跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/28 00:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:詹淑婷
研究生(外文):Shu-Ting Chan
論文名稱:Quercetin代謝產物抑制benzo[a]pyrene單獨或合併β-胡蘿蔔素所誘發的傷害:ex vivo及體內試驗
論文名稱(外文):The metabolites of quercetin suppresses the harmful effects induced by benzo[a]pyrene alone or in combination with β-carotene in A549 cells:in vitro and in vivo studies
指導教授:葉姝蘭
口試委員:李宗貴劉凱莉
口試日期:2009-07-10
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:營養學研究所
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:61
中文關鍵詞:檞皮素β-胡蘿蔔素benzo[a]pyrene
外文關鍵詞:quercetinβ-carotenebenzo[a]pyrene
相關次數:
  • 被引用被引用:0
  • 點閱點閱:58
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Quercetin是一種廣泛存在於蔬果中的黃酮醇( flavonols),具有抗
氧化及抗發炎作用,然而卻有研究發現人體食用富含quercetin的食物
後,在其血液中並未能測到或僅能測到很低的quercetin aglycone,反
之血液中卻能測到其代謝產物,亦即其與methyl, sulfate或glucuronic
acid的接合物,因此本研究將分兩部分進行,探討給予gerbil餵食
quercetin後,其血漿或體內的的代謝產物是否能抑制benzo[a]pyrene
( BaP )或BaP+β-carotene ( 20 μM ) 所造成的體內外傷害。
第一部份
此部份為體外試驗,利用人類肺癌細胞株A549為細胞模式。Quercetin
( 100mg/kgw/week ) 餵食gerbil 之後,收集富含quercetin代謝產物之
血漿( QP ),單獨或合併β-carotene預培養4小時,再經香菸中致癌成
份benzo[a]pyrene ( BaP )刺激24小時,QP中含有多種quercetin代謝產
物,其中包含了quercetin-3-glucuronide, quercetin-3'-sulfate及
methylquercetin,QP是在gerbil管餵quercetin 2小時後進行採血所獲
得,血漿中quercetin代謝產物顯著的增加,總濃度約為5 μM。細胞培
養結果顯示,QP可顯著的降低BaP單獨或合併β-carotene所造成的細
胞死亡、細胞DNA斷裂情形,且其效果與2 μM及5 μM quercetin的功
用相似,QP也能降低細胞經BaP或BaP+β-carotene誘發的c-Jun的磷酸
化作用。
第二部份
以gerbil為實驗model,單獨或合併管餵β-carotene ( 10 mg/kg bw、3 次
/week )、quercetin ( 100 mg/kg bw、3 次/week )及BaP ( 8 μmole/次、2
次/week ) 6個月,犧牲動物並進行各項分析。收集bronchoalveolar
lavage fluid ( BALF )檢測總細胞數、 macrophages、lymphocytes及
neutrophils數目,利用ELISA檢測BALF中TNF-α ( tumor necrosis
factor-α )及IL-1β ( Interleukin-1β ) 的含量,並利用Western blot分析肺
臟中c-Jun及JNK ( Jun N-terminal kinase )蛋白表現的變化。結果顯示
BaP可顯著的增加BALF免疫細胞的聚集及促發炎激素的含量,另外
血漿中促發炎激素的含量亦會增加,給予β-carotene會促進BaP此一效
果,相反的,管餵quercetin可顯著的降低BaP誘發的免疫細胞的聚集,
及TNF-α及IL-1β的表現,在肺臟中quercetin對於BaP或BaP
+ β-carotene所誘發的c-Jun及JNK磷酸化作用也有明顯的抑制作用,此
表示quercetin經代謝後亦能抑制β-carotene對BaP誘發IL-1β、TNF-α及
JNK、c-Jun磷酸化的促進作用。
縱合以上我們的實驗證實,Quercetin經代謝後能仍對抗BaP或BaP
+ β-carotene所誘發的DNA傷害,顯示quercetin的代謝產物能與
β-carotene產生交互作用,其機制與向下調節JNK及Jun的活化有關。
Quercetin, a flavonoid, is found ubiquitously in the vegetables and
fruits. It possesses antioxidant and anti-inflammatory activity in vitro.
However, the conjugated metabolites rather than quercetin aglycone
present in blood in human after consumption of foods rich in quercetin.
Whether the metabolites of quercetin possess the beneficial effects as
their parent compound remains unclear. Therefore, this thesis work was
divided into two parts to investigate whether the metabolites of quercetin
present in plasma of gerbils, which were fed with quercetin by gavage,
prevent the harmful effects of bezo[a]pyrene ( BaP ) or BaP+β-carotene.
Part 1.
In the ex vivo study, the A549 cells were preincubated with quercetin or
the quercetin-metabolite-enriched plasma ( QP; 10% ), alone or combined
with 20 μM β-carotene for 4 h, and then, the cells were treated with 20
μM of BaP for 24 h. The QP was obtained from gerbils at 2 h after fed
with quercetin at 100mg/kgw/week, while the control plasma was
obtained from gerbils administered vehicle only. Several quercetin
metabolites were observed in QP, including quercetin-3-glucuronide,
quercetin-3'-sulfate and methylquercetin. At 2 h after oral administration
of quercetin, the total quercetin concentration of the plasma in gerbils was
significantly increased and reached to a maximum ( ~ 5 μM ). QP
significantly increased the cell viability and decreased DNA damage in
A549 cells incubated with BaP or BaP+ β-carotene, and the efficiency of
QP was similar to those of quercetin at 2 and 5 μM. QP also significantly
decreased the ratio of phosphor-Jun/total Jun in A549 cells incubated with
BaP or BaP+ β-carotene.
Part 2.
In the in vivo study, we fed gerbil by gavage with β-carotene ( 10 mg/kgw,
3 time/week ), quercetin ( 100 mg/kgw, 3 time/week ) and BaP
( 8 μmole/time, 2 time/week ) alone or combined for 6 months. After
sacrificed, bronchoalveolar lavage fluid ( BALF ) and plasma were
collected to determine cell profile or/and the levels of pro-inflammatory
cytokine, TNF-α ( tumor necrosis factor-α ) and IL-1β ( Interleukin-1β ).
The activation of JNK ( Jun N-terminal kinase ) and c-Jun proteins in
lung was also determined by western blotting. The results showed BaP
significantly increased the numbers of total cell and the macrophage as
well as the levels of pro-inflammatory cytokine in BALF. β-carotene
-administration significantly enhanced such an effect; in contrast,
quercetin- administration significantly decreased the pro-inflammatory
effects of BaP or BaP+ β-carotene. BaP also significantly increased the
ratio of phospho-JNK/total JNK and that of phospho-Jun/total Jun in lung
in gerbils. Similarly, β-carotene-administration significantly enhanced
such an effect while quercetin- administration had a significant
suppressed effect.
The results of these two parts studies demonstrated that the
metabolites of quercetin possess the bioactivity for protect cells against
the damages of BaP or BaP + β-carotene, suggesting that they may
interact with β-carotene. The mechanisms were associated with the
down-regulation of the activation of JNK and Jun.
縮寫表……………………………………………………………..……Ⅰ
摘要………………………………………………………………..……Ⅲ
英文摘要…………………………………………………………..……Ⅴ
一、前言……………………………………….……………………......1
1. 緒論……………………………………………………………..…....1
2. 檞黃酮 ( quercetin )……………………………………...……..…….2
3. β-胡蘿蔔素( β-carotene ) ……………….……………………………6
4. Benzo[a]pyrene ( BaP )…..…………………..………………..……..8
5. Mitogrn-activated-protein kinases ( MAPKs )………..….……..…...10
6. 發炎反應………………………………………………………..…...12
7. 研究目標……………………………………………………….…....14
8. 實驗架構………………………………………………………….…15
二、研究方法
1. 材料
(1) 儀器……………………………………………………………...17
(2) 藥品……………………………………………………………....18
2.方法
2.1 細胞株來源及培養條件...............................................................20
2.2 細胞的處理....................................................................................20
2.3 細胞生長分析...............................................................................21
2.4 DNA 傷害分析..............................................................................22
2.5 Gerbil 血漿中Quercetin 含量分析..............................................23
2.6 西方墨點法...................................................................................24
2.7 Brochoalveolan Lavage…..............................................................27
2.8 cytokines 分析................................................................................28
2.9 統計方法.......................................................................................28
三. 結果與討論
1.第一部份結果.......................................................................................29
2.第一部份討論.......................................................................................32
圖一. gerbil 經管餵quercetin 後,其血漿的組成….............................34
圖二. quercetin 在gerbil體內的濃度隨時間改變的變化量...................35
圖三. quercetin 在gerbil 體內長期累積情形.........................................36
圖四. quercetin 及其代謝產物對BaP 誘發的細胞死亡的影響.............37
圖五. quercetin 及其代謝產物合併β-carotene 對BaP誘發的細胞死亡的
影響................................................................................................38
圖六. quercetin 及其代謝產物對BaP 誘發的細胞DNA 傷害的
影響..............................................................................................39
圖七. quercetin 及其代謝產物合併β-carotene 對BaP 誘發的細胞DNA
傷害的影響....................................................................................40
圖八. quercetin 及其代謝產物單獨或合併β-carotene 對BaP誘發的細胞
Jun 蛋白表現的影響......................................................................41
1.第二部份結果.......................................................................................42
2.第二部份討論.......................................................................................44
圖九. 灌食營養素及BaP 對gerbil 體重之影響…...............................47
表一. Cell profile in bronchalveolar lavage fluid…..............................48
圖十. gerbil 經BaP 刺激細胞激素TNF-α之表現..............................49
圖十一. gerbil 經BaP 刺激細胞激素IL-1β之表現...............................50
圖十二. gerbil 經BaP 刺激肺細胞Jun 蛋白表現的影響......................51
圖十三. gerbil 經BaP 刺激肺細胞JNK 蛋白表現的影響......................52
四. 結論...................................................................................................53
五.參考文獻.............................................................................................54
陳豪勇、王聖予、李麗俐、陳慧玲、馮潤蘭、楊志元、謝國珍。免疫
學第四版。1994 藝軒圖書出版社,台北
Andlauer W, Stumpf C, Fürst P. Intestinal absorption of rutin in free and
conjugated forms. Biochem Pharmacol. 2001, 1;62(3):369-74.
Barbieri, S. S., Weksler, B. B. Tobacco smoke cooperates with
interleukin-1beta to alter beta-catenin trafficking in vascular endothelium
resulting in increased permeability and induction of cyclooxygenase-2
expression in vitro and in vivo. Faseb J. 2007, 21: 1831-1843.
Barnes, P. J. Mediators of chronic obstructive pulmonary disease.
Pharmacol Rev. 2004, 56:515-48.
Barnes. P.J., Hansel, T. T. Prospects for new drugs for chronic obstructive
pulmonary disease. Pharmacol Rev. 2004, 364:985-96.
Baud V, Karin M. Signal transduction by tumor necrosis factor and its
relatives. Trends Cell Biol. 2001, 11(9):372-7.
Binwu Ying, Ting Yang, Xingbo Song et al. Quercetin inhibits IL-1
beta-induced ICAM-1 expression in pulmonary epithelial cell line A549
through the MAPK pathways. Mol Biol Rep. 2008, 11033-008-9386-1.
Bors W, Michel C, Stettmaier K. Antioxidant effects of flavonoids.
Biofactors. 1997, 6(4):399-402.
Bors W, Heller W, Michel C, Saran M. Radical chemistry of flavonoid
antioxidants. Adv Exp Med Biol. 1990, 264:165-70.
Bracke M, Vyncke B, Opdenakker G et al. Effect of catechins and citrus
flavonoids on invasion in vitro. Clin Exp Metastasis. 1991, 9(1):13-25.
Cheng CY, Hsieh HL, Sun CC et al. IL-1 beta induces
urokinase-plasminogen activator expression and cell migration through
PKC alpha, JNK1/2, and NF-kappaB in A549 cells. J Cell Physiol. 2009,
219(1):183-93.
Cheng SC, Hilton BD, Roman JM, Dipple A. DNA adducts from
carcinogenic and noncarcinogenic enantiomers of benzo[a]pyrene
dihydrodiol epoxide. Chem Res Toxicol. 1989, 2(5):334-40.
da Silva EL, Piskula MK, Yamamoto N, Moon JH, Terao J. Quercetin
metabolites inhibit copper ion-induced lipid peroxidation in rat plasma.
FEBS Lett. 1998, 3;430(3):405-8.
Day AJ, Mellon F, Barron D et al. Human metabolism of dietary
flavonoids: identification of plasma metabolites of quercetin. Free Radic
Res. 2001, 35(6):941-52.
De Boer VC, Dihal AA, van der Woude H et al. Tissue distribution of
quercetin in rats and pigs. J Nutr. 2005, 135(7):1617-8.
Del Rio D, Valtueña S, Pellegrini N et al. Intervention study with a high
or low antioxidant capacity diet: effects on circulating beta-carotene. Eur
J Clin Nutr. 2009, 17.
De Kok TM, van Breda SG, Manson MM. Mechanisms of combined
action of different chemopreventive dietary compounds: a review. Eur J
Nutr. 2008, 47 Suppl 2:51-9.
Donnini S, Finetti F, Lusini L et al. Divergent effects of quercetin
conjugates on angiogenesis. Br J Nutr. 2006, 95(5):1016-23.
Elferink CJ, Gasiewicz TA, Whitlock JP Jr. Protein-DNA interactions at a
dioxin-responsive enhancer. Evidence that the transformed Ah receptor is
heteromeric. J Biol Chem. 1990, 265(33):20708-12.
Garmyn, M., Ribaya-Mercado, J. D., Russel, R. M et al. Effect of
beta-carotene supplementation on the human sunburn reaction. Exp
Dermatol. 1995, 4:104-111.
Glossop JR, Cartmell SH. Effect of fluid flow-induced shear stress on
human mesenchymal stem cells: Differential gene expression of IL1B
and MAP3K8 in MAPK signaling. Gene Expr Patterns. 2009, 9(5):381-8.
Goncalo C. Justino, Marta R. Santos et al. Plasma quercetin metabolites:
structure–antioxidant activity relationships. Archives of Biochemistry and
Biophysics. 2004, 109-121
Guerrero JA, Lozano ML, Castillo J et al. Flavonoids inhibit platelet
function through binding to the thromboxane A2 receptor. J Thromb
Haemost. 2005, 3(2):369-76.
Hecht SS, Isaacs S, Trushin N. Lung tumor induction in A/J mice by the
tobacco smoke carcinogens 4-(methylnitrosamino)-1 -(3-pyridyl)- 1 -
butanone and benzo[a]pyrene: a potentially useful model for evaluation
of chemopreventive agents. Carcinogenesis. 1994, 15(12):2721-5.
Hirano T, Oka K, Akiba M. Antiproliferative effects of synthetic and
naturally occurring flavonoids on tumor cells of the human breast
carcinoma cell line, ZR-75-1. Res Commun Chem Pathol Pharmacol.
1989, 64(1):69-78.
Hsiu SL, Huang TY, Hou YC et al. Comparison of metabolic
pharmacokinetics of naringin and naringenin in rabbits. Life Sci.
2002, 15;70(13):1481-9.
Hwang MK, Song NR, Kang NJ et al. Activation of phosphatidylinositol
3-kinase is required for tumor necrosis factor-alpha-induced upregulation
of matrix metalloproteinase-9: its direct inhibition by quercetin. Int J
Biochem Cell Biol. 2009, 41(7):1592-600.
Justino GC, Santos MR, Canário S et al. Plasma quercetin metabolites:
structure-antioxidant activity relationships. Arch Biochem Biophys. 2004,
1;432(1):109-21
Kaul TN, Middleton E Jr, Ogra PL. Antiviral effect of flavonoids on
human viruses J Med Virol. 1985, 15(1):71-9.
Kim HR, Kim EJ, Yang SH et al. Trichostatin A induces apoptosis in
lung cancer cells via simultaneous activation of the death
receptor-mediated and mitochondrial pathway? Exp Mol Med. 2006,
38:616-624.
Krinsky, N. I. Anticarcinogenic activities of carotenoids in animals and
cellular systems. Exs. 1992, 62:227-234.
Landers JP, Bunce NJ. The Ah receptor and the mechanism of dioxin
toxicity. Biochem J. 1991, 276 ( Pt 2):273-87.
Lin T, Mak NK, Yang MS. MAPK regulate p53-dependent cell death
induced by benzo[a]pyrene: involvement of p53 phosphorylation and
acetylation. Toxicology. 2008, 247(2-3):145-53.
Liu C, Russell RM, Wang XD. Alpha-tocopherol and ascorbic acid
decrease the production of beta-apo-carotenals and increase the formation
of retinoids from beta-carotene in the lung tissues of cigarette
smoke-exposed ferrets in vitro. J Nutr. 2004, 134(2):426-30.
Liu C, Russell RM, Wang XD. Low dose beta-carotene supplementation
of ferrets attenuates smoke-induced lung phosphorylation of JNK, p38
MAPK, and p53 proteins. J Nutr. 2004, 134(10):2705-10.
Liu C, Wang XD, Bronson RT et al. Effects of physiological versus
pharmacological beta-carotene supplementation on cell proliferation and
histopathological changes in the lungs of cigarette smoke-exposed ferrets.
Carcinogenesis. 2000, 21(12):2245-53.
LOWRY OH, ROSEBROUGH NJ, FARR AL et al. Protein measurement
with the Folin phenol reagent. J Biol Chem. 1951, 193(1):265-75.
Mayne, S. T. Beta-carotene, carotenoids, and disease prevention in
humans. Faseb J. 1996, 10:690-701.
Moon JH, Tsushida T, Nakahara K, Terao J. Identification of quercetin
3-O-beta-D-glucuronide as an antioxidative metabolite in rat plasma after
oral administration of quercetin. Free Radic Biol Med. 2001,
1;30(11):1274-85.
Morand C, Crespy V, Manach C et al. Plasma metabolites of quercetin
and their antioxidant properties. Am J Physiol. 1998, 275(1 Pt 2):R212-9.
Moretto N, Facchinetti F, Southworth T et al. alpha,beta-Unsaturated
aldehydes contained in cigarette smoke elicit IL-8 release in pulmonary
cells through mitogen-activated protein kinases. Am J Physiol Lung Cell
Mol Physiol. 2009 May;296(5):L839-48. Epub 2009, 13.
Mullen W, Edwards CA, Crozier A. Absorption, excretion and metabolite
profiling of methyl-, glucuronyl-, glucosyl- and sulpho-conjugates of
quercetin in human plasma and urine after ingestion of onions. Br J Nutr.
2006, 96(1):107-16.
Nebert DW, Roe AL, Dieter MZ et al. Role of the aromatic hydrocarbon
receptor and [Ah] gene battery in the oxidative stress response, cell cycle
control, and apoptosis. Biochem Pharmacol. 2000 Jan 1;59(1):65-85.
Nguyen TT, Tran E, Nguyen TH et al. The role of activated MEK-ERK
pathway in quercetin-induced growth inhibition and apoptosis in A549
lung cancer cells. Carcinogenesis. 2004, 25(5):647-59.
Omenn GS, Goodman GE, Thornquist MD et al. Effects of a combination
of beta carotene and vitamin A on lung cancer and cardiovascular disease.
N Engl J Med. 1996, 2;334(18):1150-5.
Pearson G, Robinson F, Beers Gibson T et al. Mitogen-activated protein
(MAP) kinase pathways: regulation and physiological functions.
Endocr Rev. 2001, 22(2):153-83.
Rahman I. Regulation of nuclear factor-kappa B, activator protein-1, and
glutathione levels by tumor necrosis factor-alpha and dexamethasone in
alveolar epithelial cells. Biochem Pharmacol. 2000, 15;60(8):1041-9.
Pietta PG. Flavonoids as antioxidants. J Nat Prod. 2000, 63(7):1035-42.
Pierpoint WS. Flavonoids in the human diet. Prog Clin Biol Res. 1986,
213:125-40.
Revel A, Raanani H, Younglai E et al. Resveratrol, a natural aryl
hydrocarbon receptor antagonist, protects lung from DNA damage and
apoptosis caused by benzo[a]pyrene J Appl Toxicol. 2003, 23(4):255-61.
Rubin H. Synergistic mechanisms in carcinogenesis by polycyclic
aromatic hydrocarbons and by tobacco smoke: a bio-historical
perspective with updates. Carcinogenesis. 2001, 22(12):1903-30.
Safari MR, Sheikh N. Effects of flavonoids on the susceptibility of
low-density lipoprotein to oxidative modification. Prostaglandins Leukot
Essent Fatty Acids. 2003, 69(1):73-7.
Schaeffer HJ, Weber MJ. Mitogen-activated protein kinases: specific
messages from ubiquitous messengers. Mol Cell Biol. 1999,
19(4):2435-44.
Salgo MG, Cueto R, Winston GW, Pryor WA. Beta carotene and its
oxidation products have different effects on microsome mediated binding
of benzo[a]pyrene to DNA. Free Radic Biol Med. 1999, 26(1-2):162-73.
Shertzer HG, Puga A, Chang C et al. Inhibition of CYP1A1 enzyme
activity in mouse hepatoma cell culture by soybean isoflavones. Chem
Biol Interact. 1999, 123(1):31-49.
Shimoi K, Masuda S, Furugori M et al. Radioprotective effect of
antioxidative flavonoids in gamma-ray irradiated mice. Carcinogenesis.
1994, 15(11):2669-72.
Smith, T. A. Carotenoids and cancer: prevention and potential therapy. Br
J Biomed Sci. 1998, 55:268-275.
Shu-Lan Yeh , Shu-Hsuan Wu. Effects of quercetin on
β-apo-8’-carotenal-induced DNA damage and cytochrome P1A2
expression in A549 cells. Chemico-Biological Interactions. 2006, 163
199–206.
Sichel G, Corsaro C, Scalia M et al. In vitro scavenger activity of some
flavonoids and melanins against O2-(.). Free Radic Biol Med. 1991,
11(1):1-8.
Tang D, Kang R, Xiao W et al. Quercetin Prevents
Lipopolysaccharide-induced HMGB1 Release and Proinflammatory
Function. Am J Respir Cell Mol Biol. 2009, 5.
The Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group.
Ann Epidemiol. 1994, 4(1):1-10.
The effect of vitamin E and beta carotene on the incidence of lung cancer
and other cancers in male smokers. N Engl J Med. 1994, 330:1029-1035.
Tokiwa H, Sera N, Horikawa K et al. The presence of
mutagens/carcinogens in the excised lung and analysis of lung cancer
induction. Carcinogenesis. 1993, 14(9):1933-8.
Tracey KJ, Lowry SF. The role of cytokine mediators in septic
shock. Adv Surg. 1990, 23:21-56.
Ueno Y, Mikawa M, Matsuda A. Nucleosides and nucleotides. 170.
Synthesis and properties of oligodeoxynucleotides containing
5-[N-[2-[N,N-bis(2-aminoethyl)-amino]ethyl]carbamoyl]-2'-deoxyuridine
and 5-[N-[3-[N,N-bis(3-aminopropyl) amino]propyl]carbamoyl]-2'
-deoxyuridine.Bioconjug Chem. 1998, 9(1):33-9.
Wagsater D, Jatta K, Ocaya P et al. Expression of IL-1beta, IL-1 receptor
type I and IL-1 receptor antagonist in human aortic smooth muscle cells:
effects of all-trans-retinoic acid. J Vasc Res. 2006, 43:377-382.
Woo HD, Kim BM, Kim YJ et al. Quercetin prevents necrotic cell death
induced by co-exposure to benzo(a)pyrene and UVA radiation. Toxicol In
Vitro. 2008, 22(8):1840-5.
Williams RJ, Spencer JP, Rice-Evans C. Flavonoids: antioxidants or
signalling molecules? Free Radic Biol Med. 2004, 1;36(7):838-49.
Williamson G, Manach C. Bioavailability and bioefficacy of polyphenols
in humans. II. Review of 93 intervention studies. Am J Clin Nutr. 2005,
81(1 Suppl):243S-255S.
Yeh SL, Wang WY, Huang CH, Hu ML. Pro-oxidative effect of
beta-carotene and the interaction with flavonoids on UVA-induced DNA
strand breaks in mouse fibroblast C3H10T1/2 cells. J Nutr Biochem.
2005, 16:729-35.
Yeh SL, Wang HM, Chen PY et al. Interactions of beta-carotene and
flavonoids on the secretion of pro-inflammatory mediators in an in vitro
system. Chem Biol Interact. 2009, 15;179(2-3):386-93.
Yoon HJ, Moon ME, Park HS et al. Chitosan oligosaccharide (COS)
Inhibits LPS-induced inflammatory effects in RAW 264.7 macrophage
cells. Biochem Biophys Res Commun. 2007, 358:954-959.
Yuri Kim, Nalinee Chongviriyaphan, Chun Liu et al. Combined
antioxidant ( β-carotene, α-tocopherol and ascorbic acid )
supplementation increases the levels of lung retinoic acid and inhibits the
activation of mitogen-activated protein kinase in the ferret lung cancer
model. Carcinogenesis. 2006, vol.27 no.7 pp.1410–1419.
Zhang LX, Acevedo P, Guo H, Bertram JS. Upregulation of gap
junctional communication and connexin43 gene expression by
carotenoids in human dermal fibroblasts but not in human keratinocytes.
Mol Carcinog. 1995, 12(1):50-8.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top