(3.92.96.236) 您好!臺灣時間:2021/05/07 16:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳韋志
研究生(外文):Wei-Chi
論文名稱:非症候群聽障中突變的Cx26和Cx30對正常的Cx26和Cx30所造成的影響
論文名稱(外文):Effect of Cx26 and Cx30 Mutants on Wild-Type Cx26 and Cx30 in Nonsyndromic Deafness
指導教授:李宣佑李宣佑引用關係
指導教授(外文):Shuan-Yow Li
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:生物醫學科學學系碩士班
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:94
相關次數:
  • 被引用被引用:0
  • 點閱點閱:118
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
人類的gap junction 蛋白 connexin26 (Cx26) 和connexin30 (Cx30)產生突變會導致聽障。 Cx26 和Cx30會在耳蝸中共同形成 heteromeric 的半通道,以及heterotypic 的gap junction 通道。我們實驗室先前在台灣非症群聽障病人中篩選出GJB2 368C>A (Cx26 T123N), GJB2 551G>A (Cx26 R184Q) 和GJB6 119C>T (Cx30A40V) 這三個突變點,他們都是heterozygous。為了去研究這三個heterozygous 突變點所造成的影響,我們利用HeLa 細胞株使和tet-on 蛋白表現系統結合螢光蛋白系統,單獨來表現正常或是突變的Cx26 和Cx30,以及把正常Cx26 或Cx30 和三個突變點一起共同表現來觀察他們彼此間的交互影響。在我們的研究當中,突變點Cx26 T123N 很明顯表現在細胞膜上,這和正常Cx26 或Cx30所表現的結果是一樣的。突變點Cx30 A40V 和Cx26 R184Q 則展現出運送功能異常,無法將其蛋白送達細胞膜上,而堆積在高基氏體和內質網上。而在共同表現蛋白的研究當中,Cx26 R184Q 或Cx30 A40V 和正常的Cx26 或Cx30共同表現時,結果顯示正常和突變的Cx 蛋白都堆積在細胞核附近,我們推測此兩種突變蛋白並無法運送至細胞膜。因此會影響正常的Cx26 和Cx30蛋白在細胞內蛋白運輸以及送往目標細胞膜的功能。相反的,當Cx26 T123N 和正常Cx26 或Cx30蛋白共同表現時,顯現出和正常Cx26 或Cx30蛋白相似的結果。綜合上面的結果,Cx26 R184Q ,Cx30 A40V 對於正常Cx26 和Cx30正常Cx30的蛋白展現出 cis- 或trans- dominant negative 的影響,而導致正常Cx26 或Cx30 的蛋白堆積在細胞質,損害gap junction 的形成。而突變基因Cx26 T123N 則對於Cx 蛋白沒有產生影響。Cx26 T123功能上的重要性仍需進一步的實驗去證實。

Mutations in the human gap junction proteins connexin26 (Cx26) and connexin30 (Cx30) cause hearing loss. Cx26 and Cx30, expressed in the cochlea, form heteromeric hemichannels and heterotypic gap junction channels. Three heterozygous mutations, GJB2 368C>A (Cx26 T123N), GJB2 551G>A (Cx26 R184Q) and GJB6 119C>T (Cx30A40V), were identified in our previous study from Taiwanese non-syndromic deafness patients. To investigate the functional consequence of these heterozygous mutations, we expressed individual wild-type or mutant Cx26 and Cx30 and co-expressed human Cx26wt/mutant or Cx30wt/mutant in HeLa cells by tet-on expression system with fluoresce fusion protein system. In our study, whereas Cx26 T123N showed predominantly membrane localization, which is similar to the characteristic punctuate expression in plasma membrane of the wild-type Cx26 and Cx30, Cx30 A40V and Cx26 R184Q showed impaired trafficking of the protein to the plasma membrane and accumulation in the Golgi or ER. In co-expression study, Cx26 R184Q or Cx30 A40V co-expressed with either Cx26 or Cx30 protein displayed both of them were perinuclear localization, suggesting affect wtCx26 or wtCx30 impairment of the ability of both proteins to intracellular trafficking and targeting to the plasma membrane. In contrast, Cx26 T123N co-expression with either Cx26 or Cx30 exhibited membrane localization similar to that of wild-type Cx26 or Cx30. In summary, Cx26 R184Q and Cx30 A40V exhibit cis- or trans-dominant negative effect on both normal Cx26 and Cx30 leading to accumulation of the Cx proteins in cytoplasm that impairs formation of the gap junction. Cx26 T123N does not affect the trafficking of Cx proteins. The functional significance of Cx26 T123N requires further investigation.

第一章 中文摘要 1
英文摘要 3
第二章 序論 (Introduction) 5
第三章 材料方法 (Materials and Methods) 13
第四章 結果 (Result) 31
第五章 討論 (Discussion) 42
第六章 參考文獻 (References) 48
第七章 圖表與圖表說明 (Figure and figure legend) 54
第八章 附錄 (Appendixes) Ⅰ 表 77
附錄Ⅱ 圖 79
附錄Ⅲ 實驗步驟 85
附錄Ⅵ 試劑配方 89
附錄Ⅴ 儀器設備 92
縮寫字對照表 94


Beltramello, M., V. Piazza, et al. (2005). "Impaired permeability to Ins(1,4,5)P3 in a mutant connexin underlies recessive hereditary deafness." Nat Cell Biol 7(1): 63-9.

Beyer, E. C., L. M. Davis, et al. (1995). "Cardiac intercellular communication: consequences of connexin distribution and diversity." Braz J Med Biol Res 28(4): 415-25.

Bukauskas, F. F., M. M. Kreuzberg, et al. (2006). "Properties of mouse connexin 30.2 and human connexin 31.9 hemichannels: implications for atrioventricular conduction in the heart." Proc Natl Acad Sci U S A 103(25): 9726-31.

Chang, E. H., G. Van Camp, et al. (2003). "The role of connexins in human disease." Ear Hear 24(4): 314-23.

Cohen-Salmon, M., S. Maxeiner, et al. (2004). "Expression of the connexin43- and connexin45-encoding genes in the developing and mature mouse inner ear." Cell Tissue Res 316(1): 15-22.

Cohen-Salmon, M., T. Ott, et al. (2002). "Targeted ablation of connexin26 in the inner ear epithelial gap junction network causes hearing impairment and cell death." Curr Biol 12(13): 1106-11.

Dahl, E., D. Manthey, et al. (1996). "Molecular cloning and functional expression of mouse connexin-30,a gap junction gene highly expressed in adult brain and skin." J Biol Chem 271(30): 17903-10.

Denoyelle, F., G. Lina-Granade, et al. (1998). "Connexin 26 gene linked to a dominant deafness." Nature 393(6683): 319-20.

Diez, J. A., S. Ahmad, et al. (1999). "Assembly of heteromeric connexons in guinea-pig liver en route to the Golgi apparatus, plasma membrane and gap junctions." Eur J Biochem 262(1): 142-8.

Estivill, X., P. Fortina, et al. (1998). "Connexin-26 mutations in sporadic and inherited sensorineural deafness." Lancet 351(9100): 394-8.

Forge, A., D. Becker, et al. (2003). "Gap junctions in the inner ear: comparison of distribution patterns in different vertebrates and assessement of connexin composition in mammals." J Comp Neurol 467(2): 207-31.

Frei, K., K. Szuhai, et al. (2002). "Connexin 26 mutations in cases of sensorineural deafness in eastern Austria." Eur J Hum Genet 10(7): 427-32.

Grifa, A., C. A. Wagner, et al. (1999). "Mutations in GJB6 cause nonsyndromic autosomal dominant deafness at DFNA3 locus." Nat Genet 23(1): 16-8.

Guilford, P., S. Ben Arab, et al. (1994). "A non-syndrome form of neurosensory, recessive deafness maps to the pericentromeric region of chromosome 13q." Nat Genet 6(1): 24-8.

Harris, A. L. (2007). "Connexin channel permeability to cytoplasmic molecules." Prog Biophys Mol Biol 94(1-2): 120-43.

Hernandez, V. H., M. Bortolozzi, et al. (2007). "Unitary permeability of gap junction channels to second messengers measured by FRET microscopy." Nat Methods 4(4): 353-8.

Hibino, H. and Y. Kurachi (2006). "Molecular and physiological bases of the K+ circulation in the mammalian inner ear." Physiology (Bethesda) 21: 336-45.

Kanno, Y. and W. R. Loewenstein (1964). "Low-Resistance Coupling between Gland Cells. Some Observations on Intercellular Contact Membranes and Intercellular Space." Nature 201: 194-5.

Kelsell, D. P., J. Dunlop, et al. (1997). "Connexin 26 mutations in hereditary non-syndromic sensorineural deafness." Nature 387(6628): 80-3.

Koreen, I. V., W. A. Elsayed, et al. (2004). "Tetracycline-regulated expression enables purification and functional analysis of recombinant connexin channels from mammalian cells." Biochem J 383(Pt 1): 111-9.

Kretz, M., C. Euwens, et al. (2003). "Altered connexin expression and wound healing in the epidermis of connexin-deficient mice." J Cell Sci 116(Pt 16): 3443-52.

Lawrence, T. S., W. H. Beers, et al. (1978). "Transmission of hormonal stimulation by cell-to-cell communication." Nature 272(5653): 501-6.

Liu, W., M. Bostrom, et al. (2009). "Unique expression of connexins in the human cochlea." Hear Res 250(1-2): 55-62.

Maltz, J., C. N. T, et al. (2005). "The Trauma Patient Tracking System: implementing a wireless monitoring infrastructure for emergency response." Conf Proc IEEE Eng Med Biol Soc 3: 2441-6.

Mammano, F., M. Bortolozzi, et al. (2007). "Ca2+ signaling in the inner ear." Physiology (Bethesda) 22: 131-44.

Mani, R. S., A. Ganapathy, et al. (2009). "Functional consequences of novel connexin 26 mutations associated with hereditary hearing loss." Eur J Hum Genet 17(4): 502-9.

Marazita, M. L., L. M. Ploughman, et al. (1993). "Genetic epidemiological studies of early-onset deafness in the U.S. school-age population." Am J Med Genet 46(5): 486-91.

Marziano, N. K., S. O. Casalotti, et al. (2003). "Mutations in the gene for connexin 26 (GJB2) that cause hearing loss have a dominant negative effect on connexin 30." Hum Mol Genet 12(8): 805-12.

Matos, T. D., H. Caria, et al. (2008). "A novel M163L mutation in connexin 26 causing cell death and associated with autosomal dominant hearing loss." Hear Res 240(1-2): 87-92.

Mese, G., G. Richard, et al. (2007). "Gap junctions: basic structure and function." J Invest Dermatol 127(11): 2516-24.

Morell, R. J., H. J. Kim, et al. (1998). "Mutations in the connexin 26 gene (GJB2) among Ashkenazi Jews with nonsyndromic recessive deafness." N Engl J Med 339(21): 1500-5.

Ohtsuka, A., I. Yuge, et al. (2003). "GJB2 deafness gene shows a specific spectrum of mutations in Japan, including a frequent founder mutation." Hum Genet 112(4): 329-33.

Olk, S., G. Zoidl, et al. (2009). "Connexins, cell motility, and the cytoskeleton." Cell Motil Cytoskeleton.

Ortolano, S., G. Di Pasquale, et al. (2008). "Coordinated control of connexin 26 and connexin 30 at the regulatory and functional level in the inner ear." Proc Natl Acad Sci U S A 105(48): 18776-81.

Petit, C., J. Levilliers, et al. (2001). "Molecular genetics of hearing loss." Annu Rev Genet 35: 589-646.

Petit, C. (2006). "From deafness genes to hearing mechanisms: harmony and counterpoint." Trends Mol Med 12(2): 57-64.

Qu, C., P. Gardner, et al. (2009). "The role of the cytoskeleton in the formation of gap junctions by Connexin 30." Exp Cell Res 315(10): 1683-92.

Resendes, B. L., R. E. Williamson, et al. (2001). "At the speed of sound: gene discovery in the auditory system." Am J Hum Genet 69(5): 923-35.

Rouan, F., T. W. White, et al. (2001). "trans-dominant inhibition of connexin-43 by mutant connexin-26: implications for dominant connexin disorders affecting epidermal differentiation." J Cell Sci 114(Pt 11): 2105-13.

Segretain, D. and M. M. Falk (2004). "Regulation of connexin biosynthesis, assembly, gap junction formation, and removal." Biochim Biophys Acta 1662(1-2): 3-21.

Sobe, T., P. Erlich, et al. (1999). "High frequency of the deafness-associated 167delT mutation in the connexin 26 (GJB2) gene in Israeli Ashkenazim." Am J Med Genet 86(5): 499-500.

Sohl, G. and K. Willecke (2004). "Gap junctions and the connexin protein family." Cardiovasc Res 62(2): 228-32.

Sun, J., S. Ahmad, et al. (2005). "Cochlear gap junctions coassembled from Cx26 and 30 show faster intercellular Ca2+ signaling than homomeric counterparts." Am J Physiol Cell Physiol 288(3): C613-23.

Suzuki, T., T. Takamatsu, et al. (2003). "Expression of gap junction protein connexin43 in the adult rat cochlea: comparison with connexin26." J Histochem Cytochem 51(7): 903-12.

Teubner, B., V. Michel, et al. (2003). "Connexin30 (Gjb6)-deficiency causes severe hearing impairment and lack of endocochlear potential." Hum Mol Genet 12(1): 13-21.

Thomas, T., D. Telford, et al. (2004). "Functional domain mapping and selective trans-dominant effects exhibited by Cx26 disease-causing mutations." J Biol Chem 279(18): 19157-68.

Thonnissen, E., R. Rabionet, et al. (2002). "Human connexin26 (GJB2) deafness mutations affect the function of gap junction channels at different levels of protein expression." Hum Genet 111(2): 190-7.

Wang, Y. C., C. Y. Kung, et al. (2002). "Mutations of Cx26 gene (GJB2) for prelingual deafness in Taiwan." Eur J Hum Genet 10(8): 495-8.

Wangemann, P. (2006). "Supporting sensory transduction: cochlear fluid homeostasis and the endocochlear potential." J Physiol 576(Pt 1): 11-21.

Willems, P. J. (2000). "Genetic causes of hearing loss." N Engl J Med 342(15): 1101-9.

Wiszniewski, L., A. Limat, et al. (2000). "Differential expression of connexins during stratification of human keratinocytes." J Invest Dermatol 115(2): 278-85.

Yang, J. J., S. H. Huang, et al. (2007). "Identification of mutations in members of the connexin gene family as a cause of nonsyndromic deafness in Taiwan." Audiol Neurootol 12(3): 198-208.

Yum, S. W., J. Zhang, et al. (2007). "Human connexin26 and connexin30 form functional heteromeric and heterotypic channels." Am J Physiol Cell Physiol 293(3): C1032-48.

Zelante, L., P. Gasparini, et al. (1997). "Connexin26 mutations associated with the most common form of non-syndromic neurosensory autosomal recessive deafness (DFNB1) in Mediterraneans." Hum Mol Genet 6(9): 1605-9.

Zhang, Y., W. Tang, et al. (2005). "Gap junction-mediated intercellular biochemical coupling in cochlear supporting cells is required for normal cochlear functions." Proc Natl Acad Sci U S A 102(42): 15201-6.

Zhao, H. B., T. Kikuchi, et al. (2006). "Gap junctions and cochlear homeostasis." J Membr Biol 209(2-3): 177-86.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔