(18.232.50.137) 您好!臺灣時間:2021/05/06 18:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡沄容
研究生(外文):Yun-Rong
論文名稱:Prmt1基因表現對斑馬魚胚胎發育之影響
論文名稱(外文):Effects of Prmt1 Expression on the Zebrafish Embryogenesis
指導教授:李娟李娟引用關係
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:生物醫學科學學系碩士班
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:97
相關次數:
  • 被引用被引用:0
  • 點閱點閱:79
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
蛋白質精胺酸甲基化是一種轉譯後修飾作用,參與生物中許多重要的功能,包含訊息傳遞、蛋白質細胞內的位置、轉錄的調節、蛋白質之間的交互作用以及DNA修補等。到目前為止在哺乳類動物中已經發現了至少有11個 Prmt (protein N-arginine methyltransferase)基因。PRMT1在哺乳動物中,為主要的第一型(Type Ι)的甲基轉移酶,大約有85%的酵素活性皆由PRMT1所催化。Prmt1基因剔除的老鼠,在胚胎早期6.5天就會死亡,表示PRMT1對於早期胚胎發育扮演著重要的角色。斑馬魚是廣泛運用於研究胚胎發育很好的模式系統,且斑馬魚和人類PRMT1蛋白序列有非常高的相似度,因此,我們選擇斑馬魚當作我們的模式生物,探討prmt1基因在胚胎發育時期表現及功能性分析。斑馬魚prmt1 mRNA和蛋白質自合子期至幼魚早期皆有表現。全胚體原位雜交實驗結果顯示,在斑馬魚胚胎發育時期,prmt1 基因主要表現在頭部,包括前腦、中腦、後腦、耳泡、眼睛、中後腦交界等,另外體節的部位也有表現。接著利用反股寡核酸(antisense morpholino oligonucleotides, MO)顯微注射抑制prmt1基因的功能,所得zprmt1 morphants的外表型較控制組的胚胎體軸縮短、彎曲,卵黃形狀異常以及有心臟水腫的現象。且外表型的嚴重程度隨著MO劑量增加而增強。Morphants中的PRMT1蛋白,以及專一性精胺酸甲基化的反應都下降。在局部的標示基因分析中,清楚的顯示morphants 有外包、匯集延展、體節和內耳發育上的缺陷。本研究提供瞭解PRMT1在胚胎發育時期的表現及功能性的角色。



Protein arginine methylation is a posttranslational modification involved in various cellular functions, such as signal transduction, protein subcellular localization, transcriptional regulation, protein–protein interactions and DNA repair. By now at least eleven protein N-arginine methyltransferase (Prmt) genes have been identified in the mammalian system. PRMT1 is the predominant type I methyltransferase which responsible for 85% of all protein arginine methylations in vivo. Prmt1 knock-out mice failed to develop beyond E6.5, indicating its critical roles in early embryogenesis. Zebrafish is a model organism that has been widely used in developmental studies. Since the prmt1 genes are highly conserved from fish to human, we use zebrafish (Danio rerio) as the model system to elucidate the expression and function of PRMT1 during embryogenesis. The zebrafish prmt1 (zprmt1) mRNA and protein are expressed from zygote period to the early larva stage. Whole-mount in situ hybridization revealed that prmt1 was expressed in most parts of the brain including forebrain, midbrain, hidbrain, otic vesicle, eye, mid-hindbrain boundary and somites during zebrafish embryogenesis. We further knocked-down zprmt1 by antisense morpholino oligonucleotides (MO). The phenotypes of zprmt1morphants were different from those of controls with different degrees of delayed growth, shortened and curved body axes, abnormal yolk shape and cardiac enema. The severity of the phenotype is dose-dependent. Levels of the PRMT1 protein as well as specific arginine methylation were reduced in the morphants. Detailed marker analyses revealed clearly defections in epiboly, medial-lateral convergence and anterior-posterior extension of the body plan, somite and inner ear development. Our study contributes to the understanding of the specific expression and function of prmt1 in early development.

中文摘要………………………………………………………………..1
英文摘要………………………………………………………………3
序論……………………………………………………………………5
材料和方法……………………………………………………………15
結果………………………………………………………………30
討論……………………………………………………………………43
參考文獻………………………………………………………………51
圖表……………………………………………………………………59
附圖……………………………………………………………………80
附表……………………………………………………………………96



Abramovich, C., Yakobson, B., Chebath, J., and Revel, M. (1997). A protein-arginine methyltransferase binds to the intracytoplasmic domain of the IFNAR1 chain in the type I interferon receptor. EMBO J 16, 260-266.
Adams, M.M., Wang, B., Xia, Z., Morales, J.C., Lu, X., Donehower, L.A., Bochar, D.A., Elledge, S.J., and Carpenter, P.B. (2005). 53BP1 oligomerization is independent of its methylation by PRMT1. Cell Cycle 4, 1854-1861.
An, W., Kim, J., and Roeder, R.G. (2004). Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53. Cell 117, 735-748.
Anniko, M., and Wikstrom, S.O. (1984). Pattern formation of the otic placode and morphogenesis of the otocyst. Am J Otolaryngol 5, 373-381.
Barrero, M.J., and Malik, S. (2006). Two functional modes of a nuclear receptor-recruited arginine methyltransferase in transcriptional activation. Mol Cell 24, 233-243.
Batut, J., Vandel, L., Leclerc, C., Daguzan, C., Moreau, M., and Neant, I. (2005). The Ca2+-induced methyltransferase xPRMT1b controls neural fate in amphibian embryo. Proc Natl Acad Sci U S A 102, 15128-15133.
Bedford, M.T. (2007). Arginine methylation at a glance. J Cell Sci 120, 4243-4246.
Bedford, M.T., and Clarke, S.G. (2009). Protein arginine methylation in mammals: who, what, and why. Mol Cell 33, 1-13.
Bedford, M.T., Frankel, A., Yaffe, M.B., Clarke, S., Leder, P., and Richard, S. (2000). Arginine methylation inhibits the binding of proline-rich ligands to Src homology 3, but not WW, domains. J Biol Chem 275, 16030-16036.
Bever, M.M., and Fekete, D.M. (2002). Atlas of the developing inner ear in zebrafish. Dev Dyn 223, 536-543.
Boisvert, F.M., Dery, U., Masson, J.Y., and Richard, S. (2005). Arginine methylation of MRE11 by PRMT1 is required for DNA damage checkpoint control. Genes Dev 19, 671-676.
Bouchard, M., Pfeffer, P., and Busslinger, M. (2000). Functional equivalence of the transcription factors Pax2 and Pax5 in mouse development. Development 127, 3703-3713.
Boulanger, M.C., Miranda, T.B., Clarke, S., Di Fruscio, M., Suter, B., Lasko, P., and Richard, S. (2004). Characterization of the Drosophila protein arginine methyltransferases DART1 and DART4. Biochem J 379, 283-289.
Brand, M., Heisenberg, C.P., Jiang, Y.J., Beuchle, D., Lun, K., Furutani-Seiki, M., Granato, M., Haffter, P., Hammerschmidt, M., Kane, D.A., et al. (1996). Mutations in zebrafish genes affecting the formation of the boundary between midbrain and hindbrain. Development 123, 179-190.
Branscombe, T.L., Frankel, A., Lee, J.H., Cook, J.R., Yang, Z., Pestka, S., and Clarke, S. (2001). PRMT5 (Janus kinase-binding protein 1) catalyzes the formation of symmetric dimethylarginine residues in proteins. J Biol Chem 276, 32971-32976.
Chen, D., Ma, H., Hong, H., Koh, S.S., Huang, S.M., Schurter, B.T., Aswad, D.W., and Stallcup, M.R. (1999). Regulation of transcription by a protein methyltransferase. Science 284, 2174-2177.
Chen, S.L., Loffler, K.A., Chen, D., Stallcup, M.R., and Muscat, G.E. (2002). The coactivator-associated arginine methyltransferase is necessary for muscle differentiation: CARM1 coactivates myocyte enhancer factor-2. J Biol Chem 277, 4324-4333.
Cook, J.R., Lee, J.H., Yang, Z.H., Krause, C.D., Herth, N., Hoffmann, R., and Pestka, S. (2006). FBXO11/PRMT9, a new protein arginine methyltransferase, symmetrically dimethylates arginine residues. Biochem Biophys Res Commun 342, 472-481.
Corey, D.R., and Abrams, J.M. (2001). Morpholino antisense oligonucleotides: tools for investigating vertebrate development. Genome Biol 2, REVIEWS1015.
Cote, J., Boisvert, F.M., Boulanger, M.C., Bedford, M.T., and Richard, S. (2003). Sam68 RNA binding protein is an in vivo substrate for protein arginine N-methyltransferase 1. Mol Biol Cell 14, 274-287.
Dacwag, C.S., Bedford, M.T., Sif, S., and Imbalzano, A.N. (2009). Distinct protein arginine methyltransferases promote ATP-dependent chromatin remodeling function at different stages of skeletal muscle differentiation. Mol Cell Biol 29, 1909-1921.
Dacwag, C.S., Ohkawa, Y., Pal, S., Sif, S., and Imbalzano, A.N. (2007). The protein arginine methyltransferase Prmt5 is required for myogenesis because it facilitates ATP-dependent chromatin remodeling. Mol Cell Biol 27, 384-394.
Dong, C.W., Zhang, Y.B., Lu, A.J., Zhu, R., Zhang, F.T., Zhang, Q.Y., and Gui, J.F. (2007). Molecular characterisation and inductive expression of a fish protein arginine methyltransferase 1 gene in response to virus infection. Fish Shellfish Immunol 22, 380-393.
Eisen, J.S., and Smith, J.C. (2008). Controlling morpholino experiments: don''t stop making antisense. Development 135, 1735-1743.
Favor, J., Sandulache, R., Neuhauser-Klaus, A., Pretsch, W., Chatterjee, B., Senft, E., Wurst, W., Blanquet, V., Grimes, P., Sporle, R., et al. (1996). The mouse Pax2(1Neu) mutation is identical to a human PAX2 mutation in a family with renal-coloboma syndrome and results in developmental defects of the brain, ear, eye, and kidney. Proc Natl Acad Sci U S A 93, 13870-13875.
Frankel, A., Yadav, N., Lee, J., Branscombe, T.L., Clarke, S., and Bedford, M.T. (2002). The novel human protein arginine N-methyltransferase PRMT6 is a nuclear enzyme displaying unique substrate specificity. J Biol Chem 277, 3537-3543.
Goulet, I., Gauvin, G., Boisvenue, S., and Cote, J. (2007). Alternative splicing yields protein arginine methyltransferase 1 isoforms with distinct activity, substrate specificity, and subcellular localization. J Biol Chem 282, 33009-33021.
Graham, A., and Smith, A. (2001). Patterning the pharyngeal arches. Bioessays 23, 54-61.
Gurvich, N., Berman, M.G., Wittner, B.S., Gentleman, R.C., Klein, P.S., and Green, J.B. (2005). Association of valproate-induced teratogenesis with histone deacetylase inhibition in vivo. Faseb J 19, 1166-1168.
Halpern, M.E., Ho, R.K., Walker, C., and Kimmel, C.B. (1993). Induction of muscle pioneers and floor plate is distinguished by the zebrafish no tail mutation. Cell 75, 99-111.
Heasman, J. (2002). Morpholino oligos: making sense of antisense? Dev Biol 243, 209-214.
Henckel, A., Toth, S., and Arnaud, P. (2007). Early mouse embryo development: could epigenetics influence cell fate determination? Bioessays 29, 520-524.
Hopwood, N.D., Pluck, A., and Gurdon, J.B. (1989). MyoD expression in the forming somites is an early response to mesoderm induction in Xenopus embryos. EMBO J 8, 3409-3417.
Hou, S.X., Zheng, Z., Chen, X., and Perrimon, N. (2002). The Jak/STAT pathway in model organisms: emerging roles in cell movement. Dev Cell 3, 765-778.
Huang, S., Litt, M., and Felsenfeld, G. (2005). Methylation of histone H4 by arginine methyltransferase PRMT1 is essential in vivo for many subsequent histone modifications. Genes Dev 19, 1885-1893.
Hung, C.M., and Li, C. (2004). Identification and phylogenetic analyses of the protein arginine methyltransferase gene family in fish and ascidians. Gene 340, 179-187.
Huot, M.E., Brown, C.M., Lamarche-Vane, N., and Richard, S. (2009). An adaptor role for cytoplasmic Sam68 in modulating Src activity during cell polarization. Mol Cell Biol 29, 1933-1943.
Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., and Schilling, T.F. (1995). Stages of embryonic development of the zebrafish. Dev Dyn 203, 253-310.
Kleinschmidt, M.A., Streubel, G., Samans, B., Krause, M., and Bauer, U.M. (2008). The protein arginine methyltransferases CARM1 and PRMT1 cooperate in gene regulation. Nucleic Acids Res 36, 3202-3213.
Krause, C.D., Yang, Z.H., Kim, Y.S., Lee, J.H., Cook, J.R., and Pestka, S. (2007). Protein arginine methyltransferases: evolution and assessment of their pharmacological and therapeutic potential. Pharmacol Ther 113, 50-87.
Kwak, Y.T., Guo, J., Prajapati, S., Park, K.J., Surabhi, R.M., Miller, B., Gehrig, P., and Gaynor, R.B. (2003). Methylation of SPT5 regulates its interaction with RNA polymerase II and transcriptional elongation properties. Mol Cell 11, 1055-1066.
Lake, A.N., and Bedford, M.T. (2007). Protein methylation and DNA repair. Mutat Res 618, 91-101.
Le Romancer, M., Treilleux, I., Leconte, N., Robin-Lespinasse, Y., Sentis, S., Bouchekioua-Bouzaghou, K., Goddard, S., Gobert-Gosse, S., and Corbo, L. (2008). Regulation of estrogen rapid signaling through arginine methylation by PRMT1. Mol Cell 31, 212-221.
Lee, D.Y., Teyssier, C., Strahl, B.D., and Stallcup, M.R. (2005a). Role of protein methylation in regulation of transcription. Endocr Rev 26, 147-170.
Lee, J., Sayegh, J., Daniel, J., Clarke, S., and Bedford, M.T. (2005b). PRMT8, a new membrane-bound tissue-specific member of the protein arginine methyltransferase family. J Biol Chem 280, 32890-32896.
Lin, W.J., Gary, J.D., Yang, M.C., Clarke, S., and Herschman, H.R. (1996). The mammalian immediate-early TIS21 protein and the leukemia-associated BTG1 protein interact with a protein-arginine N-methyltransferase. J Biol Chem 271, 15034-15044.
Link, V., Shevchenko, A., and Heisenberg, C.P. (2006). Proteomics of early zebrafish embryos. BMC developmental biology 6, 1.
Lun, K., and Brand, M. (1998). A series of no isthmus (noi) alleles of the zebrafish pax2.1 gene reveals multiple signaling events in development of the midbrain-hindbrain boundary. Development 125, 3049-3062.
Majumdar, A., Lun, K., Brand, M., and Drummond, I.A. (2000). Zebrafish no isthmus reveals a role for pax2.1 in tubule differentiation and patterning events in the pronephric primordia. Development 127, 2089-2098.
Matsuda, H., Paul, B.D., Choi, C.Y., Hasebe, T., and Shi, Y.B. (2009). Novel functions of protein arginine methyltransferase 1 in thyroid hormone receptor-mediated transcription and in the regulation of metamorphic rate in Xenopus laevis. Mol Cell Biol 29, 745-757.
Miranda, T.B., Miranda, M., Frankel, A., and Clarke, S. (2004). PRMT7 is a member of the protein arginine methyltransferase family with a distinct substrate specificity. J Biol Chem 279, 22902-22907.
Mostaqul Huq, M.D., Gupta, P., Tsai, N.P., White, R., Parker, M.G., and Wei, L.N. (2006). Suppression of receptor interacting protein 140 repressive activity by protein arginine methylation. EMBO J 25, 5094-5104.
Mowen, K.A., Tang, J., Zhu, W., Schurter, B.T., Shuai, K., Herschman, H.R., and David, M. (2001). Arginine methylation of STAT1 modulates IFNalpha/beta-induced transcription. Cell 104, 731-741.
Najbauer, J., Johnson, B.A., Young, A.L., and Aswad, D.W. (1993). Peptides with sequences similar to glycine, arginine-rich motifs in proteins interacting with RNA are efficiently recognized by methyltransferase(s) modifying arginine in numerous proteins. J Biol Chem 268, 10501-10509.
Nichols, R.C., Wang, X.W., Tang, J., Hamilton, B.J., High, F.A., Herschman, H.R., and Rigby, W.F. (2000). The RGG domain in hnRNP A2 affects subcellular localization. Exp Cell Res 256, 522-532.
Niewmierzycka, A., and Clarke, S. (1999). S-Adenosylmethionine-dependent methylation in Saccharomyces cerevisiae. Identification of a novel protein arginine methyltransferase. J Biol Chem 274, 814-824.
Olson, E.N., and Klein, W.H. (1994). bHLH factors in muscle development: dead lines and commitments, what to leave in and what to leave out. Genes Dev 8, 1-8.
Pahlich, S., Zakaryan, R.P., and Gehring, H. (2006). Protein arginine methylation: Cellular functions and methods of analysis. Biochim Biophys Acta 1764, 1890-1903.
Passos, D.O., Bressan, G.C., Nery, F.C., and Kobarg, J. (2006). Ki-1/57 interacts with PRMT1 and is a substrate for arginine methylation. FEBS J 273, 3946-3961.
Pawlak, M.R., Scherer, C.A., Chen, J., Roshon, M.J., and Ruley, H.E. (2000). Arginine N-methyltransferase 1 is required for early postimplantation mouse development, but cells deficient in the enzyme are viable. Mol Cell Biol 20, 4859-4869.
Rai, K., Nadauld, L.D., Chidester, S., Manos, E.J., James, S.R., Karpf, A.R., Cairns, B.R., and Jones, D.A. (2006). Zebra fish Dnmt1 and Suv39h1 regulate organ-specific terminal differentiation during development. Mol Cell Biol 26, 7077-7085.
Rezai-Zadeh, N., Zhang, X., Namour, F., Fejer, G., Wen, Y.D., Yao, Y.L., Gyory, I., Wright, K., and Seto, E. (2003). Targeted recruitment of a histone H4-specific methyltransferase by the transcription factor YY1. Genes Dev 17, 1019-1029.
Rho, J., Choi, S., Seong, Y.R., Choi, J., and Im, D.S. (2001). The arginine-1493 residue in QRRGRTGR1493G motif IV of the hepatitis C virus NS3 helicase domain is essential for NS3 protein methylation by the protein arginine methyltransferase 1. J Virol 75, 8031-8044.
Robu, M.E., Larson, J.D., Nasevicius, A., Beiraghi, S., Brenner, C., Farber, S.A., and Ekker, S.C. (2007). p53 activation by knockdown technologies. PLoS genetics 3, e78.
Saldivar, J.R., Sechrist, J.W., Krull, C.E., Ruffins, S., and Bronner-Fraser, M. (1997). Dorsal hindbrain ablation results in rerouting of neural crest migration and changes in gene expression, but normal hyoid development. Development 124, 2729-2739.
Schier, A.F., and Talbot, W.S. (2005). Molecular genetics of axis formation in zebrafish. Annu Rev Genet 39, 561-613.
Schulte-Merker, S., Hammerschmidt, M., Beuchle, D., Cho, K.W., De Robertis, E.M., and Nusslein-Volhard, C. (1994). Expression of zebrafish goosecoid and no tail gene products in wild-type and mutant no tail embryos. Development 120, 843-852.
Scorilas, A., Black, M.H., Talieri, M., and Diamandis, E.P. (2000). Genomic organization, physical mapping, and expression analysis of the human protein arginine methyltransferase 1 gene. Biochem Biophys Res Commun 278, 349-359.
Schier, A.F., and Talbot, W.S. (2005). Molecular genetics of axis formation in zebrafish. Annu Rev Genet 39, 561-613.
Sham, M.H., Vesque, C., Nonchev, S., Marshall, H., Frain, M., Gupta, R.D., Whiting, J., Wilkinson, D., Charnay, P., and Krumlauf, R. (1993). The zinc finger gene Krox20 regulates HoxB2 (Hox2.8) during hindbrain segmentation. Cell 72, 183-196.
Shen, E.C., Henry, M.F., Weiss, V.H., Valentini, S.R., Silver, P.A., and Lee, M.S. (1998). Arginine methylation facilitates the nuclear export of hnRNP proteins. Genes Dev 12, 679-691.
Shen, S., and Casaccia-Bonnefil, P. (2008). Post-translational modifications of nucleosomal histones in oligodendrocyte lineage cells in development and disease. J Mol Neurosci 35, 13-22.
Shilatifard, A. (2006). Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem 75, 243-269.
Smith, B.C., and Denu, J.M. (2009). Chemical mechanisms of histone lysine and arginine modifications. Biochim Biophys Acta 1789, 45-57.
Smith, J.J., Rucknagel, K.P., Schierhorn, A., Tang, J., Nemeth, A., Linder, M., Herschman, H.R., and Wahle, E. (1999). Unusual sites of arginine methylation in Poly(A)-binding protein II and in vitro methylation by protein arginine methyltransferases PRMT1 and PRMT3. J Biol Chem 274, 13229-13234.
Stachel, S.E., Grunwald, D.J., and Myers, P.Z. (1993). Lithium perturbation and goosecoid expression identify a dorsal specification pathway in the pregastrula zebrafish. Development 117, 1261-1274.
Swiatek, P.J., and Gridley, T. (1993). Perinatal lethality and defects in hindbrain development in mice homozygous for a targeted mutation of the zinc finger gene Krox20. Genes Dev 7, 2071-2084.
Tang, J., Gary, J.D., Clarke, S., and Herschman, H.R. (1998). PRMT 3, a type I protein arginine N-methyltransferase that differs from PRMT1 in its oligomerization, subcellular localization, substrate specificity, and regulation. J Biol Chem 273, 16935-16945.
Tang, J., Kao, P.N., and Herschman, H.R. (2000). Protein-arginine methyltransferase I, the predominant protein-arginine methyltransferase in cells, interacts with and is regulated by interleukin enhancer-binding factor 3. J Biol Chem 275, 19866-19876.
Terzic, J., Muller, C., Gajovic, S., and Saraga-Babic, M. (1998). Expression of PAX2 gene during human development. Int J Dev Biol 42, 701-707.
Thisse, C., and Thisse, B. (2008). High-resolution in situ hybridization to whole-mount zebrafish embryos. Nature protocols 3, 59-69.
Torres, M., Gomez-Pardo, E., Dressler, G.R., and Gruss, P. (1995). Pax-2 controls multiple steps of urogenital development. Development 121, 4057-4065.
Torres, M., Gomez-Pardo, E., and Gruss, P. (1996). Pax2 contributes to inner ear patterning and optic nerve trajectory. Development 122, 3381-3391.
Trojer, P., Dangl, M., Bauer, I., Graessle, S., Loidl, P., and Brosch, G. (2004). Histone methyltransferases in Aspergillus nidulans: evidence for a novel enzyme with a unique substrate specificity. Biochemistry 43, 10834-10843.
Wagner, S., Weber, S., Kleinschmidt, M.A., Nagata, K., and Bauer, U.M. (2006). SET-mediated promoter hypoacetylation is a prerequisite for coactivation of the estrogen-responsive pS2 gene by PRMT1. J Biol Chem 281, 27242-27250.
Wang, H., Huang, Z.Q., Xia, L., Feng, Q., Erdjument-Bromage, H., Strahl, B.D., Briggs, S.D., Allis, C.D., Wong, J., Tempst, P., et al. (2001). Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor. Science 293, 853-857.
Weber, S., Maass, F., Schuemann, M., Krause, E., Suske, G., and Bauer, U.M. (2009). PRMT1-mediated arginine methylation of PIAS1 regulates STAT1 signaling. Genes Dev 23, 118-132.
Whitfield, T.T., Riley, B.B., Chiang, M.Y., and Phillips, B. (2002). Development of the zebrafish inner ear. Dev Dyn 223, 427-458.
Wolf, S.S. (2009). The protein arginine methyltransferase family: an update about function, new perspectives and the physiological role in humans. Cell Mol Life Sci.
Woo, K., and Fraser, S.E. (1998). Specification of the hindbrain fate in the zebrafish. Dev Biol 197, 283-296.
Xie, Y., Ke, S., Ouyang, N., He, J., Xie, W., Bedford, M.T., and Tian, Y. (2009). Epigenetic regulation of transcriptional activity of pregnane X receptor by protein arginine methyltransferase 1. J Biol Chem 284, 9199-9205.
Yamagata, K., Daitoku, H., Takahashi, Y., Namiki, K., Hisatake, K., Kako, K., Mukai, H., Kasuya, Y., and Fukamizu, A. (2008). Arginine methylation of FOXO transcription factors inhibits their phosphorylation by Akt. Mol Cell 32, 221-231.
Yamashita, S., Miyagi, C., Carmany-Rampey, A., Shimizu, T., Fujii, R., Schier, A.F., and Hirano, T. (2002). Stat3 Controls Cell Movements during Zebrafish Gastrulation. Dev Cell 2, 363-375.
Yu, Z., Chen, T., Hebert, J., Li, E., and Richard, S. (2009). A mouse PRMT1 null allele defines an essential role for arginine methylation in genome maintenance and cell proliferation. Mol Cell Biol 29, 2982-2996.
Zhu, S., Liu, L., Korzh, V., Gong, Z., and Low, B.C. (2006). RhoA acts downstream of Wnt5 and Wnt11 to regulate convergence and extension movements by involving effectors Rho kinase and Diaphanous: use of zebrafish as an in vivo model for GTPase signaling. Cell Signal 18, 359-372.
Zobel-Thropp, P., Gary, J.D., and Clarke, S. (1998). delta-N-methylarginine is a novel posttranslational modification of arginine residues in yeast proteins. J Biol Chem 273, 29283-29286.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔