跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/07 18:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳嘉偉
研究生(外文):Chia-Wei
論文名稱:奈米級氧化鋅觸媒之合成及材料特性與其降解三苯甲烷類染料的效率和機構探討
論文名稱(外文):Synthesis and properties of nano-catalysts and its efficiencies, mechanisms of catalystic degradation with triphenylmethane dyes
指導教授:林昭田
指導教授(外文):Jau-Tien Lin
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:應用化學系碩士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:152
相關次數:
  • 被引用被引用:2
  • 點閱點閱:218
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氧化鋅、二氧化鈦等光觸媒對於染料或有機等汙染物所產生光催化降解作用已有應用成功的例子。本研究亦選擇高級氧化作用之光觸媒催化程序來降解難以分解染料,並探討其降解情形及影響催化的因子。研究內容有三個主題,第一個主題在於為更進一步的了解氧化鋅與二氧化鈦對於Victroia Blue R (簡稱VBR)染料在可見光下,其光催化效率有何不同,其中探討染料初始濃度、催化劑添加的量和溶液初始的pH值等影響因子,降解過程中的機構亦提出可能的路徑。其中在光降解過程中共有六十三個中間產物被分離發現,並以HPLC-ESI-MS成功鑑定之。
第二個主題為二氧化鈦改質後的光催化活性測試實驗,同樣以VBR作為測試對象的染料,過去利用修飾二氧化鈦的表面來達到增進光觸媒活性的研究已行之有年,本主題成功改質二氧化鈦並提升其對VBR染料的光催化降解活性,除了效率的探討外,亦針對其反應機構作確認是否與過往不同。
另外過去鋅板成功作為氧化鋅薄膜之固定床基板的例子,是以水熱法方式處理,最後一個主題的研究中意外發現鋅板表面在尚未前處理時,在水溶液中即自發性的形成氧化鋅奈米晶體,搜尋文獻後發現過去已經有這樣的報導(C. Yan et al., 2008;L. S. Panchakarla et al., 2007),於是在第三部份接著我們先試以鋅板降解染料,並選擇Ethyl Violet (簡稱EV)染料測試降解的活性,結果鋅板不但可以降解染料,還可以在不照光的情形下使EV染料降解,得到的這樣結果促使我們再選擇不同基材的鋅粉做一系列的效率比較,各種影響因子與效率和機構之探討。我們想到廢電池中的陽極亦為鋅板材料,於是嘗試以其替代純鋅板來降解染料,並成功得到結果,此實驗結果是首次被發現的。同時發現相較於市售鋅板與鋅粉,皆可不透過光的輔助催化降解染料,並且得到更快的降解速率,接著以我們做一系列的降解效率與針對其特別的非光化學程序作出機構探討。


The TiO2(ZnO)-mediated photocatalysis process was used to successfully degrade dye pollutants. To better understand the degradation of mechanistic between different catalysts. Three part of topics was discussed in this study.
The fiest part, the ZnO-mediated photocatalysis process was used to successfully degrade Victoria Blue R (VBR) under visible light irradiation. The effects of the influencing factors, including initial concentration of dye, catalyst dosage, and initial pH, were studied. 63 intermediates of VBR of the photodegradation were separated, identified, and characterized by HPLC-PDA-ESI-MS techniques. The results indicated that the N-de-alkylation and oxidative degradation of VBR dye took place with N-hydroxyalkylated intermediates generated during the process.
Second, the purposes of this topic were to study the effects of two modified photocatalysts, Nafion-coated TiO2 and fluorinated TiO2, and photocatalytic degradation of Victoria Blue R in aqueous solution. Degradation effect of Victoria Blue R was accelerated by the modified photocatalysts. Bulk and surface characterizations of the resulting powders were carried out. Attachment of the anions to the TiO2 surface using the nafion-coated-TiO2 possibly results in increased adsorption of the cationic dye, and the degradation rate is larger for the cationic dye. It was found that Victoria Blue R on the two illuminated TiO2 surfaces underwent very different changes. Several probable photodegradation pathways were also proposed and discussed.
In third part, through a simple one-step synthesized by the reaction of Zn foil and nano-Zn powder in aqueous solution at room temperature with or without UV or visible light irradiation, we have fabricated nanostructured crystalline ZnO with simultaneous photocatalytic properties. Here, we report results on the synthesis, characterization, and application and implication of nano-ZnO. The Zn foils and nano-Zn powders materials were highly efficient in the decomposition of ethyl violet (EV) dye. The removal of dyestuffs from industrial wastewaters by Zn-foils of dry cell has not been studied before. The Zn-foils of dry cell have been treated by same synthesis method as compared to the samples above. In order to obtain a better handing on the mechanistic details of this Zn oxidation degradation of the EV dye with UV or visible light irradiation, the intermediates decomposed during the process were separated, identified and characterized by HPLC-PDA-ESI-MS technique in this topic. Possible mechanism of electron transfer was proposed. For decolorization of dyes, the possible photodegradation pathways were proposed and discussed on the basis of the evidence of intermediates formation.


摘要…......………………......................................................................…......………...I
英文…......………………......................................................................…......………III
目錄…......………………......................................................................…......…….…V
表目錄…......………………......................................................................…......….…X
圖目錄…......………………......................................................................…..........…XI
第一章 序論…......………………......................................................................…......1
1.1研究動機…......………………......................................................................…...1
1.2 研究目的…......………………......................................................................…..4
第二章 文獻回顧…......……………….......................................................................5
2.1 染料…......………………......................................................................…..........5
2.1.1 染料的分類…......………………..................................................................6
2.1.1.1 按來源分類………........….......................................................................6
2.1.1.2 按應用性能分類………….......................................................................8
2.1.1.3 按化學結構分類………….....................................................................10
2.2 染料廢水處理技術…………............................................................................12
2.3 高級氧化程序(AOPs) ………….......................................................................14
2.4 以TiO2光觸媒做例子簡介半導體的光催化反應機制…........………...........15
2.5 光觸媒降解有機污染物…………....................................................................18
2.6 TiO2光觸媒的改質………….............................................................................19
2.7 鋅基材的氧化鋅合成反應…………................................................................21
第三章 實驗材料與方法…………............................................................................23
3.1 實驗材料…………............................................................................................24
3.1.1 染料…………..............................................................................................24
3.1.2 觸媒材料…………......................................................................................26
3.1.3 其他藥品…………......................................................................................27
3.2 催化劑改質(實驗二) ….……….......................................................................28
3.3 照光程序…………............................................................................................30
3.4 儀器與分析方法…………................................................................................32
3.4.1 分離與鑑定…………..................................................................................32
3.4.2 表面特性分析…………..............................................................................32
第四章 結果與討論…………....................................................................................34
4.1 實驗一:在可見光下經由奈米級氧化鋅光催化降解VBR之降解效率與路徑研究…………........................................................................34
4.1.1 氧化鋅濃度對於光催化降解效率的影響..................................................34
4.1.2 VBR染料溶液中pH值的影響....................................................................35
4.1.3 VBR染料濃度與光催化速率的關係.........................................................36
4.1.4 光降解過程中VBR染料溶液的UV-Vis光譜變化....................................37
4.1.5 從TOC看總有機碳的去除.........................................................................38
4.1.6 中間產物的分離與鑑定..............................................................................38
4.1.7 VBR的降解機制.........................................................................................40
4.2 實驗二:透過表面氟化與Nafion的披覆兩種二氧化鈦的改質方法來提升相對的光降解效率與降解路徑研究....................................................43
4.2.1 改質後光觸媒的特性分析..........................................................................43
4.2.2 改質後二氧化鈦的光催化效能測試..........................................................44
4.2.3 pH值的影響.................................................................................................46
4.2.4 改質過程中材料添加量的影響..................................................................47
4.2.5 從TOC看總有機碳的去除.........................................................................48
4.2.6 光降解過程中VBR染料溶液的UV-Vis光譜變化....................................49
4.2.7 中間產物的分離與鑑定..............................................................................50
4.3 實驗三:利用鋅金屬基材一步合成奈米級氧化鋅反應並催化降解乙基紫之降解效率與路徑研究........................................................................51
4.3.1 Aldrich鋅板.................................................................................................51
4.3.1.1 利用Aldrich鋅板合成的奈米氧化鋅觸媒材料特性分析…………....51
4.3.1.2 不同光源對Aldrich鋅板降解EV染料的效率影響…………….…....55
4.3.1.3 Aldrich鋅板降解不同濃度EV染料的效率影響………………...…....55
4.3.2 乾電池鋅板..................................................................................................56
4.3.2.1 利用乾電池鋅板合成奈米氧化鋅觸媒的材料特性分析…………….56
4.3.2.2 不同廠牌乾電池鋅板在不同光源下降解EV染料的效率影響……...57
4.3.2.3 新乾電池鋅板在不同pH下降解EV和AB1染料的效率影響…...….58
4.3.2.4 使用不同鋅板基材降解EV染料和新乾電池鋅板降解不同染料的效率影響.....................................................................................................58
4.3.2.5 乾電池鋅板的重複利用效率測試…………...….…………………….59
4.3.2.6 乾電池鋅板對不同濃度的EV染料降解效率影響……………..…….59
4.3.3 鋅粉..............................................................................................................60
4.3.3.1 利用微米和奈米級鋅粉合成奈米氧化鋅觸媒的材料特性分析..…...60
4.3.3.2 不同濃度奈米級鋅粉對10 ppm EV染料的降解效率影響…..……..61
4.3.3.3 不同濃度奈米級鋅粉對50 ppm EV染料的降解效率影響……...…..61
4.3.3.4 奈米級鋅粉對不同濃度EV染料的降解效率影響…………...………61
4.3.4 EV染料受鋅材料觸媒的降解機制..............................................………..62
4.3.5 降解過程中EV染料溶液的UV-Vis光譜變化...........................................63
4.3.6 中間產物的分離與鑑定..............................................................................63
第五章 結論與建議....................................................................................................64
5.1結論.....................................................................................................................64
5.1.1 實驗一:在可見光下經由奈米級氧化鋅光催化降解VBR之降解效率與路徑研究...............................................................................64
5.1.2 實驗二:透過表面氟化與Nafion的披覆兩種二氧化鈦的改質方法來提升相對的光降解效率與降解路徑研究...........................................65
5.1.3 實驗三:利用鋅金屬基材一步合成奈米級氧化鋅反應並催化降解乙基紫之降解效率與路徑研究………………………………………...66
5.2建議.....................................................................................................................67
參考文獻......................................................................................................................68
圖表..............................................................................................................................75
發表文獻....................................................................................................................146


【1】A. B. Prevot., C. Baiocchi., M. C. Brussino., E. Pramauro., P. Savarino., V. Augugliaro., G. Marci., L. Palmisano. (2001). Photocatalytic deradation of Acid Blue 80 in aqueous solution containg TiO2 suspension. Enviro. Sci. Technol., 35, 971-975.
【2】A. Fujishima., T. N. Rao., D. A. Tryk. (2000). Titanium dioxide photocatalysis. J. Photochem. Photobiol. C Photochem. Rev., 1, 1-21.
【3】A. L. Linsebigler., G. Lu., J. T. Yates., Jr. (1995). Photocatalysis on TiO2 surfaces: principles, mechanisms and selected results. Chem. Rev. 95, 735-758.
【4】A. Mittal., V. Gajbe., J. M. (2008). Removal and recovery of hazardous triphenylmethane dye, Methyl Violet through adsorption over granulated waste materials. J. Hazard. Mater., 150, 364-375.
【5】A. Reife. (1993). Dyes environmental chemistry. In: Kirk. Editor. Othmer encyclopedia of chemical technology, 4th Ed. New York: John Wiley & Sons, Vol.8, P753-784.
【6】B. P. Cho., T. Yang., L. R. Blankenship., J. D. Moody., M. Churchwell., F. A. Beland., S. J. Culp. (2003) Synthesis and characterization of N-demethylated metabolites of Malachite Green and Leucomalachite Green. Chem. Res. Toxicol. 16, 285-294.
【7】C. C. Chen., (2007). Degradation pathways of ethyl violet by photocatalytic reaction with ZnO dispersions. J. Molecul. Catal. A Chem., 264, 82–92.
【8】C. C. Chen., C. S. Lu. (2007). Mechanistic studies of the photocatalytic degradation of Methyl Green: an investigation of products of the decomposition processes. Environ. Sci. Technol., 41, 4389-4396.
【9】C. C. Chen., C. S. Lu. (2007). Photocatalytic degradation of basic violet 4: degradation efficiency, product distribution and mechanisms. J. Phys. Chem. C, 111, 13922-13932.
【10】C. C. Chen., C. S. Lu., F. D. Mai., C. S. Weng. (2006). Photooxidative N-de-ethylation of anionic triarylmethane dye (Sulfan Blue) in titanium dioxide dispersions under UV irradiation. J. Haza. Mater., B137, 1600–1607.
【11】C. C. Chen., C. S. Lua., Y. C. Chung. (2006). Photocatalytic degradation of Ethyl Violet in aqueous solution mediated by TiO2 suspensions. J. Photochem. Photobiol. A Chem., 181, 120–125.
【12】C. C. Chen., H. J. Fan., C. Y. J., J. L. Jan., H. D. L., C. S. Lu. (2006). Photooxidative N-de-methylation of Crystal Violet dye in aqueous nano-TiO2 dispersions under visible light irradiation. J. Photochem. Photobiol. A Chem., 184, 147–154.
【13】C. C. Chen., H. J. Fan., J. L. Jan. (2008). Degradation pathways and efficiencies of Acid Blue 1 by photocatalytic reaction with ZnO nanopowder. J. Phys. Chem. C, 112, 11962–11972.
【14】C. H. Wirguin. (1996). Recent advances in perfluorinated ionomer membranes: structure, properties and applications. J. Memb. Sci., 120, 1-33.
【15】C. Jia., X. Zhang., Y. Chen., Y. Su., Q. Zhou., M. Xin., Y. Lv., W. Kong. (2008). Liquid phase epitaxial growth and optical property of flower-like ZnO nanosheets on Zinc foil. Appl. Surf. Sci., 254, 2331-2335.
【16】C. Kormann., D. W. Bahnemann., M. R. Hoffmann. (1991). Photolysis of Chloroform and other organic molecules in aqueous TiO2 suspensions. Environ. Sci. Technol., 25, 494-500.
【17】C. Minero., G. Mariella., V. Maurino., D. Vione., E. Pelizzett. (2000). Photocatalytic transformation of organic compounds in the presence of inorganic Ions. 2. competitive reactions of phenol and alcohols on a titanium ioxide-fluoride system. Langmuir, 16, 8964-8972.
【18】C. Namasivayam., D. J. S. E. Arasi. (1997). Removal of congo red from wastewater by adsorption onto red mud. Chemosphere, 34, 401-417.
【19】C. S Lu., F. D. Mai., W. H. Chung., C. W. Wu., W. Y. Lin., C. C. Chen, (2009). Degradation efficiencies and mechanisms of the ZnO-mediated photocatalytic degradation of Basic Blue 11 under visible light irradiation. J. Molecul. Catal. A Chem., xxx, xxx–xxx.
【20】C. Yan., D. Xue. (2008). Solution growth of nano- to microscopic ZnO on Zn. J. Cryst. Grow., 310, 1836-1840.
【21】D. F. Duxbury. (1993). The photochemistry and photophysics of triphenylmethane dyes in solid and liquid media. Chem. Rev., 93, 381-433.
【22】D. Lia., H. Hanedaa., S. Hishitaa., N. Ohashia., N. K. Labhsetwar. (2005). Fluorine-doped TiO2 powders prepared by spray pyrolysis and their improved photocatalytic activity for decomposition of gas-phase acetaldehyde. J. Fluor. Chem., 126, 69-77.
【23】D. R. Doerge., H. C. Chang., R. L. Divi. (1998). Churchwell M. I., Mechanism for inhibition of thyroid peroxidase by Leucomalachite Green. Chem. Res. Toxicol., 11, 1098-1104.
【24】F. D. Mai., C. C. Chen., J. L. Chen., S. C. Liu. (2008). Photodegradation of methyl green using visible irradiation in ZnO suspensions: Determination of the reaction pathway and identification of intermediates by a high-performance liquid chromatography-photodiode array-electrospray ionization-mass spectrometry method. J. Chroma. A, 1189, 355-365.
【25】F. D. Mai., C. S. Lu., C. W. Wu., C.H. Huang., J. Y. Chen., C. C. Chen. (2008). Mechanisms of photocatalytic degradation of Victoria Blue R using nano-TiO2. Sep. Puri. Technol., 62, 423-436.
【26】G. Huang., Y. Zhu. (2007). Enhanced photocatalytic activity of ZnWO4 catalyst via fluorine doping. J. Phys. Chem. C, 111, 11952-11958.
【27】G. M. Walker., L. R.Weatherley. (1997). Adsorption of acid dyes on to granular activated carbon in fixed beds. Water Res., 31, 2093-2101.
【28】H. An., Y. Qian., X. Gu., W. Z. T. (1996). Biological treatment of dye wastewaters using an anaerobic-oxic system. Chemosphere, 33, 2533-2542.
【29】H. Fu., S. Zhang., T. Xu., Y. Zhu., J. Chen. (2008). Photocatalytic degradation of RhB by fluorinated Bi2WO6 and distributions of the intermediate products. Environ. Sci. Technol., 42, 2085–2091.
【30】H. J. Hsing., P. C. Chiang., E. E. Chang., M. Y. Chen. (2007). The decolorization and mineralization of Acid Orange 6 azo dye in aqueous solution by advanced oxidation processes: A comparative study. J. Hazar. Mater., 141, 8-16.
【31】H. Park., W. Choi. (2004). Effects of TiO2 surface fluorination on photocatalytic reactions and photoelectrochemical behaviors. J. Phys. Chem. B, 108, 4086-4093.
【32】H. Park., W. Choi. (2005). Photocatalytic reactivities of Nafion-Coated TiO2 for the degradation of charged organic compounds under UV or visible light. J. Phys. Chem. B, 109, 11667-11674.
【33】H. Park., W. Choi. (2006). Visible-light-sensitized production of hydrogen using perfluorosulfonate polymer-coated TiO2 nanoparticles: an alternative approach to sensitizer anchoring. Langmuir, 22, 2906-2911.
【34】H. Yang., Y. Song., L. Li., J. Ma., D. Chen., S. Mai., H. Zhao. (2008). Large-scale growth of highly oriented ZnO nanorod arrays in the Zn-NH3 •H2O hydrothermal system. J. Cryst. Grow., 8, 1039-1043.
【35】J. C. Yu., J. Yu., W. Ho., Z. Jiang., L. Zhang. (2002). Effects of F- doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem. Mater., 14, 3808-3816.
【36】J. Fernández., J. Kiwi., C. Lizama., J. Freer., J. Baeza., H.D. Mansilla. (2002). Factorial experimental design of Orange II photocatalytic discolouration. J. Photochem. Photobiol. A Chem., 151, 213–219.
【37】J. Houk., M. Dezube., J. M. Rovinski. (1991). Evaluation of dyes submitted under the toxic substances control act new chemicals programme. In The Design and Systhesis of Organic, Dyes and Pigments, A. T. Peters., H. S. Freeman., Eds.; Elsevier Applied Science, Barking, UK, p 144.
【38】J. Lee., W. Choi. (2005). Photocatalytic degradation of N-nitrosodimethylamine: mechanism, product distribution and TiO2 surface modification. Environ. Sci. Technol., 39, 6800-6807.
【39】J. M. Wang., C. P. Huang., H. E. Allen., O. K. Cha., D. W. Kim. (1998). Adsorption characteristics of dye onto sludge particulates. J. Colloid Interface Sci. 208, 518-528.
【40】J. Tang., H. Quan., J. Ye. (2007). Photocatalytic properties and photoinduced hydrophilicity of surface-fluorinated TiO2. Chem. Mater., 19, 116-122.
【41】J. Wang., P. Liu., S. Wang., W. Han., X. Wang., X. Fu. (2007). Nanocrystalline zinc oxide in perfluorinated ionomer membranes: Preparation, characterization and photocatalytic properties. J. Molec. Catal. A Chem. 273, 21-25.
【42】K. Chiang., R. Amal., T. Tran. (2003). Photocatalytic oxidation of cyanide: kinetic and mechanistic studies. J. Molecul. Catal. A Chem., 193, 285-297.
【43】K. McLaren, (1983). The colour science of dyes and pigments. Adam Hilger Bristol.
【44】K. Venkataraman., The Chemistry of Synthetic Dyes, Vol.Ⅰ~Ⅶ, Academic Press, New York, 1952~1978.
【45】L. M. Games., R. A. Hites. (1977). Composition, treatment efficiency, and environmental significance of dye manufacturing plant effluents. Anal. Chem., 49, 1433-1440.
【46】L. S. Panchakarla., M. A. Shah., A. Govindaraj., C. N. R. Rao. (2007). A simple method to prepare ZnO and Al(OH)3 nanorods by the reaction of the metals with liquid water. J. Solid State Chem., 180, 3106-3110.
【47】M. Bellardita., M. Addamo., A. D. Paola., L. Palmisano. (2007). Photocatalytic behaviour of metal-loaded TiO2 aqueous dispersions and films. Chem. Phys., 339, 94-103.
【48】M. Kitano., T. Okabe. M. Shiojiri. (1996). Morphology and growth mechanism of ZnO particles electro-crystallized on Zn in aqueous solution. J. Cryst. Grow., 166, 1116-1120.
【49】M. R. Hoffmann., S. T. Martin., W. Choi., D. W. Bahnemann. (1995). Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69-96.
【50】M. S. Baptista., G. L. Indig. (1998) Effect of BSA binding on photophysical and photochemical properties of Triarylmethane dyes. J. Phys. Chem. B, 102, 4678-4688.
【51】M. S. Vogra., K. Tanaka. (2001). Enhanced photocatalytic activity of Nafion-coated TiO2. Environ. Sci. Technol., 35, 411-415.
【52】M. S. Vohra., S. Kim., W. Choi. (2003). Effects of surface fluorination of TiO2 on the photocatalytic degradation of tetramethylammonium. J. Photochem. Photobiol. A Chem., 160, 55-60.
【53】N. A. Littlefield., B. N. Blackwell., C. C. Hewitt., D. W. Gaylor. (1985) Chronic toxicity and carcinogenicity studies of gentian violet in mice. Funda. Appl. Toxicol., 5, 902-912.
【54】N. Barka., S. Qourzal., A. Assabbane., A. Nounah., Y. A. Ichou. (2008). Factors influencing the photocatalytic degradation of Rhodamine B by TiO2-coated non-woven paper. J. Photochem. Photobiol. A Chem., 195, 346-351.
【55】N. Daneshvar., D. Salari., A. R. Khataee. (2004). Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. J. Photochem. Photobiol. A Chem., 162, 317-322.
【56】N. Serpone. (1995). Brief introductory remarks on heterogeous photocatalysis. Solar Energy Mater. Solar Cells, 38, 369-379.
【57】N. Watanabe., S. Horikoshi., H. Hidaka., N. Serpone. (2005). On the recalcitrant nature of the triazinic ring species, cyanuric acid, to degradation in Fenton solutions and in UV-illuminated TiO2 (naked) and fluorinated TiO2 aqueous dispersions. J. Photochem. Photobiol. A Chem., 174, 229-238.
【58】P. Arora., Z. Zhang. (2004). Battery Separators. Chem. Rev., 104, 4419-4462.
【59】P. Bouras., P. Lianos. (2005). Photodegradation of dyes in aqueous solutions catalyzed by highly efficient nanocrystalline titania films. J. Appl. Electrochem., 35, 831-836.
【60】P. Choi., N. H. J., R. Datta. (2005). Thermodynamics and Proton Transport in Nafion. J. Electrochem. Soc., 152, E84-E89.
【61】P. F. Gordon., P. Gregory. (1983). Organic Chemistry in Colour. Springer-Verlag, Berlin.
【62】P. Hyunwoong., C. Wonyong. (2004). Effects of TiO2 surface fluorination on photocatalytic reactions and photoelectrochemical behaviors. J. Phys. Chem. B, 108, 4086-4093.
【63】P. R. Gogate., A. B. Pandit. (2004). A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Advan. Environ. Res., 8, 501-551.
【64】Q. Wang., C. Chen., D. Zhao., W. Ma., J. Zhao. (2008). Change of adsorption modes of dyes on fluorinated TiO2 and its effect on photocatalytic degradation of dyes under visible irradiation. Langmuir, 24, 7338-7345.
【65】S. Abbruzzetti., M. Carcell., P. Pelagatti., D. Rogolino., C. Viappiani. (2001). Photoinduced alkaline pH-jump on the nanosecond time scale. Chem. Physics Lett., 344, 387-394.
【66】S. F. Kang., C. H. Liao., H. P. Hung. (2000). Decolorization of textile wastewater by photo-Fenton oxidation technology. Chemosphere, 41, 1287-1297.
【67】S. Kar., A. Dev., S. Chaudhuri. (2006). Simple solvothermal route to synthesize ZnO nanosheets, nanonails, and well-aligned nanorod arrays. J. Phys. Chem. B, 110, 17848-17538.
【68】S. N. Frank., A. J. Bard. (1977). Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder. J. Americ. Chem. Soci., 99, 303-304.
【69】S. Sakthivel., B. Neppolian., M. V. Shankar., B. Arabindoo., M. Palanichamy., V. Murugesan. (2003). Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Solar Energy Mater. Solar Cells, 77, 65-82.
【70】T. E. Agustina., H. M. Ang., V. K. Pareek. (2008). Treatment of winery wastewater using a photocatalytic/photolytic reactor. Chem. Engine. Journ., 135, 151-156.
【71】T.Gessner., U. Mayer., B. aktiengesellschaft. (1996). Triarylmethane and Diarylmethane Dyes. Industrial Chemistry, A27, 179-227.
【72】United States International Trade Commission, Synthetic Organic Chemicals, U.S. Production and Sales, 1988; SITC Publication No.2219, U.S. Government Printing Office: Washington, D.C.; September, 1989.
【73】W. Azmi., R. K. Sani., U. C. Banerjee. (1998). Biodegradation of triphenylmethane dyes. Enzyme Microb. Technol., 22, 185-191.
【74】W. Y. Wang., Y. Ku. (2007). Effect of solution pH on the adsorption and photocatalytic reaction behaviors of dyes using TiO2 and Nafion-coated TiO2. Collo. Surf. A Physicochem. Eng. Aspects, 302, 261-268.
【75】X. Wen., Y. Fang., Q. Pang., C. Yang., J. Wang., W. Ge., K. S. Wong., S. Yang. (2005). ZnO nanobelt srrays grown directly from and on Zinc substrates: synthesis, characterization and applications. J. Phys. Chem. B, 109, 15303-15308.
【76】Y. C. Oh., W. S. Jenks. (2004). Photocatalytic degradation of a cyanuric acid, a recalcitrant species. J. Photochem. Photobiol. A Chem., 162, 323-328.
【77】Y. Xu., K. Lv., Z. Xiong., W. Leng., W. Du., D. Liu., X. Xue. (2007). Rate enhancement and rate inhibition of phenol degradation over irradiated anatase and rutile TiO2 on the addition of NaF: new insight into the mechanism. J. Phys. Chem. C, 111, 19024-19032.
【78】Z. Yang., C. Luan., W. Zhang., A. Liu., S. Tang. (2008). Fabrication and optical properties of ZnO nanostructured thin films via mechanical oscillation and hydrothermal method. Thin Solid Films, 516, 5974-5980.
【79】劉守靜,「研究奈米光觸媒之合成及處理染料之效率及降解機構」,碩士論文,中山醫學大學應用化學系暨碩士班,2008。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top