(3.236.222.124) 您好!臺灣時間:2021/05/08 06:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:洪筱婷
研究生(外文):Hsiao-Ting
論文名稱:探討香瓜茄對於老化與長期飲食果糖誘發代謝症候群之研究
論文名稱(外文):Study of Solanum Muricatum regarding the aged and the Long-term Dietary Fructose-induced Metabolic Syndrome
指導教授:張菡馨
指導教授(外文):Han-Hsin Chang
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:營養學研究所
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:121
相關次數:
  • 被引用被引用:0
  • 點閱點閱:200
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
果糖消耗量增加所伴隨的後續效應日益嚴重,由於代謝症候群的高危險性和致死率是目前己開發國家主要的健康危機,然而著眼於過去文獻有關果糖誘發代謝症候群中相關危險因子之研究,發現大多是著重於短時間介入高劑量果糖且只針對單一症狀探討。因此,本研究將分為三大部分(1) 觀察小鼠不同週齡之生理代謝變化;(2) 20%果糖水對於動態生理變化之衝擊效應;(3) 以20%果糖飲水建立代謝症候群之動物模式,共介入21週,同時整合性探討生理代謝、氧化壓力變化、致病機轉及探討香瓜茄是否能有效降低代謝症候群之危險因子的評估分析,並觀察組織形態和功能上的病理改變,有利於縱深研究其對代謝器官之衝擊效應。結果顯示伴隨小鼠週齡增加則使其體重增加、血脂上升及抗氧化酵素活性被削弱之情形(p<0.01)。飲食中添加果糖導致生理代謝方面出現異常,同時在體重、血壓、血糖、總膽固醇皆有顯著上升(p<0.01),且在腎功能方面,肌酸酐值與尿酸值亦顯著增加(p<0.01);而氧化壓力方面則造成肝及腎臟其脂質過氧化程度顯著增加(p<0.01),以及穀胱甘肽(glutathione;GSH)與觸酶(catalase;CAT) 的抗氧化酵素活性顯著下降(p<0.01);在組織病理學方面顯示肝、腎組織有明顯脂肪堆積情形,且鮑氏囊有顯著紅血球浸潤情形。而經過香瓜茄治療後,其體重有顯著下降(p<0.01),同時血中尿素氮和肌酸酐的含量也降低(p<0.01),除此之外,也提升體內觸酶的活性(p<0.01),但在血脂、肝功能及脂質過氧化方面卻未能達到改善,甚至有出現惡化的趨勢發生。根據本研究發現老化過程中,可能會引起一連串的代謝器官功能衰退效應產生,更進一步了解的是老化將會受到相關因子刺激而加速其進展之過程。另外,飲食中攝入果糖可能會導致肥胖、血壓上升及血脂代謝異常的現象發生,同時合併組織脂質過氧化程度增加,伴隨著體內抗氧化酵素活性出現削弱的趨勢,在肝臟、腎臟皆有觀察到脂肪堆積的情形。因此,我們認為飲食中攝入果糖所帶來的衝擊效應將更值得被關注,一方面是希望未來能訂定飲食中果糖的安全使用劑量;另一方面則是建立改善代謝症候群之有效健康食品,將提倡響應未來養生保健的趨勢發展。

Increasing consumption of fructose is getting more serious nowadays. Due to the high risk of metabolic syndrome (MS) and lethal rate is the major crisis in developed countries at present. Focus on previous studies associated with the risk factors for MS induced by fructose purposed to use high dose in short-term and to discuss only single symptom, moreover, they didn’t pay attention on overall condition. Therefore, this study will divide three parts. (1) To observe physiological metabolic changing in different stages compared with the weeks for mice, (2) to observe the detrimental effect of 20% fructose dietary drinking water on physiological metabolic changing in different stages compared with the weeks for mice, (3) Set up animal model of MS by 20% dietary drinking fructose water, intervened for completely 21 weeks, at the same time, we discuss physiological metabolism, variation of oxidative stress, analysis S. muricatum whether effectively reduce risk factors or not, furthermore, observe the morphological, histological and functional changing in pathology to reveal underlying mechanism, which benefited the deeply research in the metabolic organs. The results showed that weight, blood lipid increased and anti-oxidative enzyme activity decreased, mice age increasing (p&lt;0.01). Dietary fructose consumption increasing lead to abnormally physiological metabolism, all of the weight, blood pressure, fasting blood sugar and total cholesterol have notable rising (p&lt;0.01). However, damage to liver and kidneys of lipid peroxidation level significant increased (p&lt;0.01) and the anti-oxidative activity of glutathione (GSH) and catalase (CAT) was significantly decreased (p&lt;0.01). Fat obviously accumulated in liver and kidneys and the blood red cells infiltrated in Bowman’s capsule in histopathology. After treatment by S. muricatum, body weight obviously decreased (p&lt;0.01), besides, the blood urea nitrogen (BUN) and creatinine (CRE) in blood significantly decreased (p&lt;0.01), in addition to, the activity of CAT promoted (p&lt;0.01). However, blood lipid, liver function and lipid peroxidation level do not significant improve. According to this study, we found that fructose could lead to obesity, unusual of blood lipid metabolism and raise blood pressure. Increasing lipid peroxidation level in tissues accompanied with the weaken activity of anti-oxidation activity, lipid accumulating in liver and kidneys is obviously. As a result, we think that detrimental effect of fructose intake should be noticed. Setting up safe dose in dietary fructose is the most important thing in the future. In another part, establishing the effective healthy food to improve MS and promoting to keep in good health and care in the future.

目錄
口試委員會審定書
論文電子檔案上網授權書
誌謝--------------------------------------------------------------------------------------------i
目錄--------------------------------------------------------------------------------------------ii
圖次--------------------------------------------------------------------------------------------vii
表次--------------------------------------------------------------------------------------------xi
摘要
  中文摘要--------------------------------------------------------------------------------xii
  英文摘要--------------------------------------------------------------------------------xiv
第一章 緒論----------------------------------------------------------------------------------1
第二章 文獻探討
第一節 老化
(一) 老化定義與老化理論---------------------------------------------------------4
(二) 老化與氧化損傷之因果關係------------------------------------------------7
第二節 代謝症候群
(一) 代謝症候群定義及診斷標準-------------------------------------------------9
(二) 代謝症候群之危險因子與疾病之相關性---------------------------------11
第三節 果糖
一、 飲食中果糖所扮演之角色----------------------------------------------------13
二、 縱觀飲食中果糖與代謝症候群之相關性----------------------------------15
三、 果糖對肝臟代謝所產生之衝擊效應----------------------------------------17
四、 果糖對腎臟之慢性損傷-------------------------------------------------------20
五、 探討果糖造成抗氧化酵素防禦系統失衡之影響-------------------------22
第四節 香瓜茄
(一) 背景-------------------------------------------------------------------------------24
(二) 香瓜茄之成份介紹-------------------------------------------------------------25
第五節 抗氧化酵素防禦系統
(一) 概論-------------------------------------------------------------------------------26
(二) 脂質過氧化 (lipid peroxidation) --------------------------------------------27
(三) 榖胱甘肽 (GSH) 氧化還原系統--------------------------------------------28
(四) 觸酶 (CAT) --------------------------------------------------------------------30
第三章 研究目的----------------------------------------------------------------------------31
第四章 材料與方法
第一節 實驗藥品------------------------------------------------------------------33
第二節 儀器設備------------------------------------------------------------------35
第三節 研究方法
(一) 實驗動物來源-------------------------------------------------------------------37
(二) 實驗動物飼養及分組配方---------------------------------------------------37
(三) 果糖水製備與香瓜茄濃縮乾燥製備---------------------------------------40
(四) 小鼠基礎生理代謝變化紀錄與臟器比重---------------------------------41
(五) 血清生化檢驗分析------------------------------------------------------------42
(六) 血清胰島素含量測定---------------------------------------------------------43
(七) 脂質過氧化程度分析---------------------------------------------------------44
(八) 總榖胱甘肽含量測定---------------------------------------------------------46
(九) 榖胱甘肽還原酶活性測定---------------------------------------------------48
(十) 榖胱甘肽過氧化酶活性測定------------------------------------------------49
(十一) 觸酶活性測定----------------------------------------------------------------51
(十二) 蛋白質測定-------------------------------------------------------------------52
(十三) 組織病理形態分析----------------------------------------------------------53
(十四) 組織冷凍切片分析----------------------------------------------------------54
(十五) 統計分析----------------------------------------------------------------------55
第五章 結果
一、 針對小鼠不同週齡其生理代謝器官功能衰退變化
(一) 犧牲點之體重變化與肝、腎臟器之比重--------------------56
(二) 血清生化檢驗分析------------------------------------------------59
(三) 抗氧化酵素活性分析---------------------------------------------61
(四) 組織病理切片染色分析------------------------------------------63
二、 觀察經過20%果糖水介入期間小鼠之動態生理壓力變化
(一) 20%果糖水介入期間之攝食代謝紀錄--------------------------65
(二) 20%果糖水介入期間之血壓、體重及肝、腎臟器比重-----67
(三) 20%果糖水介入期間之血清生化檢驗與抗氧化酵素活性分析
-------------------------------------------------------------------------70
(四) 20%果糖水介入期間之肝、腎、胰臟病理及冷凍切片染色分析-------------------------------------------------------------------------76
三、 小鼠模式之果糖誘發代謝症候群以香瓜茄作為嘗試性治療
(一) 連續餵食20%果糖水21週其攝食、飲水、糞便與尿液量之變
化----------------------------------------------------------------------80
(二) 連續餵食20%果糖水21週其平均熱量攝取量、體重及血壓之變化-------------------------------------------------------------------81
(三) 連續餵食20%果糖水21週後並經由20%香瓜茄治療6週其平均果糖攝取所占平均熱量百分比、犧牲點體重及臟器比重之變化-------------------------------------------------------------------83
(四) 連續餵食20%果糖水21週後並經由20%香瓜茄治療6週其血清化檢驗-------------------------------------------------------------86
(五) 連續餵食20%果糖水21週後並經由20%香瓜茄治療6週其脂質過氧化程度分析與抗氧化酵素防禦系統活性分析-------88
(六) 連續餵食20%果糖水21週後並經由20%香瓜茄治療6週其肝、腎、胰臟之組織病理切片染色比較----------------------90
四、 討論 ------------------------------------------------------------------------------------92
(一) 探討老化機制及相關因子之衝擊效應
(二) 探討果糖基礎生理代謝之衝擊與肝臟、腎臟調節系統之紊亂
(三) 整合性探討香瓜茄調節生理代謝與改善氧化損傷之功效
五、 結論-------------------------------------------------------------------------------------102
六、 參考文獻-------------------------------------------------------------------------------103
(附錄一) 國際功能性食品研討會摘要-------------------------------------------------119
(附錄二) 第三十八次台灣食品科技年會摘要----------------------------------------120




1.陳人豪, 嚴., 老化的生物學基礎與生理改變. 當代醫學, 2007. 34(8).
2.Bray, G.A., S.J. Nielsen, and B.M. Popkin, Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am J Clin Nutr, 2004. 79(4): p. 537-43.
3.Bray, G.A., The epidemic of obesity and changes in food intake: the Fluoride Hypothesis. Physiol Behav, 2004. 82(1): p. 115-21.
4.Bray, G.A. and B.M. Popkin, Dietary fat intake does affect obesity! Am J Clin Nutr, 1998. 68(6): p. 1157-73.
5.Elliott, S.S., et al., Fructose, weight gain, and the insulin resistance syndrome. Am J Clin Nutr, 2002. 76(5): p. 911-22.
6.Johnson, R.J., et al., Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. Am J Clin Nutr, 2007. 86(4): p. 899-906.
7.Faure, P., et al., Vitamin E improves the free radical defense system potential and insulin sensitivity of rats fed high fructose diets. J Nutr, 1997. 127(1): p. 103-7.
8.Catena, C., et al., Cellular mechanisms of insulin resistance in rats with fructose-induced hypertension. Am J Hypertens, 2003. 16(11 Pt 1): p. 973-8.
9.Catena, C., et al., Insulin receptors and renal sodium handling in hypertensive fructose-fed rats. Kidney Int, 2003. 64(6): p. 2163-71.
10.Basciano, H., L. Federico, and K. Adeli, Fructose, insulin resistance, and metabolic dyslipidemia. Nutr Metab (Lond), 2005. 2(1): p. 5.
11.Astrup, A. and N. Finer, Redefining type 2 diabetes: ''diabesity'' or ''obesity dependent diabetes mellitus''? Obes Rev, 2000. 1(2): p. 57-9.
12.Gross, L.S., et al., Increased consumption of refined carbohydrates and the epidemic of type 2 diabetes in the United States: an ecologic assessment. Am J Clin Nutr, 2004. 79(5): p. 774-9.
13.Cave, M., et al., Nonalcoholic fatty liver disease: predisposing factors and the role of nutrition. J Nutr Biochem, 2007. 18(3): p. 184-95.
14.Federico, L.M., et al., Intestinal insulin resistance and aberrant production of apolipoprotein B48 lipoproteins in an animal model of insulin resistance and metabolic dyslipidemia: evidence for activation of protein tyrosine phosphatase-1B, extracellular signal-related kinase, and sterol regulatory element-binding protein-1c in the fructose-fed hamster intestine. Diabetes, 2006. 55(5): p. 1316-26.
15.Deng, J.Y., et al., Impairment of cardiac insulin signaling and myocardial contractile performance in high-cholesterol/fructose-fed rats. Am J Physiol Heart Circ Physiol, 2007. 293(2): p. H978-87.
16.Jurgens, H., et al., Consuming fructose-sweetened beverages increases body adiposity in mice. Obes Res, 2005. 13(7): p. 1146-56.
17.Nakagawa, T., et al., Hypothesis: fructose-induced hyperuricemia as a causal mechanism for the epidemic of the metabolic syndrome. Nat Clin Pract Nephrol, 2005. 1(2): p. 80-6.
18.Nakagawa, T., et al., A causal role for uric acid in fructose-induced metabolic syndrome. Am J Physiol Renal Physiol, 2006. 290(3): p. F625-31.
19.Heinig, M. and R.J. Johnson, Role of uric acid in hypertension, renal disease, and metabolic syndrome. Cleve Clin J Med, 2006. 73(12): p. 1059-64.
20.Cirillo, P., et al., Uric acid, the metabolic syndrome, and renal disease. J Am Soc Nephrol, 2006. 17(12 Suppl 3): p. S165-8.
21.Hikita, M., et al., Relationship between hyperuricemia and body fat distribution. Intern Med, 2007. 46(17): p. 1353-8.
22.Syamala, S., J. Li, and A. Shankar, Association between serum uric acid and prehypertension among US adults. J Hypertens, 2007. 25(8): p. 1583-9.
23.Misra, A. and L. Khurana, Obesity and the metabolic syndrome in developing countries. J Clin Endocrinol Metab, 2008. 93(11 Suppl 1): p. S9-30.
24.李世代, 老年醫學的發展與貢獻─從老化研究談起. 台灣醫學會醫學繼續教育雜誌, 1995. 5(3): p. 287-93.
25.MacWilliam, L., Aging Theories,. Comparative Guide to Nutritional Supplements, Chapter One, 206, 3rd edition, U.S.A., 2003.
26.李宗派, 老化理論與老人保健 (一). 身心障礙研究, 2004. 2(1).
27.Harman, D., Aging: a theory based on free radical and radiation chemistry. J Gerontol, 1956. 11(3): p. 298-300.
28.Ames, B.N., M.K. Shigenaga, and T.M. Hagen, Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci U S A, 1993. 90(17): p. 7915-22.
29.Yu, B.P., Aging and oxidative stress: modulation by dietary restriction. Free Radic Biol Med, 1996. 21(5): p. 651-68.
30.Yu, B.P. and R. Yang, Critical evaluation of the free radical theory of aging. A proposal for the oxidative stress hypothesis. Ann N Y Acad Sci, 1996. 786: p. 1-11.
31.Halliwell, B., Oxidative stress, nutrition and health. Experimental strategies for optimization of nutritional antioxidant intake in humans. Free Radic Res, 1996. 25(1): p. 57-74.
32.Ames, B.N. and M.K. Shigenaga, Oxidants are a major contributor to aging. Ann N Y Acad Sci, 1992. 663: p. 85-96.
33.Fukagawa, N.K., Aging: is oxidative stress a marker or is it causal? Proc Soc Exp Biol Med, 1999. 222(3): p. 293-8.
34.Lenaz, G., Role of mitochondria in oxidative stress and ageing. Biochim Biophys Acta, 1998. 1366(1-2): p. 53-67.
35.Richter, C., J.W. Park, and B.N. Ames, Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci U S A, 1988. 85(17): p. 6465-7.
36.Shigenaga, M.K., T.M. Hagen, and B.N. Ames, Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci U S A, 1994. 91(23): p. 10771-8.
37.Richter, C., Do mitochondrial DNA fragments promote cancer and aging? FEBS Lett, 1988. 241(1-2): p. 1-5.
38.Linnane, A.W., et al., Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. Lancet, 1989. 1(8639): p. 642-5.
39.Harman, D., Free radical theory of aging: Consequences of mitochondrial aging. Ageing Res Rev, 1983. 6: p. 86-94.
40.Wallace, D.C., Mitochondrial genetics: a paradigm for aging and degenerative diseases? Science, 1992. 256(5057): p. 628-32.
41.Wei, Y.H., Oxidative stress and mitochondrial DNA mutations in human aging. Proc Soc Exp Biol Med, 1998. 217(1): p. 53-63.
42.Lee, C.M., R. Weindruch, and J.M. Aiken, Age-associated alterations of the mitochondrial genome. Free Radic Biol Med, 1997. 22(7): p. 1259-69.
43.Asano, K., et al., Changes in the rat liver mitochondrial DNA upon aging. Mech Ageing Dev, 1991. 60(3): p. 275-84.
44.Trounce, I., E. Byrne, and S. Marzuki, Decline in skeletal muscle mitochondrial respiratory chain function: possible factor in ageing. Lancet, 1989. 1(8639): p. 637-9.
45.Rooyackers, O.E., et al., Effect of age on in vivo rates of mitochondrial protein synthesis in human skeletal muscle. Proc Natl Acad Sci U S A, 1996. 93(26): p. 15364-9.
46.Boffoli, D., et al., Decline with age of the respiratory chain activity in human skeletal muscle. Biochim Biophys Acta, 1994. 1226(1): p. 73-82.
47.Sagai, M. and T. Ichinose, Age-related changes in lipid peroxidation as measured by ethane, ethylene, butane and pentane in respired gases of rats. Life Sci, 1980. 27(9): p. 731-8.
48.Sawada, M. and J.C. Carlson, Changes in superoxide radical and lipid peroxide formation in the brain, heart and liver during the lifetime of the rat. Mech Ageing Dev, 1987. 41(1-2): p. 125-37.
49.Oliver, C.N., et al., Age-related changes in oxidized proteins. J Biol Chem, 1987. 262(12): p. 5488-91.
50.Ozawa, T., et al., Multiple mitochondrial DNA deletions exist in cardiomyocytes of patients with hypertrophic or dilated cardiomyopathy. Biochem Biophys Res Commun, 1990. 170(2): p. 830-6.
51.Hayakawa, M., et al., Age-associated oxygen damage and mutations in mitochondrial DNA in human hearts. Biochem Biophys Res Commun, 1992. 189(2): p. 979-85.
52.Corral-Debrinski, M., et al., Association of mitochondrial DNA damage with aging and coronary atherosclerotic heart disease. Mutat Res, 1992. 275(3-6): p. 169-80.
53.Mecocci, P., et al., Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain. Ann Neurol, 1993. 34(4): p. 609-16.
54.Sohal, R.S., et al., Effect of age and caloric restriction on DNA oxidative damage in different tissues of C57BL/6 mice. Mech Ageing Dev, 1994. 76(2-3): p. 215-24.
55.Sohal, R.S., et al., Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse. Mech Ageing Dev, 1994. 74(1-2): p. 121-33.
56.Melov, S., et al., Marked increase in the number and variety of mitochondrial DNA rearrangements in aging human skeletal muscle. Nucleic Acids Res, 1995. 23(20): p. 4122-6.
57.Yu, B.P., et al., Mitochondrial aging and lipoperoxidative products. Ann N Y Acad Sci, 1996. 786: p. 44-56.
58.Leeuwenburgh, C., et al., Caloric restriction attenuates dityrosine cross-linking of cardiac and skeletal muscle proteins in aging mice. Arch Biochem Biophys, 1997. 346(1): p. 74-80.
59.Mecocci, P., et al., Age-dependent increases in oxidative damage to DNA, lipids, and proteins in human skeletal muscle. Free Radic Biol Med, 1999. 26(3-4): p. 303-8.
60.Reaven, G.M., H. Chang, and B.B. Hoffman, Additive hypoglycemic effects of drugs that modify free-fatty acid metabolism by different mechanisms in rats with streptozocin-induced diabetes. Diabetes, 1988. 37(1): p. 28-32.
61.Kaplan, N.M., The deadly quartet. Upper-body obesity, glucose intolerance, hypertriglyceridemia, and hypertension. Arch Intern Med, 1989. 149(7): p. 1514-20.
62.吳亮宜, 代謝症候群之介紹與相關保健食品之開發. 食品生技, 2007. 第十一期.
63.Park, Y.W., et al., The metabolic syndrome: prevalence and associated risk factor findings in the US population from the Third National Health and Nutrition Examination Survey, 1988-1994. Arch Intern Med, 2003. 163(4): p. 427-36.
64.Alberti, K.G., P. Zimmet, and J. Shaw, The metabolic syndrome--a new worldwide definition. Lancet, 2005. 366(9491): p. 1059-62.
65.Grundy, S.M., Metabolic syndrome: connecting and reconciling cardiovascular and diabetes worlds. J Am Coll Cardiol, 2006. 47(6): p. 1093-100.
66.Alegria Ezquerra, E., J.M. Castellano Vazquez, and A. Alegria Barrero, [Obesity, metabolic syndrome and diabetes: cardiovascular implications and therapy]. Rev Esp Cardiol, 2008. 61(7): p. 752-64.
67.Nabel, E.G., Cardiovascular disease. N Engl J Med, 2003. 349(1): p. 60-72.
68.Kendall, D.M. and R.M. Bergenstal, Comprehensive management of patients with type 2 diabetes: establishing priorities of care. Am J Manag Care, 2001. 7(10 Suppl): p. S327-43; quiz S344-8.
69.Natali, A. and E. Ferrannini, Hypertension, insulin resistance, and the metabolic syndrome. Endocrinol Metab Clin North Am, 2004. 33(2): p. 417-29.
70.Ferrannini, E., et al., Insulin resistance and hypersecretion in obesity. European Group for the Study of Insulin Resistance (EGIR). J Clin Invest, 1997. 100(5): p. 1166-73.
71.Abbasi, F., et al., Relationship between obesity, insulin resistance, and coronary heart disease risk. J Am Coll Cardiol, 2002. 40(5): p. 937-43.
72.Vague, J., [Treatment of android obesity and its complications.]. Alger Medicale, 1956. 60(2): p. 91-9.
73.Vague, J. and J.C. Garrigues, [Demonstration of steroids in human fatty tissue.]. Folia Endocrinol Mens Incretologia Incretoterapia, 1956. 9(3): p. 299-312.
74.Okosun, I.S., et al., Ethnic differences in the rates of low birth weight attributable to differences in early motherhood: a study from the Third National Health and Nutrition Examination Survey. J Perinatol, 2000. 20(2): p. 105-9.
75.Okosun, I.S., et al., Abdominal adiposity and clustering of multiple metabolic syndrome in White, Black and Hispanic americans. Ann Epidemiol, 2000. 10(5): p. 263-70.
76.Okosun, I.S., et al., Abdominal adiposity values associated with established body mass indexes in white, black and hispanic Americans. A study from the Third National Health and Nutrition Examination Survey. Int J Obes Relat Metab Disord, 2000. 24(10): p. 1279-85.
77.Meigs, J.B., et al., Impact of insulin resistance on risk of type 2 diabetes and cardiovascular disease in people with metabolic syndrome. Diabetes Care, 2007. 30(5): p. 1219-25.
78.Isomaa, B., A major health hazard: the metabolic syndrome. Life Sci, 2003. 73(19): p. 2395-411.
79.Reaven, G.M., Syndrome X: 6 years later. J Intern Med Suppl, 1994. 736: p. 13-22.
80.Chen, J., et al., The metabolic syndrome and chronic kidney disease in U.S. adults. Ann Intern Med, 2004. 140(3): p. 167-74.
81.Hoehner CM, G.K., Rith-Najarian S, Casper ML, McClellan WM, Association of the insulin resistance syndrome and microalbuminuria among nondiabetic native Americans.The Inter-Tribal Heart Project. J Am Soc Nephrol, 2002. 13: p. 1626-1634.
82.Laclaustra, M., D. Corella, and J.M. Ordovas, Metabolic syndrome pathophysiology: the role of adipose tissue. Nutr Metab Cardiovasc Dis, 2007. 17(2): p. 125-39.
83.Hallfrisch, J., Metabolic effects of dietary fructose. FASEB J, 1990. 4(9): p. 2652-60.
84.Rumessen, J.J., Fructose and related food carbohydrates. Sources, intake, absorption, and clinical implications. Scand J Gastroenterol, 1992. 27(10): p. 819-28.
85.Kulz, E., Beitrage zur Pathologic und Therapie des Diabetes Mellitus. N. G. Elwert’s Verlag, Marburg, West Germany, 1874: p. 130-146.
86.Young, L.R. and M. Nestle, The contribution of expanding portion sizes to the US obesity epidemic. Am J Public Health, 2002. 92(2): p. 246-9.
87.Gao, X., et al., Intake of added sugar and sugar-sweetened drink and serum uric acid concentration in US men and women. Hypertension, 2007. 50(2): p. 306-12.
88.Mundt, C.A., et al., Relationships of activity and sugar drink intake on fat mass development in youths. Med Sci Sports Exerc, 2006. 38(7): p. 1245-54.
89.Striegel-Moore, R.H., et al., Correlates of beverage intake in adolescent girls: the National Heart, Lung, and Blood Institute Growth and Health Study. J Pediatr, 2006. 148(2): p. 183-7.
90.West, D.S., et al., Self-reported sugar-sweetened beverage intake among college students. Obesity (Silver Spring), 2006. 14(10): p. 1825-31.
91.Portman, O.W., E.Y. Lawry, and D. Bruno, Effect of dietary carbohydrate on experimentally induced hypercholesteremia and hyperbetalipoproteinemia in rats. Proc Soc Exp Biol Med, 1956. 91(2): p. 321-3.
92.al-Nagdy, S., D.S. Miller, and J. Yudkin, Changes in body composition and metabolism induced by sucrose in the rat. Nutr Metab, 1970. 12(4): p. 193-219.
93.Sleder, J., et al., Hyperinsulinemia in fructose-induced hypertriglyceridemia in the rat. Metabolism, 1980. 29(4): p. 303-5.
94.Reungjui, S., et al., Thiazide diuretics exacerbate fructose-induced metabolic syndrome. J Am Soc Nephrol, 2007. 18(10): p. 2724-31.
95.Miller, A. and K. Adeli, Dietary fructose and the metabolic syndrome. Curr Opin Gastroenterol, 2008. 24(2): p. 204-9.
96.Beck-Nielsen, H., O. Pedersen, and H.O. Lindskov, Impaired cellular insulin binding and insulin sensitivity induced by high-fructose feeding in normal subjects. Am J Clin Nutr, 1980. 33(2): p. 273-8.
97.Bantle, J.P., et al., Effects of dietary fructose on plasma lipids in healthy subjects. Am J Clin Nutr, 2000. 72(5): p. 1128-34.
98.Baret, G., et al., Increased intraabdominal adipose tissue mass in fructose fed rats: correction by metformin. Exp Clin Endocrinol Diabetes, 2002. 110(6): p. 298-303.
99.Hwang, I.S., et al., Fructose-induced insulin resistance and hypertension in rats. Hypertension, 1987. 10(5): p. 512-6.
100.Thorburn, A.W., et al., Fructose-induced in vivo insulin resistance and elevated plasma triglyceride levels in rats. Am J Clin Nutr, 1989. 49(6): p. 1155-63.
101.Hallfrisch, J., et al., Insulin and glucose responses in rats fed sucrose or starch. Am J Clin Nutr, 1979. 32(4): p. 787-93.
102.Tobey, T.A., et al., Mechanism of insulin resistance in fructose-fed rats. Metabolism, 1982. 31(6): p. 608-12.
103.Kasim-Karakas, S.E., et al., Effects of dietary carbohydrates on glucose and lipid metabolism in golden Syrian hamsters. J Lab Clin Med, 1996. 128(2): p. 208-13.
104.Katakam, P.V., et al., Endothelial dysfunction precedes hypertension in diet-induced insulin resistance. Am J Physiol, 1998. 275(3 Pt 2): p. R788-92.
105.Ackerman, Z., et al., Fructose-induced fatty liver disease: hepatic effects of blood pressure and plasma triglyceride reduction. Hypertension, 2005. 45(5): p. 1012-8.
106.Choi, H.K. and E.S. Ford, Prevalence of the metabolic syndrome in individuals with hyperuricemia. Am J Med, 2007. 120(5): p. 442-7.
107.Shankar, A., et al., Association between serum uric acid level and peripheral arterial disease. Atherosclerosis, 2008. 196(2): p. 749-55.
108.Mellen, P.B., et al., Serum uric acid predicts incident hypertension in a biethnic cohort: the atherosclerosis risk in communities study. Hypertension, 2006. 48(6): p. 1037-42.
109.Lin, J.D., et al., Serum uric acid and leptin levels in metabolic syndrome: a quandary over the role of uric acid. Metabolism, 2007. 56(6): p. 751-6.
110.Johnson, R.J., et al., Hypothesis: could excessive fructose intake and uric acid cause type 2 diabetes? Endocr Rev, 2009. 30(1): p. 96-116.
111.Mayes, P.A., Intermediary metabolism of fructose. Am J Clin Nutr, 1993. 58(5 Suppl): p. 754S-765S.
112.Shiota, M., et al., Small amounts of fructose markedly augment net hepatic glucose uptake in the conscious dog. Diabetes, 1998. 47(6): p. 867-73.
113.Wei, Y., M.E. Bizeau, and M.J. Pagliassotti, An acute increase in fructose concentration increases hepatic glucose-6-phosphatase mRNA via mechanisms that are independent of glycogen synthase kinase-3 in rats. J Nutr, 2004. 134(3): p. 545-51.
114.Heinz, F., [Enzymes of fructose metabolism. Changes in enzyme activity in rat liver and kidney with respect to fructose and glucose-rich nutrition]. Hoppe Seylers Z Physiol Chem, 1968. 349(4): p. 399-404.
115.Heinz, F., W. Lamprecht, and J. Kirsch, Enzymes of fructose metabolism in human liver. J Clin Invest, 1968. 47(8): p. 1826-32.
116.Nilsson, L.H. and E. Hultman, Liver and muscle glycogen in man after glucose and fructose infusion. Scand J Clin Lab Invest, 1974. 33(1): p. 5-10.
117.Kelley, G.L., G. Allan, and S. Azhar, High dietary fructose induces a hepatic stress response resulting in cholesterol and lipid dysregulation. Endocrinology, 2004. 145(2): p. 548-55.
118.Yokozawa, T., H.J. Kim, and E.J. Cho, Gravinol ameliorates high-fructose-induced metabolic syndrome through regulation of lipid metabolism and proinflammatory state in rats. J Agric Food Chem, 2008. 56(13): p. 5026-32.
119.Kizhner, T. and M.J. Werman, Long-term fructose intake: biochemical consequences and altered renal histology in the male rat. Metabolism, 2002. 51(12): p. 1538-47.
120.Zhang, L., et al., Proteomic analysis of fructose-induced fatty liver in hamsters. Metabolism, 2008. 57(8): p. 1115-24.
121.Katz, J. and J.D. McGarry, The glucose paradox. Is glucose a substrate for liver metabolism? J Clin Invest, 1984. 74(6): p. 1901-9.
122.Katz, J., S. Golden, and P.A. Wals, Glycogen synthesis by rat hepatocytes. Biochem J, 1979. 180(2): p. 389-402.
123.Bontemps, F., L. Hue, and H.G. Hers, Phosphorylation of glucose in isolated rat hepatocytes. Sigmoidal kinetics explained by the activity of glucokinase alone. Biochem J, 1978. 174(2): p. 603-11.
124.Niewoehner, C.B., et al., Metabolic effects of oral fructose in the liver of fasted rats. Am J Physiol, 1984. 247(4 Pt 1): p. E505-12.
125.Niewoehner, C.B. and F.Q. Nuttall, Mechanism of stimulation of liver glycogen synthesis by fructose in alloxan diabetic rats. Diabetes, 1986. 35(6): p. 705-11.
126.Niewoehner, C.B., B.Q. Nuttall, and F.Q. Nuttall, Effects of graded intravenous doses of fructose on glycogen synthase in the liver of fasted rats. Metabolism, 1987. 36(4): p. 338-44.
127.Petersen, K.F., et al., Stimulating effects of low-dose fructose on insulin-stimulated hepatic glycogen synthesis in humans. Diabetes, 2001. 50(6): p. 1263-8.
128.Van Schaftingen, E. and A. Vandercammen, Stimulation of glucose phosphorylation by fructose in isolated rat hepatocytes. Eur J Biochem, 1989. 179(1): p. 173-7.
129.Phillips, J.W. and M.N. Berry, Long-term maintenance of low concentrations of fructose for the study of hepatic glucose phosphorylation. Biochem J, 1999. 337 ( Pt 3): p. 497-501.
130.Jeppesen, J., et al., Relation between insulin resistance, hyperinsulinemia, postheparin plasma lipoprotein lipase activity, and postprandial lipemia. Arterioscler Thromb Vasc Biol, 1995. 15(3): p. 320-4.
131.Rutledge, A.C. and K. Adeli, Fructose and the metabolic syndrome: pathophysiology and molecular mechanisms. Nutr Rev, 2007. 65(6 Pt 2): p. S13-23.
132.Bickerton, A.S., et al., Preferential uptake of dietary Fatty acids in adipose tissue and muscle in the postprandial period. Diabetes, 2007. 56(1): p. 168-76.
133.Taghibiglou, C., et al., Mechanisms of hepatic very low density lipoprotein overproduction in insulin resistance. Evidence for enhanced lipoprotein assembly, reduced intracellular ApoB degradation, and increased microsomal triglyceride transfer protein in a fructose-fed hamster model. J Biol Chem, 2000. 275(12): p. 8416-25.
134.Teff, K.L., et al., Dietary fructose reduces circulating insulin and leptin, attenuates postprandial suppression of ghrelin, and increases triglycerides in women. J Clin Endocrinol Metab, 2004. 89(6): p. 2963-72.
135.Teff, K.L., K.N., Townsend RR, Havel PJ., Fructose-sweetened beverages decrease circulating leptin levels and increase postprandial triglycerides in obese men and women. Diabetes, 2005. 54: p. A385.
136.Bansal, S., et al., Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women. JAMA, 2007. 298(3): p. 309-16.
137.Nordestgaard, B.G., et al., Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA, 2007. 298(3): p. 299-308.
138.Qu, S., et al., PPAR{alpha} mediates the hypolipidemic action of fibrates by antagonizing FoxO1. Am J Physiol Endocrinol Metab, 2007. 292(2): p. E421-34.
139.Angulo, P. and K.D. Lindor, Non-alcoholic fatty liver disease. J Gastroenterol Hepatol, 2002. 17 Suppl: p. S186-90.
140.Ludwig, J., et al., Nonalcoholic steatohepatitis: Mayo Clinic experiences with a hitherto unnamed disease. Mayo Clin Proc, 1980. 55(7): p. 434-8.
141.Elizabeth, Nonalcoholic steatohepatitis: definition and pathology. Semin Liver Dis 2001. 21: p. 3-16.
142.Day, C.P. and O.F. James, Steatohepatitis: a tale of two "hits"? Gastroenterology, 1998. 114(4): p. 842-5.
143.Gersch, M.S., et al., Fructose, but not dextrose, accelerates the progression of chronic kidney disease. Am J Physiol Renal Physiol, 2007. 293(4): p. F1256-61.
144.Poulsom, R., Morphological changes of organs after sucrose or fructose feeding. Prog Biochem Pharmacol, 1986. 21: p. 104-34.
145.Park, S.K. and T.W. Meyer, The effects of fructose feeding on glomerular structure in the rat. J Am Soc Nephrol, 1992. 3(6): p. 1330-2.
146.Choi, J.W., et al., Sugar-sweetened soft drinks, diet soft drinks, and serum uric acid level: the Third National Health and Nutrition Examination Survey. Arthritis Rheum, 2008. 59(1): p. 109-16.
147.Ludwig, D.S., K.E. Peterson, and S.L. Gortmaker, Relation between consumption of sugar-sweetened drinks and childhood obesity: a prospective, observational analysis. Lancet, 2001. 357(9255): p. 505-8.
148.Schulze, M.B., et al., Sugar-sweetened beverages, weight gain, and incidence of type 2 diabetes in young and middle-aged women. JAMA, 2004. 292(8): p. 927-34.
149.Kang, D.H., et al., A role for uric acid in the progression of renal disease. J Am Soc Nephrol, 2002. 13(12): p. 2888-97.
150.Mazzali, M., et al., Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism. Hypertension, 2001. 38(5): p. 1101-6.
151.Sanchez-Lozada, L.G., et al., Fructose-induced metabolic syndrome is associated with glomerular hypertension and renal microvascular damage in rats. Am J Physiol Renal Physiol, 2007. 292(1): p. F423-9.
152.Sanchez-Lozada, L.G., et al., Effects of febuxostat on metabolic and renal alterations in rats with fructose-induced metabolic syndrome. Am J Physiol Renal Physiol, 2008. 294(4): p. F710-8.
153.Feig, D.I., D.H. Kang, and R.J. Johnson, Uric acid and cardiovascular risk. N Engl J Med, 2008. 359(17): p. 1811-21.
154.Furukawa, S., et al., Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest, 2004. 114(12): p. 1752-61.
155.Busserolles, J., et al., Substituting honey for refined carbohydrates protects rats from hypertriglyceridemic and prooxidative effects of fructose. J Nutr, 2002. 132(11): p. 3379-82.
156.Rajasekar, P., P. Viswanathan, and C.V. Anuradha, Renoprotective action of L-carnitine in fructose-induced metabolic syndrome. Diabetes Obes Metab, 2008. 10(2): p. 171-80.
157.黃涵、洪立, 臺灣蔬菜彩色圖說. 台大園藝系編印: p. P.158.
158.劉蓁蓁, 香瓜茄. 園藝科學術語, 1998: p. P.267.
159.蔡金池, 香瓜梨之栽培管理. 農業世界雜誌, 1997. 第166 期: p. p.22-23.
160.Luthria, D.L. and S. Mukhopadhyay, Influence of sample preparation on assay of phenolic acids from eggplant. J Agric Food Chem, 2006. 54(1): p. 41-7.
161.Ren, W. and D.G. Tang, Extract of Solanum muricatum (Pepino/CSG) inhibits tumor growth by inducing apoptosis. Anticancer Res, 1999. 19(1A): p. 403-8.
162.Frankel EN, W.A., Teissedre PL, Principal phenolic phytochemicals in selected California wines and their antioxidant activity in inhibiting oxidation in human low-density lipoproteins. J Agric Food Chem, 1995. 43: p. 890-894.
163.Hertog, M.G., et al., Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet, 1993. 342(8878): p. 1007-11.
164.韓青梅, 整枝與施肥對澎湖地區香瓜茄產量及品質之影響. 1999.
165.互動百科http://www.hudong.com/wiki.
166.Fridovich, I., Superoxide radical and superoxide dismutases. Annu Rev Biochem, 1995. 64: p. 97-112.
167.Dean, R.T., et al., Biochemistry and pathology of radical-mediated protein oxidation. Biochem J, 1997. 324 ( Pt 1): p. 1-18.
168.Yu, B.P., Cellular defenses against damage from reactive oxygen species. Physiol Rev, 1994. 74(1): p. 139-62.
169.Roberts, C.K. and K.K. Sindhu, Oxidative stress and metabolic syndrome. Life Sci, 2009. 84(21-22): p. 705-12.
170.Chopra, S. and H.M. Wallace, Induction of spermidine/spermine N1-acetyltransferase in human cancer cells in response to increased production of reactive oxygen species. Biochem Pharmacol, 1998. 55(7): p. 1119-23.
171.Czene, S., M. Tiback, and M. Harms-Ringdahl, pH-dependent DNA cleavage in permeabilized human fibroblasts. Biochem J, 1997. 323 ( Pt 2): p. 337-41.
172.Halliwell, B., What nitrates tyrosine? Is nitrotyrosine specific as a biomarker of peroxynitrite formation in vivo? FEBS Lett, 1997. 411(2-3): p. 157-60.
173.Beckman, J.S. and W.H. Koppenol, Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol, 1996. 271(5 Pt 1): p. C1424-37.
174.Wiseman, H. and B. Halliwell, Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J, 1996. 313 ( Pt 1): p. 17-29.
175.Keaney, J.F., Jr., et al., Obesity and systemic oxidative stress: clinical correlates of oxidative stress in the Framingham Study. Arterioscler Thromb Vasc Biol, 2003. 23(3): p. 434-9.
176.Halliwell, B. and J.M. Gutteridge, Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol, 1990. 186: p. 1-85.
177.Janero, D.R., Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med, 1990. 9(6): p. 515-40.
178.Yagi, K., Simple procedure for specific assay of lipid hydroperoxides in serum or plasma. Methods Mol Biol, 1998. 108: p. 107-10.
179.Armstrong, D. and R. Browne, The analysis of free radicals, lipid peroxides, antioxidant enzymes and compounds related to oxidative stress as applied to the clinical chemistry laboratory. Adv Exp Med Biol, 1994. 366: p. 43-58.
180.Lefevre, G., et al., [Evaluation of lipid peroxidation by measuring thiobarbituric acid reactive substances]. Ann Biol Clin (Paris), 1998. 56(3): p. 305-19.
181.Villa-Caballero, L., et al., [Oxidative stress. Should it be measured in the diabetic patient?]. Gac Med Mex, 2000. 136(3): p. 249-56.
182.Hunnisett, A., et al., Lipoperoxides as an index of free radical activity in bone marrow transplant recipients. Preliminary observations. Biol Trace Elem Res, 1995. 47(1-3): p. 125-32.
183.Holley, A.E. and K.H. Cheeseman, Measuring free radical reactions in vivo. Br Med Bull, 1993. 49(3): p. 494-505.
184.Seeger, W., L. Roka, and U. Moser, Detection of organic hydroperoxides in rabbit lung lavage fluid, but not in lung tissue homogenate, using GSH peroxidase and GSH reductase. J Clin Chem Clin Biochem, 1984. 22(11): p. 711-5.
185.Jenkinson, S.G., R.A. Lawrence, and W.Y. Tucker, Glutathione peroxidase, superoxide dismutase, and glutathione S-transferase activities in human lung. Am Rev Respir Dis, 1984. 130(2): p. 302-4.
186.Kosower, N.S. and E.M. Kosower, Formation of disulfides with diamide. Methods Enzymol, 1987. 143: p. 264-70.
187.Lu, S.C., Regulation of hepatic glutathione synthesis: current concepts and controversies. FASEB J, 1999. 13(10): p. 1169-83.
188.Ursini, F., et al., Diversity of glutathione peroxidases. Methods Enzymol, 1995. 252: p. 38-53.
189.Kamari, Y., et al., Effect of telmisartan, angiotensin II receptor antagonist, on metabolic profile in fructose-induced hypertensive, hyperinsulinemic, hyperlipidemic rats. Hypertens Res, 2008. 31(1): p. 135-40.
190.Joyeux-Faure, M., et al., Fructose-fed rat hearts are protected against ischemia-reperfusion injury. Exp Biol Med (Maywood), 2006. 231(4): p. 456-62.
191.Barbosa, C.R., et al., Opposite lipemic response of Wistar rats and C57BL/6 mice to dietary glucose or fructose supplementation. Braz J Med Biol Res, 2007. 40(3): p. 323-31.
192.Slawik, M. and A.J. Vidal-Puig, Lipotoxicity, overnutrition and energy metabolism in aging. Ageing Res Rev, 2006. 5(2): p. 144-64.
193.Olshansky, S.J., et al., A potential decline in life expectancy in the United States in the 21st century. N Engl J Med, 2005. 352(11): p. 1138-45.
194.DeFronzo, R.A., Glucose intolerance and aging. Diabetes Care, 1981. 4(4): p. 493-501.
195.Chang, A.M. and J.B. Halter, Aging and insulin secretion. Am J Physiol Endocrinol Metab, 2003. 284(1): p. E7-12.
196.Rizvi, A.A., Management of diabetes in older adults. Am J Med Sci, 2007. 333(1): p. 35-47.
197.Huang, C.C., S.C. Tsai, and W.T. Lin, Potential ergogenic effects of L-arginine against oxidative and inflammatory stress induced by acute exercise in aging rats. Exp Gerontol, 2008. 43(6): p. 571-7.
198.Ihm, S.H., et al., Effect of aging on insulin secretory function and expression of beta cell function-related genes of islets. Diabetes Res Clin Pract, 2007. 77 Suppl 1: p. S150-4.
199.Perez, V.I., et al., Is the Oxidative Stress Theory of Aging Dead? Biochim Biophys Acta, 2009.
200.Petersen, K.F., et al., Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science, 2003. 300(5622): p. 1140-2.
201.Jiang, T., et al., Calorie restriction modulates renal expression of sterol regulatory element binding proteins, lipid accumulation, and age-related renal disease. J Am Soc Nephrol, 2005. 16(8): p. 2385-94.
202.Jiang, T., et al., Diet-induced obesity in C57BL/6J mice causes increased renal lipid accumulation and glomerulosclerosis via a sterol regulatory element-binding protein-1c-dependent pathway. J Biol Chem, 2005. 280(37): p. 32317-25.
203.Hinault, C., et al., Differential expression of cell cycle proteins during ageing of pancreatic islet cells. Diabetes Obes Metab, 2008. 10 Suppl 4: p. 136-46.
204.Lee, Y.C., et al., Plasma leptin response to oral glucose tolerance and fasting/re-feeding tests in rats with fructose-induced metabolic derangements. Life Sci, 2006. 78(11): p. 1155-62.
205.Palanisamy, N., P. Viswanathan, and C.V. Anuradha, Effect of genistein, a soy isoflavone, on whole body insulin sensitivity and renal damage induced by a high-fructose diet. Ren Fail, 2008. 30(6): p. 645-54.
206.Rebello, T., R.E. Hodges, and J.L. Smith, Short-term effects of various sugars on antinatriuresis and blood pressure changes in normotensive young men. Am J Clin Nutr, 1983. 38(1): p. 84-94.
207.Berkey, C.S., et al., Sugar-added beverages and adolescent weight change. Obes Res, 2004. 12(5): p. 778-88.
208.Malik, V.S., M.B. Schulze, and F.B. Hu, Intake of sugar-sweetened beverages and weight gain: a systematic review. Am J Clin Nutr, 2006. 84(2): p. 274-88.
209.Underwood, A.H. and E.A. Newsholme, Properties of Phosphofructokinase from Rat Liver and Their Relation to the Control of Glycolysis and Gluconeogenesis. Biochem J, 1965. 95: p. 868-75.
210.Stanhope, K.L. and P.J. Havel, Fructose consumption: potential mechanisms for its effects to increase visceral adiposity and induce dyslipidemia and insulin resistance. Curr Opin Lipidol, 2008. 19(1): p. 16-24.
211.Bergman, R.N., et al., Abdominal obesity: role in the pathophysiology of metabolic disease and cardiovascular risk. Am J Med, 2007. 120(2 Suppl 1): p. S3-8; discussion S29-32.
212.Tetri, L.H., et al., Severe NAFLD with hepatic necroinflammatory changes in mice fed trans fats and a high-fructose corn syrup equivalent. Am J Physiol Gastrointest Liver Physiol, 2008. 295(5): p. G987-95.
213.Bizeau, M.E. and M.J. Pagliassotti, Hepatic adaptations to sucrose and fructose. Metabolism, 2005. 54(9): p. 1189-201.
214.Zhang, X., et al., Chronic high-fat diets induce oxide injuries and fibrogenesis of pancreatic cells in rats. Pancreas, 2008. 37(3): p. e31-8.
215.Yamada, H., et al., [Effects of age, renal diseases and diabetes mellitus on the renal size reduction accompanied by the decrease of renal function]. Nippon Jinzo Gakkai Shi, 1992. 34(10): p. 1071-5.
216.Bwititi, P., C.T. Musabayane, and C.F. Nhachi, Effects of Opuntia megacantha on blood glucose and kidney function in streptozotocin diabetic rats. J Ethnopharmacol, 2000. 69(3): p. 247-52.
217.Angelopoulos, T.J., et al., The effect of high-fructose corn syrup consumption on triglycerides and uric acid. J Nutr, 2009. 139(6): p. 1242S-1245S.
218.Nishikawa, T., et al., Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature, 2000. 404(6779): p. 787-90.
219.Kehrer, J.P. and L.G. Lund, Cellular reducing equivalents and oxidative stress. Free Radic Biol Med, 1994. 17(1): p. 65-75.
220.Pedraza-Chaverri, J., et al., Soy protein diet ameliorates renal nitrotyrosine formation and chronic nephropathy induced by puromycin aminonucleoside. Life Sci, 2004. 74(8): p. 987-99.
221.Fields, M., et al., The influence of gender on developing copper deficiency and on free radical generation of rats fed a fructose diet. Metabolism, 1992. 41(9): p. 989-94.
222.L.A. Olatunji, J.I.O., A.O. Soladoye, Anti-diabetic effect of Anacardium occidentale stem-bark in fructose-diabetic rats. Pharm. Biol, 2005. 43: p. 589-593.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔