(3.238.130.97) 您好!臺灣時間:2021/05/15 13:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:魏綺緗
研究生(外文):Chi-Shiang
論文名稱:紫檀芪抑制乳癌細胞株之侵襲與癌化能力機轉探討
論文名稱(外文):Studies on the anti-invasive and anti-tumorigenic mechanisms of pterostilbene in human breast cancer cells
指導教授:陳威仁陳威仁引用關係劉秉慧
指導教授(外文):Wei-Jen ChenBiing-Hui Liu
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:生物醫學科學學系碩士班
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:90
相關次數:
  • 被引用被引用:0
  • 點閱點閱:185
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Pterosti lbene是一個resveratrol的甲基結構衍生物,由葡萄、藍莓中所萃取出的多酚化合物。Pterostilbene具有許多藥理的特性,像是:抗癌、抗發炎、抗氧化、細胞凋亡、抗增生與止痛的能力。然而,有關pterostilbene對於預防癌細胞的侵襲與癌化能力,仍不清楚。在本篇論文中主要利用人類乳腺癌細胞株(MCF-7)來探討當細胞內HER2過度活化情形下,pterostilbene抑制癌細胞侵襲與癌化的機轉,其中包括pterostilbene對於HRG-β1誘發癌細胞轉移的MMP-9與促進癌細胞增生主要因子FASN的影響。隨著pterostilbene處理的濃度增加,MMP-9蛋白質與mRNA表現亦隨之下降,MAPKs訊息傳遞路徑的p38磷酸化會隨著pterostilbene劑量增加而受到抑制。而細胞的存活率隨著pterostilbene處理的時間與濃度增加,導致存活率下降,並使停留在G1細胞週期的細胞數目比例增加。此外,我們發現調控細胞生長的主要因子FASN,亦會隨著pterostilbene處理的濃度增加,降低其蛋白質與mRNA表現,同時誘發FASN活化的PI3K/Akt路徑中Akt磷酸化表現亦受到抑制。Pterostilbene並能夠降低FASN mRNA與蛋白質表現量。綜合以上結果,說明了pterostilbene癌症化學預防的潛力,pterostilbene可作為抑制HER2過量表現之乳癌細胞轉移與癌化能力之抑制劑。

Pterostilbene (trans-3,5-dimethoxy-4’-hydroxystilbene) is a natural dimethylated analogue of resveratrol. Similar to diverse pharmacologic activities of resveratrol, Pterostilbene (trans-3,5-dimethoxy-4’-hydroxystilbene) is a natural dimethylated analogue of resveratrol. Similar to diverse pharmacologic activities of resveratrol, pterostilbene exerts its cancer chemopreventive activity including anticancer, anti-inflammation, antioxidation, apoptosis, antiproliferation and analgesic potential. However, the cancer chemopreventive mechanisms of action of pterostilbene remain unclear yet. Almost 25% of breast cancers overexpress HER2, a member of epidermal growth factor receptor family with a more aggressive phenotype with decreased survival. Overexpression of HER2 leads to receptor activation, stimulation of tumor cell proliferation, survival and metastases and is associated with a poor prognosis in patients with primary breast cancer.
In addition, matrix metalloproteinases (MMPs)-9, a group of zinc-dependent endopeptidases, is related to tumor invasion and metastasis by their capacity for tissue remodeling via extracellular matrix as well as basement membrane degradation and induction of angiogenesis. Among them, the expression of MMP-9 mediated by HER2 or its releated ligand such as heregulin-β1 (HRG-β1, a combinatorial ligand for the HER3 and HER4 receptors can transactivate HER2 receptor) has been shown to be highly associated with breast cancer metastasis, suggesting that MMP-9 may be an accessible target for improving the health of breast cancer patients under metastatic progression.
Recently, many studies have demonstrated that fatty acid synthase expression positively correlates with the level of Her-2/neu oncogene expression in a panel of human breast cancer cell lines. Fatty acid synthase (FASN) is a key enzyme that catalytes de novo fatty acid biosynthesis. In breast cancer cells, the expression of FASN is closely related to the aggressiveness of cancers as well as to the growth, proliferation, maintenance, and cell cycle progression of human cancers. A recent discovery about a bi-directional linkage of FASN with the oncogenic HER2 pathway, a positive correlation between high levels of FASN expression and overexpression of HER2 oncogene exists in human breast cancer cell lines, suggesting that upregulation of FASN expression and activity might play a vital role in HER2-induced tumorigenesis and breast cancer progression.
In this study, we assessed the effects of pterostilbene on HRG-β1-associated cell signaling of human breast cancer MCF-7 cells. We found that pterostilbene inhibited HRG-β1-induced activation of PI3K/Akt patheay of MCF-7 cells, accompanied with the dose-related reduction of HRG-β1-induced fatty acid synthase (FASN) expression. Pterostilbene also inhibited mRNA and protein expression of matrix metalloproteinase-9 (MMP-9) induced by HRG-β1via inhibiting p38 MAPK pathwy. Moreover,
pterostilbene strongly inhibited HRG-β1-triggered MCF-7 cells proliferation by MTT assay.
Taken together, our current data demonstrate that pterostilbene may down-regulate HRG-β1-mediated signaling essential for cell proliferation and metastasis of breast cancer cells, but the detailed action mechanisms require further investigation.


壹、 中文摘要……………………………………………………1
貳、 英文摘要…………………..………………………………2
參、 縮寫表………………………………………………………4
肆、 序論…………………………………………………………5
伍、 實驗材料與方法………………………………………….29
陸、 結果……………………………………………………….46
柒、 討論……………………………………………………….54
捌、 附圖……………………………………………………….59
玖、 附錄……………………………………………………….76
拾、參考文獻…………………………………………………………84



參考文獻

Ahmed, M.H., and Byrne, C.D. (2007). Modulation of sterol regulatory element binding proteins (SREBPs) as potential treatments for non-alcoholic fatty liver disease (NAFLD). Drug discovery today 12, 740-747.
Arito, M., Horiba, T., Hachimura, S., Inoue, J., and Sato, R. (2008). Growth factor-induced phosphorylation of sterol regulatory element-binding proteins inhibits sumoylation, thereby stimulating the expression of their target genes, low density lipoprotein uptake, and lipid synthesis. The Journal of biological chemistry 283, 15224-15231.
Badache, A., and Goncalves, A. (2006). The ErbB2 signaling network as a target for breast cancer therapy. Journal of mammary gland biology and neoplasia 11, 13-25.
Bengoechea-Alonso, M.T., and Ericsson, J. (2007). SREBP in signal transduction: cholesterol metabolism and beyond. Current opinion in cell biology 19, 215-222.
Bjorklund, M., and Koivunen, E. (2005). Gelatinase-mediated migration and invasion of cancer cells. Biochimica et biophysica acta 1755, 37-69.
Breuleux, M. (2007). Role of heregulin in human cancer. Cell Mol Life Sci 64, 2358-2377.
Brusselmans, K., De Schrijver, E., Heyns, W., Verhoeven, G., and Swinnen, J.V. (2003). Epigallocatechin-3-gallate is a potent natural inhibitor of fatty acid synthase in intact cells and selectively induces apoptosis in prostate cancer cells. International journal of cancer 106, 856-862.
Chang, C.K., Hung, W.C., and Chang, H.C. (2008). The Kazal motifs of RECK protein inhibit MMP-9 secretion and activity and reduce metastasis of lung cancer cells in vitro and in vivo. Journal of cellular and molecular medicine 12, 2781-2789.
Chen, F.L., Xia, W., and Spector, N.L. (2008). Acquired resistance to small molecule ErbB2 tyrosine kinase inhibitors. Clin Cancer Res 14, 6730-6734.
Chiang, C.T., Way, T.D., Tsai, S.J., and Lin, J.K. (2007). Diosgenin, a naturally occurring steroid, suppresses fatty acid synthase expression in HER2-overexpressing breast cancer cells through modulating Akt, mTOR and JNK phosphorylation. FEBS letters 581, 5735-5742.
Dean-Colomb, W., and Esteva, F.J. (2008). Her2-positive breast cancer: herceptin and beyond. Eur J Cancer 44, 2806-2812.
Dell''Agli, M., Canavesi, M., Galli, G., and Bellosta, S. (2005). Dietary polyphenols and regulation of gelatinase expression and activity. Thrombosis and haemostasis 93, 751-760.
Deryugina, E.I., and Quigley, J.P. (2006). Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 25, 9-34.
Du, H.Y., Olivo, M., Mahendran, R., Huang, Q., Shen, H.M., Ong, C.N., and Bay, B.H. (2007). Hypericin photoactivation triggers down-regulation of matrix metalloproteinase-9 expression in well-differentiated human nasopharyngeal cancer cells. Cell Mol Life Sci 64, 979-988.
Esteva, F.J., Sahin, A.A., Cristofanilli, M., Arun, B., and Hortobagyi, G.N. (2002). Molecular prognostic factors for breast cancer metastasis and survival. Seminars in radiation oncology 12, 319-328.
Fernandez-Alvarez, A., Tur, G., Lopez-Rodas, G., and Casado, M. (2008). Reciprocal regulation of the human sterol regulatory element binding protein (SREBP)-1a promoter by Sp1 and EGR-1 transcription factors. FEBS letters 582, 177-184.
Fridman, R., Toth, M., Chvyrkova, I., Meroueh, S.O., and Mobashery, S. (2003). Cell surface association of matrix metalloproteinase-9 (gelatinase B). Cancer Metastasis Rev 22, 153-166.
Harari, D., and Yarden, Y. (2000). Molecular mechanisms underlying ErbB2/HER2 action in breast cancer. Oncogene 19, 6102-6114.
Jezierska, A., and Motyl, T. (2009). Matrix metalloproteinase-2 involvement in breast cancer progression: a mini-review. Med Sci Monit 15, RA32-40.
Jun, H., Song, Z., Chen, W., Zanhua, R., Yonghong, S., Shuxia, L., and Huijun, D. (2009). In vivo and in vitro effects of SREBP-1 on diabetic renal tubular lipid accumulation and RNAi-mediated gene silencing study. Histochemistry and cell biology 131, 327-345.
Katiyar, S.K. (2006). Matrix metalloproteinases in cancer metastasis: molecular targets for prostate cancer prevention by green tea polyphenols and grape seed proanthocyanidins. Endocrine, metabolic & immune disorders drug targets 6, 17-24.
Kauraniemi, P., and Kallioniemi, A. (2006). Activation of multiple cancer-associated genes at the ERBB2 amplicon in breast cancer. Endocrine-related cancer 13, 39-49.
Kim, I.Y., Yong, H.Y., Kang, K.W., and Moon, A. (2009a). Overexpression of ErbB2 induces invasion of MCF10A human breast epithelial cells via MMP-9. Cancer letters 275, 227-233.
Kim, J.S., Ha, T.Y., Ahn, J., Kim, H.K., and Kim, S. (2009b). Pterostilbene from Vitis coignetiae protect H2O2-induced inhibition of gap junctional intercellular communication in rat liver cell line. Food Chem Toxicol 47, 404-409.
Klein, G., Vellenga, E., Fraaije, M.W., Kamps, W.A., and de Bont, E.S. (2004). The possible role of matrix metalloproteinase (MMP)-2 and MMP-9 in cancer, e.g. acute leukemia. Crit Rev Oncol Hematol 50, 87-100.
Knowles, L.M., Yang, C., Osterman, A., and Smith, J.W. (2008). Inhibition of fatty-acid synthase induces caspase-8-mediated tumor cell apoptosis by up-regulating DDIT4. The Journal of biological chemistry 283, 31378-31384.
Kong, A., Calleja, V., Leboucher, P., Harris, A., Parker, P.J., and Larijani, B. (2008). HER2 oncogenic function escapes EGFR tyrosine kinase inhibitors via activation of alternative HER receptors in breast cancer cells. PLoS ONE 3, e2881.
Kuhajda, F.P. (2006). Fatty acid synthase and cancer: new application of an old pathway. Cancer research 66, 5977-5980.
Kumadaki, S., Matsuzaka, T., Kato, T., Yahagi, N., Yamamoto, T., Okada, S., Kobayashi, K., Takahashi, A., Yatoh, S., Suzuki, H., et al. (2008). Mouse Elovl-6 promoter is an SREBP target. Biochemical and biophysical research communications 368, 261-266.
Kushima, Y., Iida, K., Nagaoka, Y., Kawaratani, Y., Shirahama, T., Sakaguchi, M., Baba, K., Hara, Y., and Uesato, S. (2009). Inhibitory effect of (-)-epigallocatechin and (-)-epigallocatechin gallate against heregulin beta1-induced migration/invasion of the MCF-7 breast carcinoma cell line. Biological & pharmaceutical bulletin 32, 899-904.
Liu, H., Liu, Y., and Zhang, J.T. (2008). A new mechanism of drug resistance in breast cancer cells: fatty acid synthase overexpression-mediated palmitate overproduction. Molecular cancer therapeutics 7, 263-270.
Luo, J. (2006). Role of matrix metalloproteinase-2 in ethanol-induced invasion by breast cancer cells. Journal of gastroenterology and hepatology 21 Suppl 3, S65-68.
Lupu, R., and Menendez, J.A. (2006). Targeting fatty acid synthase in breast and endometrial cancer: An alternative to selective estrogen receptor modulators? Endocrinology 147, 4056-4066.
Marcotte, R., and Muller, W.J. (2008). Signal transduction in transgenic mouse models of human breast cancer--implications for human breast cancer. Journal of mammary gland biology and neoplasia 13, 323-335.
Martin, M.D., and Matrisian, L.M. (2007). The other side of MMPs: protective roles in tumor progression. Cancer Metastasis Rev 26, 717-724.
Meira, M., Masson, R., Stagljar, I., Lienhard, S., Maurer, F., Boulay, A., and Hynes, N.E. (2009). Memo is a cofilin-interacting protein that influences PLCgamma1 and cofilin activities, and is essential for maintaining directionality during ErbB2-induced tumor-cell migration. Journal of cell science 122, 787-797.
Menendez, J.A., Colomer, R., and Lupu, R. (2005a). Why does tumor-associated fatty acid synthase (oncogenic antigen-519) ignore dietary fatty acids? Medical hypotheses 64, 342-349.
Menendez, J.A., and Lupu, R. (2006). Oncogenic properties of the endogenous fatty acid metabolism: molecular pathology of fatty acid synthase in cancer cells. Current opinion in clinical nutrition and metabolic care 9, 346-357.
Menendez, J.A., and Lupu, R. (2007). Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nature reviews 7, 763-777.
Menendez, J.A., Lupu, R., and Colomer, R. (2005b). Targeting fatty acid synthase: potential for therapeutic intervention in her-2/neu-overexpressing breast cancer. Drug news & perspectives 18, 375-385.
Menendez, J.A., Vazquez-Martin, A., Ortega, F.J., and Fernandez-Real, J.M. (2009). Fatty acid synthase: association with insulin resistance, type 2 diabetes, and cancer. Clinical chemistry 55, 425-438.
Menendez, J.A., Vellon, L., Colomer, R., and Lupu, R. (2005c). Pharmacological and small interference RNA-mediated inhibition of breast cancer-associated fatty acid synthase (oncogenic antigen-519) synergistically enhances Taxol (paclitaxel)-induced cytotoxicity. International journal of cancer 115, 19-35.
Menendez, J.A., Vellon, L., Oza, B.P., and Lupu, R. (2005d). Does endogenous fatty acid metabolism allow cancer cells to sense hypoxia and mediate hypoxic vasodilatation? Characterization of a novel molecular connection between fatty acid synthase (FAS) and hypoxia-inducible factor-1alpha (HIF-1alpha)-related expression of vascular endothelial growth factor (VEGF) in cancer cells overexpressing her-2/neu oncogene. Journal of cellular biochemistry 94, 857-863.
Muroski, M.E., Roycik, M.D., Newcomer, R.G., Van den Steen, P.E., Opdenakker, G., Monroe, H.R., Sahab, Z.J., and Sang, Q.X. (2008). Matrix metalloproteinase-9/gelatinase B is a putative therapeutic target of chronic obstructive pulmonary disease and multiple sclerosis. Curr Pharm Biotechnol 9, 34-46.
Murphy, G., and Nagase, H. (2008). Progress in matrix metalloproteinase research. Mol Aspects Med 29, 290-308.
Pal, S.K., and Pegram, M. (2007). HER2 targeted therapy in breast cancer...beyond Herceptin. Reviews in endocrine & metabolic disorders 8, 269-277.
Pan, M.H., Chang, Y.H., Badmaev, V., Nagabhushanam, K., and Ho, C.T. (2007a). Pterostilbene induces apoptosis and cell cycle arrest in human gastric carcinoma cells. Journal of agricultural and food chemistry 55, 7777-7785.
Pan, M.H., Lin, C.C., Lin, J.K., and Chen, W.J. (2007b). Tea polyphenol (-)-epigallocatechin 3-gallate suppresses heregulin-beta1-induced fatty acid synthase expression in human breast cancer cells by inhibiting phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase cascade signaling. Journal of agricultural and food chemistry 55, 5030-5037.
Pan, Z., Agarwal, A.K., Xu, T., Feng, Q., Baerson, S.R., Duke, S.O., and Rimando, A.M. (2008). Identification of molecular pathways affected by pterostilbene, a natural dimethylether analog of resveratrol. BMC medical genomics 1, 7.
Patten, L.C., and Berger, D.H. (2005). Role of proteases in pancreatic carcinoma. World journal of surgery 29, 258-263.
Perecko, T., Jancinova, V., Drabikova, K., Nosal, R., and Harmatha, J. (2008). Structure-efficiency relationship in derivatives of stilbene. Comparison of resveratrol, pinosylvin and pterostilbene. Neuro endocrinology letters 29, 802-805.
Puig, T., Vazquez-Martin, A., Relat, J., Petriz, J., Menendez, J.A., Porta, R., Casals, G., Marrero, P.F., Haro, D., Brunet, J., et al. (2008). Fatty acid metabolism in breast cancer cells: differential inhibitory effects of epigallocatechin gallate (EGCG) and C75. Breast Cancer Res Treat 109, 471-479.
Ram, M., Sherer, Y., and Shoenfeld, Y. (2006). Matrix metalloproteinase-9 and autoimmune diseases. J Clin Immunol 26, 299-307.
Remsberg, C.M., Yanez, J.A., Ohgami, Y., Vega-Villa, K.R., Rimando, A.M., and Davies, N.M. (2008). Pharmacometrics of pterostilbene: preclinical pharmacokinetics and metabolism, anticancer, antiinflammatory, antioxidant and analgesic activity. Phytother Res 22, 169-179.
Rosenberg, G.A. (2009). Matrix metalloproteinases and their multiple roles in neurodegenerative diseases. Lancet Neurol 8, 205-216.
Schwartz, B., Melnikova, V.O., Tellez, C., Mourad-Zeidan, A., Blehm, K., Zhao, Y.J., McCarty, M., Adam, L., and Bar-Eli, M. (2007). Loss of AP-2alpha results in deregulation of E-cadherin and MMP-9 and an increase in tumorigenicity of colon cancer cells in vivo. Oncogene 26, 4049-4058.
Schweizer, M., Roder, K., Zhang, L., and Wolf, S.S. (2002). Transcription factors acting on the promoter of the rat fatty acid synthase gene. Biochemical Society transactions 30, 1070-1072.
Sellebjerg, F., and Sorensen, T.L. (2003). Chemokines and matrix metalloproteinase-9 in leukocyte recruitment to the central nervous system. Brain Res Bull 61, 347-355.
Shimano, H. (2001). Sterol regulatory element-binding proteins (SREBPs): transcriptional regulators of lipid synthetic genes. Progress in lipid research 40, 439-452.
Simstein, R., Burow, M., Parker, A., Weldon, C., and Beckman, B. (2003). Apoptosis, chemoresistance, and breast cancer: insights from the MCF-7 cell model system. Experimental biology and medicine (Maywood, NJ 228, 995-1003.
Stern, D.F. (2008). ERBB3/HER3 and ERBB2/HER2 duet in mammary development and breast cancer. Journal of mammary gland biology and neoplasia 13, 215-223.
Sun, Y., Lin, H., Zhu, Y., Ma, C., Ye, J., and Luo, J. (2002). Induction or suppression of expression of cytochrome C oxidase subunit II by heregulin beta 1 in human mammary epithelial cells is dependent on the levels of ErbB2 expression. Journal of cellular physiology 192, 225-233.
Tsai, M.S., Shamon-Taylor, L.A., Mehmi, I., Tang, C.K., and Lupu, R. (2003a). Blockage of heregulin expression inhibits tumorigenicity and metastasis of breast cancer. Oncogene 22, 761-768.
Tsai, P.W., Shiah, S.G., Lin, M.T., Wu, C.W., and Kuo, M.L. (2003b). Up-regulation of vascular endothelial growth factor C in breast cancer cells by heregulin-beta 1. A critical role of p38/nuclear factor-kappa B signaling pathway. The Journal of biological chemistry 278, 5750-5759.
Ueno, Y., Sakurai, H., Tsunoda, S., Choo, M.K., Matsuo, M., Koizumi, K., and Saiki, I. (2008). Heregulin-induced activation of ErbB3 by EGFR tyrosine kinase activity promotes tumor growth and metastasis in melanoma cells. International journal of cancer 123, 340-347.
Van den Steen, P.E., Dubois, B., Nelissen, I., Rudd, P.M., Dwek, R.A., and Opdenakker, G. (2002). Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Crit Rev Biochem Mol Biol 37, 375-536.
Vazquez-Martin, A., Ortega-Delgado, F.J., Fernandez-Real, J.M., and Menendez, J.A. (2008). The tyrosine kinase receptor HER2 (erbB-2): from oncogenesis to adipogenesis. Journal of cellular biochemistry 105, 1147-1152.
Wang, F.M., Liu, H.Q., Liu, S.R., Tang, S.P., Yang, L., and Feng, G.S. (2005). SHP-2 promoting migration and metastasis of MCF-7 with loss of E-cadherin, dephosphorylation of FAK and secretion of MMP-9 induced by IL-1beta in vivo and in vitro. Breast Cancer Res Treat 89, 5-14.
Westermarck, J., and Kahari, V.M. (1999). Regulation of matrix metalloproteinase expression in tumor invasion. Faseb J 13, 781-792.
Wu, J., Zhang, L., Luo, H., Zhu, Z., Zhang, C., and Hou, Y. (2008). Association of matrix metalloproteinases-9 gene polymorphisms with genetic susceptibility to esophageal squamous cell carcinoma. DNA Cell Biol 27, 553-557.
Yang, Y.A., Morin, P.J., Han, W.F., Chen, T., Bornman, D.M., Gabrielson, E.W., and Pizer, E.S. (2003). Regulation of fatty acid synthase expression in breast cancer by sterol regulatory element binding protein-1c. Experimental cell research 282, 132-137.
Yao, J., Xiong, S., Klos, K., Nguyen, N., Grijalva, R., Li, P., and Yu, D. (2001). Multiple signaling pathways involved in activation of matrix metalloproteinase-9 (MMP-9) by heregulin-beta1 in human breast cancer cells. Oncogene 20, 8066-8074.
You, M., and Crabb, D.W. (2004). Molecular mechanisms of alcoholic fatty liver: role of sterol regulatory element-binding proteins. Alcohol (Fayetteville, NY 34, 39-43.
Yuan, G., Qian, L., Song, L., Shi, M., Li, D., Yu, M., Hu, M., Shen, B., and Guo, N. (2008). Heregulin-beta promotes matrix metalloproteinase-7 expression via HER2-mediated AP-1 activation in MCF-7 cells. Molecular and cellular biochemistry 318, 73-79.
Zandi, R., Larsen, A.B., Andersen, P., Stockhausen, M.T., and Poulsen, H.S. (2007). Mechanisms for oncogenic activation of the epidermal growth factor receptor. Cellular signalling 19, 2013-2023.
Zhao, W., Kridel, S., Thorburn, A., Kooshki, M., Little, J., Hebbar, S., and Robbins, M. (2006). Fatty acid synthase: a novel target for antiglioma therapy. British journal of cancer 95, 869-878.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 紫檀芪經由降低血生性的Lewis Lung Carcinoma Cells表面多聚體纖連蛋白的組裝抑制肺臟轉移
2. 天然植物化合物6-shogaol與pterostilbene抑制乳癌幹細胞特性及乳癌細胞侵入轉移之研究
3. 紫檀芪對Heregulin-β1誘導之人類乳癌細胞侵襲能力的影響
4. 氧化鋅/碲化鋅核殼奈米線及摻雜銻元素P型氧化鋅陣列光學與電學性質之研究
5. 比較pterostilbene及3′-hydroxypterostilbene抑制人類腸癌細胞增生及預防小鼠腸癌形成之功效
6. 探討紫檀?在肺癌化學預防的角色和機轉
7. SCUBE2可抑制乳癌細胞增殖與導致侵犯性乳癌病人較佳的預後
8. 探討蜂膠素C對人類肝癌細胞株huh7和人類乳癌細胞株MCF7之抑制效用
9. 探討尼古丁促進膀胱癌細胞生長與化療抗性的機轉並研究紫檀芪對化療敏感性與尼古丁誘發具化療抗性的膀胱癌細胞之治療效果與機制
10. Garcinol 與 pterostilbene 對 3T3-L1 脂肪細胞增生、脂質生成與發炎反應之調控作用
11. 蟛蜞菊功能性粗萃物與主成份抑制乳癌細胞增生之作用研究
12. Rersveratrol甲基衍生物3,5,3'',4'',5''–pentamethoxystilbene (MR-5)抑制人類乳癌細胞MCF-7生長及細胞週期G1停滯之分子研究
13. 第一部分 桑葉萃取物抑制動脈粥狀硬化之研究第二部份 荷葉萃取物降低乳癌發生之作用
14. 薯蕷皂素抑制乳癌細胞增生之角色探討
15. 探討靈芝免疫調節功能蛋白抑制乳癌細胞侵襲轉移的能力