跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/12 12:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王牧野
研究生(外文):Mu-Yeh
論文名稱:人類啟動子候選區域資料庫與基因表現型態資料庫之建構
論文名稱(外文):Construction of Human Promoter Candidate Region Database and Gene Expression Profile Database
指導教授:王怡鈞王怡鈞引用關係
指導教授(外文):Yi-Chun Wang
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:生物醫學科學學系碩士班
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:86
相關次數:
  • 被引用被引用:0
  • 點閱點閱:302
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
基因表現為細胞分化與行使功能的一個重要過程,不同的細胞藉由表現不同的基因以構成細胞的多樣性。第二型RNA聚合酶所轉錄的基因啟動子是座落於轉錄起始點(TSS,Transcription Start Site)5''端上游的一段DNA區域,其中有許多調控序列(regulatory sequences或regulatory element)可被不同的轉錄因子(Transcription Factor)辨識並結合來達到調控基因表現的目的。因此轉錄起始點對於promoter序列的確立有著舉足輕重的地位。一般來說,尋找promoter區域的方式通常以已知特定樣式來預測的方式進行,但由於promoter樣式尚未完全被解析,因此結果往往不盡人意;而目前由實驗數據取得的promoter序列資料庫如EPD(Eukaryotic Promoter Database,http://www.epd.isb-sib.ch/)又有著數量少、更新速度慢的缺點。
在這份研究中,我們用NCBI BLAST工具與其延伸開發的miBLAST,以人類EST(Expression Sequence Tags)與mRNA做序列比對以建構全長的cDNA(Full Length cDNA, FL-cDNA),同時根據比對到的EST內容,取得該基因的表現型態。接著使用全長cDNA與人類基因體序列比對,根據其比對結果可得知轉錄起始點位置,進一步取得−1000 ~ +50的區域做為promoter候選區域。最後,我們在全長cDNA、promoter與EST之間建立關聯資料庫,並設計一個初步的網頁搜尋介面,可供使用者查詢某基因的表現型態及其promoter序列,服務提供於http://140.128.139.59:50124/vpbs/index.php。

Gene expression is a very important process in cell development and cell function. Cell diversity was constituted by differential gene expression. The promoter of RNA polymerase II transcribed gene is a DNA region just 5'' upstream to the transcription start site (TSS) and there are many regulatory elements within this region which can be recognized by various transcription factors. Through the binding of transcription factors to these sites, it regulates the expression of gene. Therefore, via TSS identification is the most reliable method for promoter finding.
Most of current methods used to find promoter region were working in a prediction way. But the results were not as ideal as we thought because the promoter pattern was not entirely known. Public promoter database obtained from experimental data, such as EPD (Eukaryotic Promoter Database, http://www.epd.isb-sib.ch/), contain more authentic promoter sequences, but the number was far less than estimated, and the update speed is quite slow, too.
Here, we use human EST (Expression Sequence Tags) to against human mRNA by using miBLAST, an extended development tool of NCBI BLAST, to obtain full length cDNA (FL-cDNA). Simultaneously, according to the content of GenBank format of hit ESTs, we construct the gene expression profile database. On the other hand, we BLAST the FL-cDNA to human genomic DNA to find the TSS and the promoter region of each gene (mRNA). According to the TSS, we collect the sequence of −1000 ~ +50 nt region to establish the promoter candidate region database. Finally, we construct a relational database among promoter sequences, cDNA sequences and gene expression profiles and design a simple web service to search expression profile and promoter sequences of certain human mRNA. The web service is available at http://140.128.139.59:50124/vpbs/index.php.

一、摘要……………………………………… 1
二、前言……………………………………… 5
三、材料與方法………………………………10
四、結果………………………………………34
五、討論………………………………………45
六、圖表………………………………………58
七、參考文獻…………………………………77
八、附錄………………………………………83

1. Khan J., Saal L.H., Bittner M.L., Jiang Y., Gooden G.C., Glatfelter A.A., Meltzer P.S.. (2002) Expression profiling in cancer using cDNA microarrays. Methods Mol Med., 68, 205-22.
2. International Human Genome Sequencing Consortium. (2004) Finishing the euchromatic sequence of the human genome. Nature, 431, 931-945
3. Zhang M.Q.. (2007) Computational analyses of eukaryotic promoters. BMC Bioinformatics, 8 Suppl 6:S3.
4. Sandelin A., Wasserman W.W., Lenhard B.. (2004) ConSite: web-based prediction of regulatory elements using cross-species comparison. Nucleic Acids Res., 32, W249–W252.
5. Loots G.G., Ovcharenko I.. (2004) rVISTA 2.0: evolutionary analysis of transcription factor binding sites. Nucleic Acids Res. 32, W217–W221.
6. Stormo,G.D.. (2000) DNA binding sites: representation and discovery. Bioinformatics, 16, 16–23.
7. Matys V., Kel-Margoulis O.V., Fricke E., Liebich I., Land S., Barre-Dirrie A., Reuter I., Chekmenev D., Krull M., Hornischer K., Voss N., Stegmaier P., Lewicki-Potapov B., Saxel H., Kel A.E., Wingender E.. (2006) TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res., 34, D108-10.
8. Vlieghe D., Sandelin A., De Bleser P.J., Vleminckx K., Wasserman W.W., van Roy F., Lenhard B.. (2006) A new generation of JASPAR, the open-access repository for transcription factor binding site profiles. Nucleic Acids Res., 34, D95-7.
9. Sonnenburg S., Zien A., Rätsch G.. (2006) ARTS: accurate recognition of transcription starts in human. Bioinformatics, 22, e472-80.
10. Schmid C.D., Perier R., Praz V., Bucher P.. (2006) EPD in its twentieth year: towards complete promoter coverage of selected model organisms. Nucleic Acids Res., 34, D82-5.
11. Wakaguri H., Yamashita R., Suzuki Y., Sugano S., Nakai K.. (2008) DBTSS: database of transcription start sites, progress report 2008. Nucleic Acids Res., 36, D97-101.
12. Lynch M.. (2006) The Origins of Eukaryotic Gene Structure. Molecular Biology and Evolution, 23(2), 450-468.
13. Mignone F., Gissi C., Liuni S., Pesole G.. (2002) Untranslated regions of mRNAs. Genome Biology, 3(3),reviews0004.1–0004.10.
14. Haas B.J., Volfovsky N., Town C.D., Troukhan M., Alexandrov N., Feldmann K.A., Flavell R.B., White O., Salzberg S.L.. (2002) Full-length messenger RNA sequences greatly improve genome annotation. Genome Biology, 3(6), research 0029.1-0029.12.
15. Strausberg R.L., Feingold E.A., Grouse L.H., Derge J.G., Klausner R.D., Collins F.S., Wagner L., Shenmen C.M., Schuler G.D., Altschul S.F., Zeeberg B., Buetow K.H., Schaefer C.F., Bhat N.K., Hopkins R.F., Jordan H., Moore T., Max S.I., Wang J., Hsieh F., Diatchenko L., Marusina K., Farmer A.A., Rubin G.M., Hong L., Stapleton M., Soares M.B., Bonaldo M.F., Casavant T.L., Scheetz T.E., Brownstein M.J., Usdin T.B., Toshiyuki S., Carninci P., Prange C., Raha S.S., Loquellano N.A., Peters G.J., Abramson R.D., Mullahy S.J., Bosak S.A., McEwan P.J., McKernan K.J., Malek J.A., Gunaratne P.H., Richards S., Worley K.C., Hale S., Garcia A.M., Gay L.J., Hulyk S.W., Villalon D.K., Muzny D.M., Sodergren E.J., Lu X., Gibbs R.A., Fahey J., Helton E., Ketteman M., Madan A., Rodrigues S., Sanchez A., Whiting M., Madan A., Young A.C., Shevchenko Y., Bouffard G.G., Blakesley R.W., Touchman J.W., Green E.D., Dickson M.C., Rodriguez A.C., Grimwood J., Schmutz J., Myers R.M., Butterfield Y.S., Krzywinski M.I., Skalska U., Smailus D.E., Schnerch A., Schein J.E., Jones S.J., Marra M.A.; Mammalian Gene Collection Program Team. (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. PNAS. , 99(26): 16899–16903.
16. Stapleton M., Carlson J., Brokstein P., Yu C., Champe M., George R., Guarin H., Kronmiller B., Pacleb J., Park S., Wan K., Rubin G.M., Celniker S.E.. (2002) A Drosophila full-length cDNA resource. Genome Biology, 3(12), research0080.1–0080.8.
17. Di Prospero N.A., Fischbeck K.H.. (2005) Therapeutics development for triplet repeat expansion diseases. Nature Reviews Genetics, 6(10),756-65.
18. Strausberg R.L., Feingold E.A., Klausner R.D., Collins F.S.. (1999) The mammalian gene collection. Science, 286, 455-7.
19. Ohara O., Nagase T., Ishikawa K., Nakajima D., Ohira M., Seki N., Nomura N.. (1997) Construction and characterization of human brain cDNA libraries suitable for analysis of cDNA clones encoding relatively large proteins. DNA research, 4 (1):53-9.
20. Kikuno R., Nagase T., Waki M., Ohara O.. (2002) HUGE: a database for human large proteins identified in the Kazusa cDNA sequencing project. Nucleic Acids Res, 30(1):166-8.
21. Rubin G.M., Hong L., Brokstein P., Evans-Holm M., Frise E., Stapleton M., Harvey D.A.. (2000) A Drosophila complementary DNA resource. Science, 287(5461), 2222 – 2224.
22. Wiemann S., Weil B., Wellenreuther R., Gassenhuber J., Glassl S., Ansorge W., Böcher M., Blöcker H., Bauersachs S., Blum H., Lauber J., Düsterhöft A., Beyer A., Köhrer K., Strack N., Mewes H.W., Ottenwälder B., Obermaier B., Tampe J., Heubner D., Wambutt R., Korn B., Klein M., Poustka A.. (2001) Toward a catalog of human genes and proteins: sequencing and analysis of 500 novel complete protein coding human cDNAs. Genome Research, 11, 422–435.
23. Halees A.S., Leyfer D., Weng Z.. (2003) PromoSer: a large-scale mammalian promoter and transcription start site identification service. Nucleic Acids Res, 31(13), 3554-9.
24. Adams M.D., Kelley J.M., Gocayne J.D., Dubnick M., Polymeropoulos M.H., Xiao H., Merril C.R., Wu A., Olde B., Moreno R.F., Anthony R., Kerlavage, Mccombie W.R., Venter J.C.. (1991) Complementary DNA sequencing: expressed sequence tags and human genome project. Science, 252(5013), 1651-6.
25. Jongeneel C.V.. (2000) Searching the expressed sequence tag (EST) databases: panning for genes. Briefings in Bioinformation, 1, 76-92.
26. Dong Q., Kroiss L., Oakley F.D., Wang B.B., Brendel V.. (2005) Comparative EST analyses in plant systems. Methods Enzymol., 395, 400–8.
27. Rudd S.. (2003) Expressed sequence tags: alternative or complement to whole genome sequences? Trends Plant Sci., 8, 321–9.
28. Nagaraj S.H., Gasser R.B., Ranganathan S.. (2007) A hitchhiker''s guide to expressed sequence tag (EST) analysis. Briefings in Bioinformation, 8(1), 6-21.
29. Boguski M.S., Lowe T.M., Tolstoshev C.M.. (1993) dbEST--database for "expressed sequence tags". Nature Genetics, 4(4), 332-3.
30. http://www.ncbi.nlm.nih.gov/dbEST/
31. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J.. (1990) Basic Local Alignment Search Tool. Journal of Molecular Biology, 215, 403-410.
32. Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J.. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res., 25, 3389-3402.
33. Kim Y.J., Boyd A., Athey B.D., Patel J.M.. (2005) miBLAST: Scalable Evaluation of a Batch of Nucleotide Sequence Queries with BLAST, Nucleic Acids Res., 33(13), 4335-4344.
34. Stajich J.E., Block D., Boulez K., Brenner S.E., Chervitz S.A., Dagdigian C., Fuellen G., Gilbert J.G., Korf I., Lapp H., Lehväslaiho H., Matsalla C., Mungall C.J., Osborne B.I., Pocock M.R., Schattner P., Senger M., Stein L.D., Stupka E., Wilkinson M.D., Birney E.. (2002) The Bioperl Toolkit: Perl Modules for the Life Sciences. Genome Research, 12(10), 1611-8.
35. http://www.ncbi.nlm.nih.gov/VecScreen/contam.html
36. http://www.ncbi.nlm.nih.gov/VecScreen/VecScreen_docs.html
37. http://www.ncbi.nlm.nih.gov/VecScreen/VecScreen.html
38. http://www.ncbi.nlm.nih.gov/VecScreen/UniVec.html
39. http://www.ncbi.nlm.nih.gov/VecScreen/VecScreen_docs.html#Parameters
40. Kent W.J.. (2002) BLAT-the BLAST-like alignment tool. Genome Research, 12(4), 656-64.
41. Zhang Z., Schwartz S., Wagner L., Miller W.. (2000) A greedy algorithm for aligning DNA sequences. J. Comput. Biol., 7(1-2),203-14.
42. Rice P., Longden I., Bleasby A.. (2000) EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 16, (6), 276-277.
43. Turner J.D., Schote A.B., Macedo J.A., Pelascini L.P., Muller C.P.. (2006) Tissue specific glucocorticoid receptor expression, a role for alternative first exon usage? Biochem Pharmacol. 72(11):1529-37
44. Zhang T., Haws P., Wu Q.. (2004) Multiple variable first exons: a mechanism for cell- and tissue-specific gene regulation. Genome Research. 14(1):79-89

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top