JA, C.A., Scribner AW, Stanton RC, Loscalzo J., Glucose-6-phosphate dehydrogenase deficiency promotes endothelial oxidant stress and decreases endothelial nitric oxide bioavailability. . FASEB J. , 2001. 15: p. 1771–1773.
64.Leopold JA, W.J., Scribner AW, Voetsch B, Zhang YY, Loscalzo AJ, Stanton RC, Loscalzo J. , Glucose-6-phosphate dehydrogenase modulates vascular endothelial growth factor-mediated angiogenesis. J Biol Chem. , 2003. 278: p. 32100–32106.
65.F.Quan, R.G.K., M.B.Tropak and R.A.Gravel, Isolation and characterization of the human catalase gene. Nucleic Acids Research, 1986. 14: p. 5321-5334.
66.Kirkman HN, R.M., Ferraris AM, Gaetani GF., Mechanisms of protection of catalase by NADPH. . J Biol Chem. , 1999. 274: p. 13908–13914.
67.Leif P. Olson, T.C.B., Electron tunneling and ab initio calculations related to the one-electron oxidation of NAD(P)H bound to catalase. Biochemistry, 1995. 34: p. 7335–7347.
68.Nicholls, A.H.a.P., A mechanism for NADPH inhibition of catalase compound II formation FEBS Lett., 1992. 314: p. 179-182.
69.A Hillar, P.N., J Switala, and P C Loewen, NADPH binding and control of catalase compound II formation: comparison of bovine, yeast, and Escherichia coli enzymes. Biochem J., 1994. 300: p. 531–539.
70.Casas JP, B.L., Humphries SE, Hingorani AD. , Endothelial Nitric Oxide Synthase Genotype and Ischemic Heart Disease Meta-Analysis of 26 Studies Involving 23028 Subjects Circulation, 2004. 109: p. 1359-1365.
71.Kakko S, P.M., Koistinen P, Kesaniemi YA, Kinnula VL, Savolainen MJ., The signal sequence polymorphism of the MnSOD gene is associated with the degree of carotid atherosclerosis. Atherosclerosis, 2003. 168: p. 147–152.
72.L., G., A new type of inherited catalase deficiencies: its characterization and comparison to the Japanese and Swiss type of acatalasemia. Blood Cells Mol Dis., 2001. 27: p. 512–517.
73.Goth L, V.M., The effects of hydrogen peroxide promoted by homocysteine and inherited catalase deficiency on human hypocatalasemic patients. Free Radic Biol Med., 2003. 35: p. 882–888.
74.Milan Flekac, J.S., Jirina Hilgertova, Zdena Lacinova and Marcela Jarolimkova, Gene polymorphisms of superoxide dismutases and catalase in diabetes mellitus. BMC Medical Genetics, 2008. 9.
75.Forsberg L, L.L., de Faire U, Morgenstern R, A common functional C-T substitution polymorphism in the promoter region of the human catalase gene influences transcription factor binding, reporter gene transcription and is correlated to blood catalase levels. Free Radic Biol Med, 2001. 30: p. 500-5.
76.Jiang Z, A.J., Shi J, Xiong M, Wang Y, Shen Y, Xu X, Chen H, Wu H, Xiao J, Lu D, Huang W, Jin L:, A polymorphism in the promoter region of catalase is associated with blood pressure levels. Hum Genet, 2001. 109: p. 95-98.




QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔