(3.238.173.209) 您好!臺灣時間:2021/05/09 15:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:陳天益
論文名稱:以賈可比矩陣分佈因子求解電力系統無效功率經濟調度之問題
論文名稱(外文):A New Approach for Reactive Power Economic Dispatch by Jacobian Based Distribution Factor
指導教授:陳宣泰黃維澤
學位類別:碩士
校院名稱:建國科技大學
系所名稱:電機工程系暨研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:94
中文關鍵詞:賈可比分佈因子修正式賈可比分佈因子虛功流量虛功目標函數虛功成本函數
外文關鍵詞:JBDFrevised JBDFreactive power dispatchreactive power cost functionreactive power line flow
相關次數:
  • 被引用被引用:0
  • 點閱點閱:211
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
電力系統無效功率之最佳化調度遠較實功困難,此乃因虛功在電力潮流模型中均被視為定值且與母線電壓直接相關,故於虛功發電量之調整過程電壓也必然變動,故與原先電壓控制母線之假設完全不同。因虛功之最佳化調度計算困難,故實際之電力系統控制中心日常仍以實功經濟調度為主,而虛功則由區域負載中心提供,不足之額方由系統發電機供應。雖然大致上均以此方式調度,但仍會出現一些問題,即臨時性或不正常之虛功需求仍需由系統提供,故仍有積極調度之必要。一般虛功之調度均以傳輸損失作為目標函數,此乃因虛功流量對損失仍有相同之影響。本文乃依修正後之賈可比分佈因子建立虛功流量與損失模型,並依此模型提出二種求解之方法。此外,本文另提出一二次式之虛功成本計算模式,並依此模式推導建立虛功經濟調度之模型。最後,本文所提修正式賈可比分佈因子及三種虛功經濟調度之方法,均以IEEE 14-Bus及IEEE 30-Bus之系統驗證其有效性與實用性,由模擬測試之結果顯示,其不但準確而且快速,極適於線上之即時調度應用。
Reactive power optimal dispatch is more difficult than real power dispatch. In general, reactive powers are always supplied by the local distribution centers and can seriously affect the bus voltages. But in complex interconnected power systems, the sudden and unusual requirements of reactive power are still supplied by the generators. As a result, the reactive power flows on transmission lines can not be ignored and will cause some losses in transmission. Based on this reason, most system researchers treat the reactive power dispatch as an optimal problem by taking the transmission losses as objective function. In this thesis, the transmission losses are expressed in terms of line flows which are formulated by Jacobian based distribution factor (JBDF). The conventional JBDF sensitivity factors can only reflect the changes of reactive loads, but not reactive generating powers, to the line flows. They should be revised by taking some adjustments and involved in the loss models. Based on these models, three solution methods for the reactive power economic dispatch problem have been proposed and tested by IEEE 14-Bus and IEEE 30-Bus sample systems. As demonstrated by the simulation results, the proposed revised JBDF sensitivity factors can precisely compute line flows during dispatch computations. They make the computations of transmission losses and line flows to be very easy without the need of executing power flow program. This good feature also makes the reactive power dispatch problem become easy to approach and results in excellent results. The proposed methods are very suitable for real time applications due to their fast computations.
摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 I
符號索引 IV
第一章 緒論 1
1-1 研究動機與背景 1
1-2 研究方法與步驟 5
1-3 主要貢獻 5
1-4 論文架構 6
第二章 負載潮流 7
2-1 前言 7
2-2簡介負載潮流求解方法 7
2-2-1 負載潮流方程式 8
2-3 牛頓-拉弗森法簡介 11
2-3-1 求解負載潮流之牛頓-拉弗森法 13
第三章 賈可比矩陣分佈因子 19
3-1 前言 19
3-2 賈可比矩陣分佈因子 20
3-3 賈可比虛功流量負載量分佈因子 20
3-3-1 母線注入變化量ΔQ之建立 23
3-4 賈可比虛功流量發電量分佈因子 26
3-5 測試系統分析與討論 29
3-5-1賈可比虛功分佈因子作LSDF之結果討論 30
3-5-2賈可比虛功分佈因子作GSDF用之結果討論 30
第四章 以賈可比矩陣分佈因子快速求解電力系統虛功經濟調度之問題 62
4-1 前言 62
4-2以賈可比矩陣分佈因子求解電力系統虛功經濟調度之問題 62
4-2-1求解方法(一):以輸電損失為目標函數 62
4-2-2求解方法(二):以二次式虛功成本函數為目標函數 66
4-2-3求解方法(三):以虛功平方總和為目標函數 70
4-3 實例模擬測試之結果與討論 72
第五章 結論及未來研究方向 80
5-1結論 80
5-2未來發展方向 80
參考文獻 81
附錄 88
[1] A. J. Wood and B. F. Wollenberg, Power Generation, Operation and Control, Wiley, New York, 91-109, 1984, pp. 410-430.
[2] W. F. Tinney and C. E. Hart, “Power Flow Solution by Newton’s Method,” IEEE Transactions on Power Apparatus and Systems, Vol. PAS-86, 1967, pp. 1449-1460.
[3] B. Stott and O. Alsac, “Fast Decoupled Load Flow,” IEEE Transactions on Power Apparatus and Systems. Vol. PAS-93, No. 3 , 1974.
[4] Hieu Le Nguyen, “Newton-Raphson Method in Complex form Power Flow Analysis,” 1996 IEEE Proceedings of Transmission and Distribution Conference, 1996, pp. 591 – 595.
[5] B. Stott, “Review of Load Flow Calculation Methods,” Proceedings of the IEEE, Vol. 62, No. 7, 1974.
[6] W. Y. Ng, “Generalized Generation Distribution Factors for Power System Security Evaluations,” IEEE Transactions on Power Apparatus and Systems, Vol. PAS-100, 1981, pp. 1001-1005.
[7] C. E. Lin, S. T. Chen and C. L. Huang, “A Two-Step Sensitivity Approach for Real-Time Line Flow Calculation,” Journal of Electrical Power Systems Research, 21, 1991, pp. 63-69.
[8] Y. C. Chang, W. T. Yang and C. C. Liu, “Improvement on GGDF for Power System security Evaluation,” IEE Proceedings-Generation, Transmission and Distribution, Vol. 141 ,1994, pp. 85 - 88.
[9] 姜士均,以敏感因子法求解電力系統即時實功及虛功線路之流量,碩士論文,建國科技大學機電光系統研究所,台灣,(2005)。
[10] 徐守青,靈敏度因子法連續電力潮流程式的開發與應用,碩士論文,國立臺灣工業技術學院電機工程技術研究所,台灣,(1994)。
[11] H. H. Happ, “Optimal Power Dispatch – A Comprehensive Survey,” IEEE Transactions on Power Apparatus and Systems, Vol. PAS-96, No.3, 1977, pp. 841-854.
[12] L. K. Kirchmayer, Economic operation of Power Systems, John Wiley & Sons, Incorporation, New York, 1958.
[13] E. E. George, “Intrasystem Transmission Losses,” AIIEE Transactions, Vol. 62,1943,pp. 153-158.
[14] H. W. Dommel and W. F. Tinney, “Optimal Power Flow Solution,” IEEE Transactions on Power Apparatus and Systems, Vol. PAS-87, No.10, 1968, pp. 1866-1876.
[15] W. Y. Li, “An on-Line Economic Power Dispatch Method with Security,” Journal of Electrical Power Systems Research, No.2 1985, pp. 173-181.
[16] D. R. C. Mamandur and G. J. Berg, “Economic Shift in Electric Power Generation with Line Flow Constraints,” IEEE Transactions on Power Apparatus and Systems, Vol. PAS-97, No.5 , 1978, pp. 1618-1626.
[17] R. Podmore, “Economic Dispatch With Line Security Limits,” IEEE Transactions on Power Apparatus and Systems, Vol. PAS-99, No.1 , 1974, pp. 289-295.
[18] O. Alsac and B. Stottt, “Optimal Load Flow with Steady-State Security,” IEEE Transactions on Power Apparatus and Systems, Vol. PAS-93, No.3 , 1974, pp. 745-751.
[19] W. O. Stadlin, “Economic Allocation of Regulating Matgin,” IEEE Transactions on Power Apparatus and Systems, Vol. PAS-90, No.4 , 1971, pp. 1776-1781.
[20] R. B. Gungor, N. F. Tsang and B. Webb, “A Technique for Optimizing Real and Reactive Power Schedules,” IEEE Transactions on Power Apparatus and Systems, Vol. PAS-90, No.4, 1971, pp. 1781-1790.
[21] K. Aoki and T. Satoh, ”Economic Dispatch with Network Security Constraints Using Parametric Ouadratic Programming,” IEEE Transactions on Power Apparatus and Systems, Vol. PAS-101, No.12 , 1982, pp. 4548-4556.
[22] C. M. Shen and M. A. Laughton ,”Power System Load Scheduling with Security Constraints Using Dual Linear Programming,” IEE Proceeding, Vol. 117, No.11, 1970, pp. 2117-2127.
[23] S. M. Chan and E. Yip ,“A Solution of Transmission Limited Dispatch Problem by Sparse Linear Programming,” IEEE Transactions on Power Apparatus and Systems, Vol. PAS-98, No.3 , 1979, pp. 1044-1053.
[24] H. H. Happ, “Optimal Power Dispatch,” IEEE Transactions on Power Apparatus and Systems, Vol. PAS-93, No.3 , 1974, pp. 820-830.
[25] C. E. Lin, Y. Y. Hong and C. C. Chuko, “Real-Time Fast Economic Dispatch,” IEEE Transactions on PWRS, Vol. PWRS-2, No.4 , 1987, pp. 968-972.
[26] M. J. Steinberg and T. H. Smith, “The Theory of Incremental Rates,“ Part I, Electrical Engineering March, 1934, Part II, Electrical Engineering April, 1934.
[27] Y. C. Chang, W. T. Yabg and C. C. Liu, “A New Method for Loss Coefficients ,” IEEE Transactions on Power Systems, Vol. 9, No. 3, 1994.
[28] R. C. Burchett, H. H. Happ, D. R. Vierath and K. A. Wirgav, “Developments in Optimal Power Flow,” IEEE Transactions on Power Appatratus and Systems, Vol. PAS-101, No. 2, 1982, pp. 406-414.
[29] 陳宣泰,電力系統敏感因子經濟調度法之研究,博士論文,國立成功大學電機工程系,台灣,(1991)。
[30] C. E. Lin, S. T. Chen and C. L. Huang, “A Direct Newton-Raphson Economic Dispatch,” IEEE Transaction on Power Systems, Vol. 7, No. 3, 1992, pp. 1149 - 1154.
[31] C. E. Lin and S.T. Chen, “Real-Time Economic Dispatch for Non-Conformering Demand Changes,” IEE International Conference on Advances in Power System Control, Operation and Management, Vol.1, 1991, pp. 301- 305.
[32] R. M. Jan and N. Chen, “Application of the Fast Newton-Raphson Economic Dispatch and Reactive Power/Voltage Dispatch by Sensitivity Factors to Optimal Power Flow,” IEEE Transactions on Energy Conversion, Vol. 10, Issue 2, 1995, pp. 293 - 301
[33] 吳進忠,獨立電力系統合理備轉容量規劃與調度之研究,博士論文,國立臺灣科技大學電機工程系,台灣,(2003)。
[34] L. I. Zhijie and M. D. Anderson, “Comparison of Two Use-of-System Methods for Allocating Transmission Supplementary Cost,” IEEE Power Engineering Society Summer Meeting, Vol. 2, 2001, pp. 1146 - 1151.
[35] A. Jiang and S. Ertem, “Polynomial Loss Models for Economic Dispatch and Error Estimation,” IEEE Transactions on Power Systems, Vol. 10, Issue 3, 1995, pp. 1546 - 1552.
[36] Y. C. Chang, W. T. Yabg and C. C. Liu, “A New Method for Loss Coefficients,” IEEE Transactions on Power Systems, Vol. 9, No. 3, August 1994.
[37] D. I. Sun, B. Ashley, B. Brewer, A. Hughes and W. F. Tinney, “Optimal Power Flow by Newton Approach,” IEEE Transactions on Power Apparatus and Systems, Vol. PAS-103, No. 10, 1984.
[38] J. F. Chen and S. D. Chen, “Multiobjective Power Dispatch with Line Flow Constraints Using the Fast Newton-Raphson Method,” IEEE Transactions on Energy Conversion, Vol. 12, Issue 1, 1997, pp. 86 - 93.
[39] R. R. Shoults, W. J. Bierck and Jr., “Buffer System Selection of a Steady-state External Equivalent Model for Real-time Power Flow Using an Automated Sensitivity Analysis Procedure,” IEEE Transactions on Power Systems, Vol. 3, Issue 3, 1988, pp. 1104 - 1111.
[40] R. C. Burchett, H. H. Happ and D. R. Vierath, “Quadratically Convergent Optimal Power Flow,” IEEE Transactions on Power Appatratus and Systems, Vol. 103, No. 11, 1984, pp.3267-3275.
[41] Z. X. Liang and J.D. Glover, “Improved Cost Functions for Economic Dispatch Computations,” IEEE Transactions on PWRS, Vol.6, No.2, 1991, pp. 821-829.
[42] 賴文川,以賈可比矩陣分佈因子求解電力系統經濟調度之研究,碩士論文,建國科技大學電機工程系,台灣,(2008)。
[43] J. Nanda, L. Hari and M. L. Kothari, ”Challenging Algorithm for Optimal Reactive Power Dispatch Through Classical Coordination Equations,” IEE Proceedings-C, Vol. 139, No. 2, March 1992. pp.93-101.
[44] H. Raoufi and M. Kalantar ,“Reactive Power Rescheduling with Generator Ranking For Improving Voltage Stability Margin,” Power Engineering, 2007 Large Engineering Systems Conference 10-12 Oct. 2007, pp.218–225.
[45] R. M. Palomino, and V.H. Quintana, ”Sparse Reactive Power Scheduling by a Penalty Function-Linear Programming Technique,” IEEE Transactions on Power Systems, Vol. PWRS-1, No. 3, August 1986, pp. 31-39.
[46] A. H. Elabiad and F. J. Jaimes,“A Method for Optimum Scheduling of Reactive Power and Voltage Magnitude,”IEEE Transactions on Power Appatratus and Systems, Vol. PAS-88, NO. 4, April 1969, pp.413-422.
[47] S. Corsi, P. Marannino, N. Losignore, G. Moreschini and G. Piccini, “Coordination Between the Reactive Power Scheduling Function and the Hierarchical Voltage Control of the EHV ENEL System,” lEEE Transactions on Power Systems, Vol. 10, No. 2, May 1995, pp.686-694.
[48] S. S. Sharif and J. H. Taylor,“MINLP Formulation of Optimal Reactive Power Flow,” Proceedings of the American Control Conference Albuquerque, New Mexico June 1997, pp.1974-1978.
[49] L. D. B. Terra and M. J. Short,“Security-Constrained Reactive Power Dispatch,” IEEE Power Engineering Review, February 1991, pp.51-52.
[50] I. El-Samahy, C. A. Cañizares, K. Bhattacharya and J. Pan, “An Optimal Reactive Power Dispatch Model for Deregulated Electricity Markets,” Power Engineering Society General Meeting 2007 IEEE, 24-28 June 2007, pp.1-7.
[51] A.M. Chebbo M.R. Irving M.J.H. Sterling, “Reactive power Dispatch Incorporating Voltage StabiIity,” IEE Proceedings-C, Vol. 139, No. 3, May 1992, pp.253-260.
[52] L. D. B. Terra and M. J. Short, “Security-Constrained Ractive Power Dispatch,” IEEE Transactions on Power Systems, Vo1.6, No.1, February 1991, pp.109-117.
[53] L.Y.C. Amarasinghe, U.D. Annakkage and R.A.S.K. Ranatunga, “A Reactive Power Model for a Simultaneous Real and Reactive Power Dispatch,”Power Engineering Society General Meeting, 2007 IEEE, 24-28 June 2007 pp.1-7.
[54] John W. Lamont and Jian Fu, “Cost Analysis of Reactive Power Support,” IEEE Transactions on Power Systems, Vol. 14, NO. 3, August 1999, pp.890-898.
[55] W.N.W Abdullah, H. Saibon, A.A.M Zain and K.L. Lo,“Genetic Algorithm for Optimal Reactive Power Dispatch,” Energy Management and Power Delivery, Proceedings of EMPD '98. 1998 International Conference, 3-5 March 1998, Vol.1, pp.160-164.
[56] R.Suresh and N. Kumarappan,“Genetic Algorithm Based Reactive Power Optimization Under Deregulation,” IET-UK International Conference on Information and Communication Technology in Electrical Sciences (ICTES 2007) Dec. 20-22, 2007. pp. 150-155.
[57] Qhwu and Jtma, “Genetic Search for Optimal Reactive Power Dispatch of Power Systems,” CONTROL'94.21-24 March 1994. Conference Publication No.389 IEE 1994, pp.717-722.
[58] Q. H. Wu, and J. T. Ma, “Power System Optimal Reactive Power Dispatch Using Evolutionary Programming,” IEEE Transactions on Power Systems, Vol. 10. No. 3, August 1995, pp.1243-1249.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔