(3.238.98.214) 您好!臺灣時間:2021/05/08 12:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:周志中
研究生(外文):Chu-Chung
論文名稱:辣椒素經由TRPV1傳遞與AIF轉錄引發MCF-7 細胞死亡
論文名稱(外文):Capsaicin induced MCF-7 cell death via TRPV1 expression and AIF translocation
指導教授:周明仁周明仁引用關係
指導教授(外文):Ming-Jen Chou
學位類別:博士
校院名稱:中山醫學大學
系所名稱:醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:104
相關次數:
  • 被引用被引用:0
  • 點閱點閱:209
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
辣椒素(Capsaicin)是存在於辣椒屬中多種不同紅辣椒植物的主要刺激性成分,屬於vanilloid成員之一。研究指出辣椒素對許多癌細胞株(例如肝癌、子宮頸癌及食道癌等)均具有生物活性,能抑制細胞生長。在不表現凋亡蛋白酶3(caspase-3)的人類乳房腫瘤細胞株MCF-7中,辣椒素亦會抑制細胞生長,且隨著辣椒素濃度的增加,其抑制作用愈明顯,並可觀察到細胞凋亡的發生。本研究進一步探討辣椒素在MCF-7細胞中引發細胞凋亡的分子機制,並分析辣椒素與凋亡蛋白酶非依賴型路徑(caspase-independent pathway)的關係。MCF-7細胞經過24小時辣椒素處理後會發生劑量依存型(dose-dependent)細胞凋亡。在辣椒素處理5分鐘後,細胞內活性氧分子(reactive oxygen species; ROS)即有微量下降趨勢;處理2小時後,細胞內鈣離子濃度也有上升現象。MCF-7細胞的粒線體膜電位也會因辣椒素的處理而下降。辣椒素處理24小時後,凋亡誘導因子(apoptosis-inducing factor;AIF)會從粒線體中被釋放並進入細胞核內,這意味著辣椒素可能經由凋亡蛋白酶非依賴型路徑引發MCF-7細胞凋亡。此外,辣椒素可能直接進入細胞或穿透細胞膜誘發細胞死亡,而TRPV1蛋白會增加細胞對辣椒素的敏感性。因此,辣椒素具有成為乳癌治療藥物的潛力。

Capsaicin (trans-8-methyl-N-vanillyl-6-nonenamide), a major pungent ingredient in a variety of red peppers of the genus Capsicum, is a type of vanilloids. It has been shown to exert biological activities in many cancer cell lines. It was found that capsaicin induces dose-dependent growth inhibition of MCF-7 cells, which do not express caspase-3. In this study, we investigated the molecular mechanism of capsaicin-induced apoptosis in MCF-7 cells. Treatment with capsaicin for 24 hours resulted in a dose-dependent apoptosis in MCF-7 cells. After addition of capsaicin, levels of reactive oxygen species (ROS) reduced slightly in the earlier time of treatment. Interestingly, an elevation of intracellular calcium ion (Ca2+) concentration was also detected in MCF-7 cells. It is worth noting that apoptosis-inducing factor (AIF) translocated into the cytosol and nucleus from mitochondria, suggesting that capsaicin may induce cellular apoptosis through caspase-independent pathway in MCF-7 cells. Furthermore, capsaicin may directly enter the cell or penetrate cell membrane to induce cell death and the expression of TRPV1 could increase the sensitivity of capsaicin for cells. Hence, capsaicin may be a potent drug in breast cancer therapy.

目錄
頁數
中文摘要 ……………………………1
英文摘要 ……………………………………………..…..…………2
第 一 章 前言 …...……………………………..……..………..… 3
第 二 章 文 獻 探 討 …………………………………………5
第ㄧ節 植物化學物質…………………………………5
第二節 辣椒素 (Capsaicin) ……………….….………6
第三節 乳癌 …………………………………………8
第四節 乳癌的治療 ………………………………… 9
第五節 細胞凋亡(Apoptosis ) .................................. .. 12
第六節 人類乳癌細胞缺乏caspase-3 ……………… 16
第三章 目標 …………………………………………………… 18
第四章 材料和方法 …………………………………………… 19
第ㄧ節 化學藥劑和試劑 …………………………… 19
第二節 人類乳癌細胞植株 ………………………… 19
第三節 細胞存活試驗 ……………………………… 19
第四節 細胞週期的進行和細胞凋亡的分析 ……… 20
第五節 鹼性單一細胞膠體電泳(Comet assay) ….… 21
第六節 活性氧化物的偵測…………………………21
第七節 細胞內鈣離子濃度的偵測…………………22
第八節 粒線體膜電位的偵測………………………23
第九節 西方墨點法 ………………………………. 24
第十節 去氧核醣核酸(DNA)分裂 …………… 25
第十一節 免疫螢光染色和共焦顯微鏡檢 ……… 25
第十二節 統計分析 ……………………………… = 26
第五章 結果
第ㄧ節 辣椒素誘導的細胞死亡不需要caspase-3…27
第二節 透過辣椒素誘導MCF-7細胞DNA受損…28
第三節 透過flow cytometry觀察給予不同濃度的辣椒
素後MCF-7細胞中ROS的產生情形…… 29
第四節 辣椒素對MCF-7細胞中鈣離子生成的影響..29
第五節 辣椒素可以改變粒線體膜電位(MMP)...…. 30
第六節 MCF-7細胞中辣椒素影響p53, Bcl-2和Bax的
表現………………………………………… 30
第七節 辣椒素誘導PARP-1的分裂 ……………… 31
第八節 在辣椒素治療的MCF-7細胞中沒有低分子量的DNA碎片生成 ………………………… 31

第九節 辣椒素誘導AIF轉錄…………………………32

第六章 討論………………………………………………………… 33
第七章 結論………………………………………………………… 37
參考文獻 …………………………………………………………… 70
圖與表 ……………………………………………………………… 83
附錄………………………………………………………………… 104

















Contents

Chapter1.Introduction …..………………………………………… 38
Chapter 2. Literature Review……....................................................40
2.1 Phytochemicals……………...……………………………40
2.2 Capsaicin …………………………………………………41
2.3 Breast cancer………………………………………………43
2.4 Therapies of breast cancers 44
2.5 Apoptosis 46
2.6 Caspase-3 deficiency in human breast cancer cells 51

Chapter 3. Aim …………………………………………………….. 52

Chapter 4. Materials and Methods………………………………..…53
4.1 Chemicals and reagents 53
4.2 Human breast cancer cell lines 53
4.3 Cell viability assay 53
4.4 Cell cycle progression and apoptosis analysis 54
4.5 Alkaline single-cell gel electrophoresis (Comet assay) 54
4.6 Detection of ROS 55
4.7 Detection of intracellular Ca2+ concentration 56
4.8 Detection of mitochondrial membrane potential 56
4.9 Western blot 57
4.10 DNA Fragmentation 58
4.11 Immunofluorescence staining and confocal microscopy 58
4.12 Statistical analysis 59

Chapter 5. Results……………………………………………………60
5.1 Caspase-3 is not required in capsaicin-induced cell death 60
5.2 Induction of DNA damage on MCF-7 cells by capsaicin. 61
5.3 The production of ROS in MCF-7 cells after treated with various concentrations of capsaicin by flow cytometry. 61
5.4 Effects of capsaicin on the production of Ca2+ from MCF7 cells. 62
5.5 Capsaicin could alter mitochondria membrane potential (MMP) 62
5.6 Capsaicin affected the expressions of p53, Bcl-2 and Bax in MCF-7 cells. 63
5.7 Capsaicin induces the cleavage of PARP-1 63
5.8 No low molecular weight DNA fragmentation occurred in capsaicin- treated MCF-7 cells. 64
5.9 Capsaicin-induced AIF translocation 64

Chapter 6. Discussion………………………………………………...65

Chapter 7. Conclusion ……………………………………………… 69

References………….. 70
Contents of Figures and Table 83
Appendix ……………………………………………………………... 104



圖 表 目 錄
Figure 1. The chemical structure of capsaicin. 83
Figure 2. Caspase-dependent and -independent execution of apoptosis. 84
Figure 3. Effects of capsaicin on the cell viability and cell cycle. 85
Figure 4. Morphological changes of human breast cancer MCF-7 cells in response to capsaicin. 86
Figure 5. PI staining analysis for the effects of capsaicin on apoptosis in human breast cancer MCF-7 cells. 87
Figure 6. The expression of TRPV1 in breast cancer cells. 88
Figure 7. DNA damage determination for the effects of capsaicin on MCF-7 cell’s DNA. 89
Figure 8. Flow cytometric analysis of ROS in human breast MCF-7 cells with 150 μM capsaicin for various time periods. 90
Figure 9. Flow cytometric analysis of intracellular Ca2+ concentration in human breast MCF-7 cells with 150 μM capsaicin for various time periods. 92
Figure 10. The alteration of mitochondria membrane potential after capsaicin treatment. 94
Figure 11. Representative results of Western blotting showed changes on the levels of Bcl-2, P53 and Bax in MCF-7 cells after treated with capsaicin. 95
Figure 12. The cleavage of PARP-1 after capsaicin treatment. 96
Figure 13. The effect of capsaicin on the activation of procaspase-7 in breast cancer cells. 97
Figure 14. DNA fragmentation assay of MCF-7 cells after capsaicin treatment for 24 hours. 98
Figure 15. Capsaicin-induced AIF translocation in breast cancer cells. 99
Table 1. Chemicals and Reagents………………………………… 100


參 考 文 獻
1.Byers T, Nestle M, McTiernan A, Doyle C, Currie-Williams A, Gansler T, et al. American Cancer Society guidelines on nutrition and physical activity for cancer prevention: Reducing the risk of cancer with healthy food choices and physical activity. CA Cancer J Clin. 2006 Sep-Oct;56(5):254-81.
2.World_Health_Organization. WHO Fact sheet No. 297: Cancer. In: World Health Organization; 2006.
3.Paschka AG, Butler R, Young CY. Induction of apoptosis in prostate cancer cell lines by the green tea component, (-)-epigallocatechin-3-gallate. Cancer Lett. 1998 Aug 14;130(1-2):1-7.
4.Smets LA. Programmed cell death (apoptosis) and response to anti-cancer drugs. Anticancer Drugs. 1994 Feb;5(1):3-9.
5.Cordell GA, Araujo OE. Capsaicin: identification, nomenclature, and pharmacotherapy. Ann Pharmacother. 1993 Mar;27(3):330-6.
6.Govindarajan VS, Sathyanarayana MN. Capsicum--production, technology, chemistry, and quality. Part V. Impact on physiology, pharmacology, nutrition, and metabolism; structure, pungency, pain, and desensitization sequences. Crit Rev Food Sci Nutr. 1991;29(6):435-74
7.Agrawal RC, Wiessler M, Hecker E, Bhide SV. Tumour-promoting effect of chilli extract in BALB/c mice. Int J Cancer. 1986 Nov 15;38(5):689-95.

8.Azizan A, Blevins RD. Mutagenicity and antimutagenicity testing of six chemicals associated with the pungent properties of specific spices as revealed by the Ames Salmonella/microsomal assay. Arch Environ Contam Toxicol. 1995 Feb;28(2):248-58.
9.Toth B, Rogan E, Walker B. Tumorigenicity and mutagenicity studies with capsaicin of hot peppers. Anticancer Res. 1984 May-Jun;4(3):117-9.
10.Mori A, Lehmann S, O''Kelly J, Kumagai T, Desmond JC, Pervan M, et al. Capsaicin, a component of red peppers, inhibits the growth of androgen-independent, p53 mutant prostate cancer cells. Cancer Res. 2006 Mar 15;66(6):3222-9.
11.Sanchez AM, Malagarie-Cazenave S, Olea N, Vara D, Chiloeches A, Diaz-Laviada I. Apoptosis induced by capsaicin in prostate PC-3 cells involves ceramide accumulation, neutral sphingomyelinase, and JNK activation. Apoptosis. 2007 Nov;12(11):2013-24.
12.Tuoya, Baba N, Shimoishi Y, Murata Y, Tada M, Koseki M, et al. Apoptosis induction by dohevanil, a DHA substitutive analog of capsaicin, in MCF-7 cells. Life Sci. 2006 Feb 23;78(13):1515-9. Epub 2005 Nov 2..
13.Lo YC, Yang YC, Wu IC, Kuo FC, Liu CM, Wang HW, et al. Capsaicin-induced cell death in a human gastric adenocarcinoma cell line. World J Gastroenterol. 2005 Oct 28;11(40):6254-7.
14.Roy M, Chakraborty S, Siddiqi M, Bhattacharya RK. Induction of Apoptosis in Tumor Cells by Natural Phenolic Compounds. Asian Pac.J.Cancer.Prev. 2002;3(1):61-67.


15.Ito K, Nakazato T, Yamato K, Miyakawa Y, Yamada T, Hozumi N, et al. Induction of apoptosis in leukemic cells by homovanillic acid derivative, capsaicin, through oxidative stress: implication of phosphorylation of p53 at Ser-15 residue by reactive oxygen species. Cancer Res. 2004 Feb 1;64(3):1071-8.
16.Melck D, Bisogno T, De Petrocellis L, Chuang H, Julius D, Bifulco M, et al. Unsaturated long-chain N-acyl-vanillyl-amides (N-AVAMs): vanilloid receptor ligands that inhibit anandamide-facilitated transport and bind to CB1 cannabinoid receptors. Biochem Biophys Res Commun. 1999 Aug 19;262(1):275-84.
17.Jin Y, Ishihata K, Kajiyama S, Fukusaki E, Kobayashi A, Baba N, et al. Effect of capsaicin and N-docosahexaenoyl-vanillylamide on growth of taxol-tolerant HeLa cells. Japanese Journal of Food Chemistry 2002;9(2):50-53.
18.Kim JD, Kim JM, Pyo JO, Kim SY, Kim BS, Yu R, et al. Capsaicin can alter the expression of tumor forming-related genes which might be followed by induction of apoptosis of a Korean stomach cancer cell line, SNU-1. Cancer Lett. 1997 Dec 9;120(2):235-41.
19.Lee YS, Nam DH, Kim JA. Induction of apoptosis by capsaicin in A172 human glioblastoma cells. Cancer Lett. 2000 Dec 8;161(1):121-30.
20.Macho A, Calzado MA, Munoz-Blanco J, Gomez-Diaz C, Gajate C, Mollinedo F, et al. Selective induction of apoptosis by capsaicin in transformed cells: the role of reactive oxygen species and calcium. Cell Death Differ. 1999 Feb;6(2):155-65.

21.Morre DJ, Chueh PJ, Morre DM. Capsaicin inhibits preferentially the NADH oxidase and growth of transformed cells in culture. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):1831-5.
22.Morre DJ, Sun E, Geilen C, Wu LY, de Cabo R, Krasagakis K, et al. Capsaicin inhibits plasma membrane NADH oxidase and growth of human and mouse melanoma lines. Eur J Cancer. 1996 Oct;32A(11):1995-2003.
23.Wolvetang EJ, Larm JA, Moutsoulas P, Lawen A. Apoptosis induced by inhibitors of the plasma membrane NADH-oxidase involves Bcl-2 and calcineurin. Cell Growth Differ. 1996 Oct;7(10):1315-25.
24.Kim S, Moon A. Capsaicin-induced apoptosis of H-ras-transformed human breast epithelial cells is Rac-dependent via ROS generation. Arch Pharm Res. 2004 Aug;27(8):845-9.
25.Prevarskaya N, Zhang L, Barritt G. TRP channels in cancer. Biochim Biophys Acta. 2007 Aug;1772(8):937-46.
26.Szallasi A, Cortright DN, Blum CA, Eid SR. The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. Nat Rev Drug Discov. 2007 May;6(5):357-72.
27.Reilly CA, Johansen ME, Lanza DL, Lee J, Lim JO, Yost GS. Calcium-dependent and independent mechanisms of capsaicin receptor (TRPV1)-mediated cytokine production and cell death in human bronchial epithelial cells. J Biochem Mol Toxicol 2005;19(4):266-75.
28.Athanasiou A, Smith PA, Vakilpour S, Kumaran NM, Turner AE, Bagiokou D, et al. Vanilloid receptor agonists and antagonists are mitochondrial inhibitors: how vanilloids cause non-vanilloid receptor mediated cell death. Biochem Biophys Res Commun. 2007 Mar 2;354(1):50-5.
29.Simstein R, Burow M, Parker A, Weldon C, Beckman B. Apoptosis, chemoresistance, and breast cancer: insights from the MCF-7 cell model system. Exp Biol Med (Maywood). 2003 Oct;228(9):995-1003.
30.Statistics of causes of death, 2005. In: Department of Health EYT, editor. Taiwan, R.O.C.: Department of Health, Executive Yuan, Taiwan; 2006.
31.What are the key statistics for breast cancer? In: American Cancer Society; 2006.
32.Jaattela M. Multiple cell death pathways as regulators of tumour initiation and progression. Oncogene. 2004 Apr 12;23(16):2746-56.
33.Kerr JF. History of the events leading to the formulation of the apoptosis concept. Toxicology. 2002 Dec 27;181-182:471-4.
34.Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol. 1995 Jan;146(1):3-15.
35.Fadeel B, Orrenius S, Zhivotovsky B. Apoptosis in human disease: a new skin for the old ceremony? Biochem Biophys Res Commun. 1999 Dec 29;266(3):699-717.
36.Ferri KF, Kroemer G. Control of apoptotic DNA degradation. Nat Cell Biol. 2000 Apr;2(4):E63-4.

37.Ferri KF, Kroemer G. Organelle-specific initiation of cell death pathways. Nat Cell Biol. 2001 Nov;3(11):E255-63.
38.Hengartner MO. The biochemistry of apoptosis. Nature. 2000 Oct 12;407(6805):770-6.
39.Thornberry NA, Lazebnik Y. Caspases: enemies within. Science. 1998 Aug 28;281(5381):1312-6.
40.Green D, Kroemer G. The central executioners of apoptosis: caspases or mitochondria? Trends Cell Biol 1998;8(7):267-71.
41.Debatin K. Activation of apoptosis pathways by anticancer treatment. Toxicol Lett. 2000 Mar 15;112-113:41-8.
42.Shao ZM, Li J, Wu J, Han QX, Shen ZZ, Fontana JA, et al. Neo-adjuvant chemotherapy for operable breast cancer induces apoptosis. Breast Cancer Res Treat. 1999 Feb;53(3):263-9.
43.Kim R, Tanabe K, Uchida Y, Emi M, Inoue H, Toge T. Current status of the molecular mechanisms of anticancer drug-induced apoptosis. The contribution of molecular-level analysis to cancer chemotherapy. Cancer Chemother Pharmacol. 2002 Nov;50(5):343-52. Epub 2002 Oct 3.
44.Kim R, Inoue H, Toge T. Bax is an important determinant for radiation sensitivity in esophageal carcinoma cells. Int J Mol Med. 2004 Oct;14(4):697-706.
45.Tanabe K, Kim R, Inoue H, Emi M, Uchida Y, Toge T. Antisense Bcl-2 and HER-2 oligonucleotide treatment of breast cancer cells enhances their sensitivity to anticancer drugs. Int J Oncol. 2003 Apr;22(4):875-81.


46.Verrier F, Deniaud A, Lebras M, Metivier D, Kroemer G, Mignotte B, et al. Dynamic evolution of the adenine nucleotide translocase interactome during chemotherapy-induced apoptosis. Oncogene. 2004 Oct 21;23(49):8049-64.
47.Cain K, Bratton SB, Cohen GM. The Apaf-1 apoptosome: a large caspase-activating complex. Biochimie. 2002 Feb-Mar;84(2-3):203-14.
48.Cande C, Cecconi F, Dessen P, Kroemer G. Apoptosis-inducing factor (AIF): key to the conserved caspase-independent pathways of cell death? J Cell Sci. 2002 Dec 15;115(Pt 24):4727-34.
49.Lakhani SA, Masud A, Kuida K, Porter GA, Jr., Booth CJ, Mehal WZ, et al. Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science. 2006 Feb 10;311(5762):847-51.
50.Cande C, Cohen I, Daugas E, Ravagnan L, Larochette N, Zamzami N, et al. Apoptosis-inducing factor (AIF): a novel caspase-independent death effector released from mitochondria. Biochimie. 2002 Feb-Mar;84(2-3):215-22.
51.Joseph B, Marchetti P, Formstecher P, Kroemer G, Lewensohn R, Zhivotovsky B. Mitochondrial dysfunction is an essential step for killing of non-small cell lung carcinomas resistant to conventional treatment. Oncogene. 2002 Jan 3;21(1):65-77.
52.Hong SJ, Dawson TM, Dawson VL. Nuclear and mitochondrial conversations in cell death: PARP-1 and AIF signaling. Trends Pharmacol Sci. 2004 May;25(5):259-64.
53.Yu SW, Wang H, Poitras MF, Coombs C, Bowers WJ, Federoff HJ, et al. Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science. 2002 Jul 12;297(5579):259-63.
54.Zhang J, Dong M, Li L, Fan Y, Pathre P, Dong J, et al. Endonuclease G is required for early embryogenesis and normal apoptosis in mice. Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15782-7.
55.Wu J. Apoptosis and angiogenesis: two promising tumor markers in breast cancer (review). Anticancer Res. 1996 Jul-Aug;16(4B):2233-9.
56.Furth PA, Bowcock AM. Breast Cancer: Molecular Genetics, Pathogenesis, and Therapeutics. In: Anonymous, editor. Apoptosis and the development of breast cancer. New Jersey: Humana Press; 1999. p. 171-180.
57.Fulda S, Debatin KM. Signaling through death receptors in cancer therapy. Curr Opin Pharmacol. 2004 Aug;4(4):327-32.
58.Waxman DJ, Schwartz PS. Harnessing apoptosis for improved anticancer gene therapy. Cancer Res. 2003 Dec 15;63(24):8563-72.
59.Bykov VJ, Wiman KG. Novel cancer therapy by reactivation of the p53 apoptosis pathway. Ann Med. 2003;35(7):458-65.
60.Norris JS, Hyer ML, Voelkel-Johnson C, Lowe SL, Rubinchik S, Dong JY. The use of Fas Ligand, TRAIL and Bax in gene therapy of prostate cancer. Curr Gene Ther. 2001 May;1(1):123-36.
61.Devarajan E, Sahin AA, Chen JS, Krishnamurthy RR, Aggarwal N, Brun AM, et al. Down-regulation of caspase 3 in breast cancer: a possible mechanism for chemoresistance. Oncogene. 2002 Dec 12;21(57):8843-51.

62.Yang XH, Sladek TL, Liu X, Butler BR, Froelich CJ, Thor AD. Reconstitution of caspase 3 sensitizes MCF-7 breast cancer cells to doxorubicin- and etoposide-induced apoptosis. Cancer Res. 2001 Jan 1;61(1):348-54.
63.Yang XH, Edgerton S, Thor AD. Reconstitution of caspase-3 sensitizes MCF-7 breast cancer cells to radiation therapy. Int J Oncol. 2005 Jun;26(6):1675-80.
64.Janicke RU, Ng P, Sprengart ML, Porter AG. Caspase-3 is required for alpha-fodrin cleavage but dispensable for cleavage of other death substrates in apoptosis. J Biol Chem. 1998 Jun 19;273(25):15540-5.
65.Mathiasen IS, Lademann U, Jaattela M. Apoptosis induced by vitamin D compounds in breast cancer cells is inhibited by Bcl-2 but does not involve known caspases or p53. Cancer Res. 1999 Oct 1;59(19):4848-56.
66.Xue LY, Chiu SM, Oleinick NL. Photodynamic therapy-induced death of MCF-7 human breast cancer cells: a role for caspase-3 in the late steps of apoptosis but not for the critical lethal event. Exp Cell Res. 2001 Feb 1;263(1):145-55.
67.Janicke RU, Sprengart ML, Wati MR, Porter AG. Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem. 1998 Apr 17;273(16):9357-60.
68.Lin CC, Kao ST, Chen GW, Ho HC, Chung JG. Apoptosis of human leukemia HL-60 cells and murine leukemia WEHI-3 cells induced by berberine through the activation of caspase-3. Anticancer Res. 2006 Jan-Feb;26(1A):227-42.
69.Lin JP, Yang JS, Lee JH, Hsieh WT, Chung JG. Berberine induces cell cycle arrest and apoptosis in human gastric carcinoma SNU-5 cell line. World journal of gastroenterology : World J Gastroenterol. 2006 Jan 7;12(1):21-8.
70.Ormerod MG. In: Anonymous, editor. Flow Cytometry: A Practical Approach. New York: Oxford University Press; 1990. p. 69-81.
71.Wu LT, Chu CC, Chung JG, Chen CH, Hsu LS, Liu JK, et al. Effects of tannic acid and its related compounds on food mutagens or hydrogen peroxide-induced DNA strands breaks in human lymphocytes. Mutat Res. 2004 Nov 22;556(1-2):75-82.
72.Amer J, Goldfarb A, Fibach E. Flow cytometric measurement of reactive oxygen species production by normal and thalassaemic red blood cells. Eur J Haematol. 2003 Feb;70(2):84-90.
73.Carter WO, Narayanan PK, Robinson JP. Intracellular hydrogen peroxide and superoxide anion detection in endothelial cells. J Leukoc Biol. 1994 Feb;55(2):253-8.
74.Jakubowski W, Bartosz G. 2,7-dichlorofluorescin oxidation and reactive oxygen species: what does it measure? Cell Biol Int 2000;24(10):757-60.
75.Sanchez Ferrer A, Santema JS, Hilhorst R, Visser AJ. Fluorescence detection of enzymatically formed hydrogen peroxide in aqueous solution and in reversed micelles. Anal Biochem. 1990 May 15;187(1):129-32.
76.Grierson JP, Petroski RE, O''Connell SM, Geller HM. Calcium homeostasis in dissociated embryonic neurons: a flow cytometric analysis. J Neurophysiol. 1992 Mar;67(3):704-14.
77.Griffiths EJ, Stern MD, Silverman HS. Measurement of mitochondrial calcium in single living cardiomyocytes by selective removal of cytosolic indo 1. Am J Physiol. 1997 Jul;273(1 Pt 1):C37-44.
78.Lopez M, Olive D, Mannoni P. Analysis of cytosolic ionized calcium variation in polymorphonuclear leukocytes using flow cytometry and Indo-1 AM. Cytometry. 1989 Mar;10(2):165-73.
79.Zhou Z, Matlib MA, Bers DM. Cytosolic and mitochondrial Ca2+ signals in patch clamped mammalian ventricular myocytes. J Physiol. 1998 Mar 1;507 ( Pt 2):379-403.
80.Jenssen HL, Redmann K, Mix E. Flow cytometric estimation of transmembrane potential of macrophages--a comparison with microelectrode measurements. Cytometry. 1986 Jul;7(4):339-46.
81.Lee C, Chen LB. Dynamic behavior of endoplasmic reticulum in living cells. Cell. 1988 Jul 1;54(1):37-46.
82.Lee C, Wu SS, Chen LB. Photosensitization by 3,3''-dihexyloxacarbocyanine iodide: specific disruption of microtubules and inactivation of organelle motility. Cancer Res. 1995 May 15;55(10):2063-9.
83.Rottenberg H, Wu S. Mitochondrial dysfunction in lymphocytes from old mice: enhanced activation of the permeability transition. Biochem Biophys Res Commun. 1997 Nov 7;240(1):68-74.
84.Sabnis RW, Deligeorgiev TG, Jachak MN, Dalvi TS. DiOC6(3): a useful dye for staining the endoplasmic reticulum. Biotech Histochem. 1997 Sep;72(5):253-8.


85.Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350-4.
86.Surh YJ, Lee SS. Capsaicin, a double-edged sword: toxicity, metabolism, and chemopreventive potential. Life Sci 1995;56(22):1845-55.
87.Olajos EJ, Salem H. Riot control agents: pharmacology, toxicology, biochemistry and chemistry. J Appl Toxicol. 2001 Sep-Oct;21(5):355-91.
88.Surh YJ, Lee RC, Park KK, Mayne ST, Liem A, Miller JA. Chemoprotective effects of capsaicin and diallyl sulfide against mutagenesis or tumorigenesis by vinyl carbamate and N-nitrosodimethylamine. Carcinogenesis. 1995 Oct;16(10):2467-71.
89.Fisher DE. Apoptosis in cancer therapy: crossing the threshold. Cell. 1994 Aug 26;78(4):539-42.
90.Friesen C, Fulda S, Debatin KM. Cytotoxic drugs and the CD95 pathway. Leukemia. 1999 Nov;13(11):1854-8.
91.Green DR. Apoptotic pathways: paper wraps stone blunts scissors. Cell. 2000 Jul 7;102(1):1-4.
92.Leist M, Jaattela M. Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol. 2001 Aug;2(8):589-98.
93.Brown JM, Wouters BG. Apoptosis: mediator or mode of cell killing by anticancer agents? Drug Resist Updat. 2001 Apr;4(2):135-6.
94.Schmitt CA, Lowe SW. Apoptosis is critical for drug response in vivo. Drug Resist Updat. 2001 Apr;4(2):132-4.
95.Hwang JT, Park IJ, Shin JI, Lee YK, Lee SK, Baik HW, et al. Genistein, EGCG, and capsaicin inhibit adipocyte differentiation process via activating AMP-activated protein kinase. Biochem Biophys Res Commun. 2005 Dec 16;338(2):694-9.
96.Jung J, Hwang SW, Kwak J, Lee SY, Kang CJ, Kim WB, et al. Capsaicin binds to the intracellular domain of the capsaicin-activated ion channel. J Neurosci. 1999 Jan 15;19(2):529-38.
97.Mohamad N, Gutierrez A, Nunez M, Cocca C, Martin G, Cricco G, et al. Mitochondrial apoptotic pathways. Biocell. 2005 Aug;29(2):149-61.
















QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔