跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.224) 您好!臺灣時間:2024/04/14 19:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林韋男
論文名稱:具飽和時間延遲參數擾動系統之時延相關強健穩定度研究
論文名稱(外文):Robust Stability for Uncertain Time Delay-Actuator Saturation with Delay-dependence
指導教授:董佳璋董佳璋引用關係
學位類別:碩士
校院名稱:建國科技大學
系所名稱:電機工程系暨研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:81
中文關鍵詞:時延系統強健穩定度李亞普諾夫方程式線性矩陣不等式
外文關鍵詞:Time delay systemRobust stabilityLyapunov functionLinear matrix inequality
相關次數:
  • 被引用被引用:0
  • 點閱點閱:130
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在探討時延系統之強健穩定度分析,強健穩定受到學者與專家注意與探討,在各型式之控制系統中皆可能遭遇時間延遲問題,時間延遲為不穩定的來源之一,因此控制系統的時間延遲強健穩定問題值得討論與研究。
時間延遲系統時常發生在訊息傳輸,如傳輸系統、通信系統、化學處理系統與動力系統都有延遲現象,在控制系統設計中含有限制性控制器時,致動器之動態範圍因飽和受到限制,故時延系統強健穩定飽和問題亦受到相當多的關注;本文應用Lyapunov-Krasovskii為基礎結合LMI(Linear Matrix Inequality)的方法,推導出延遲相關強健穩定準則,推導之結果與現有文獻比較,在相同例子下,可承受較大擾動之延遲時間範圍,最後,將所推出之準則應用於實例分析,確保系統在最大延遲時間範圍內仍保持漸近穩定。
This paper aims to explore robust stability analysis of time delay system. Robust stability for time delay system has been attracting the attention of many researchers. Time delay is frequently encountered in various control systems, and the existence of the delay is a source of instability. Therefore, the stability problem of time delay systems has been one of the most popular research areas in control systems over the years.
Time delay system is often occurring in the transmission of information or material between different parts of a system. Transportation systems, communication systems, chemical processing systems, and power systems are examples of time delay systems. In control system design, the limited power supply is the form of a saturating actuator in a practical system. In this thesis, one delay dependent robust stability criteria based on Lyapunov-Krasovskii functional combining with LMI approach has been developed and derived step by step. The proposed stabilization criteria is relatively simple to be checked by simulations and can be applied to the time delay systems with actuator saturation and perturbation. The given systems have been proven to be asymptotically stable.
摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 VI
第一章 緒論 1
1.1研究動機與目的 1
1.2 文獻探討 3
1.3 論文架構 4
第二章 相關數學理論與輔助定理 6
2.1 符號說明 6
2.2 相關數學理論與輔助定理 7
第三章 Lyapunov理論 11
3.1 穩定性研究與Lyapunov穩定 11
3.2 Lyapunov推導 13
3.3 Lyapunov-Krasovskii介紹 14
第四章 時延系統 16
4.1 時延系統介紹 16
4.2 時延無關與時延相關 16
4.3 輾壓系統之時延現象 17
第五章 問題與探討 21
5.1 前言 21
5.2 時延系統強健穩定準則 22
5.3 狀態回授控制器時延系統強健穩定準則 27
5.4 輸出回授控制器時延系統強健穩定準則 35
5.5 具飽和時延系統強健穩定準則 42
5.6 參數擾動穩定準則 50
5.6.1 參數擾動時延系統強健穩定準則 50
5.6.2 參數擾動狀態回授控制器時延系統強健穩定準則 54
5.6.3 參數擾動輸出回授控制器時延系統強健穩定準則 60
5.6.4 參數擾動具飽和時延系統強健穩定準則 65
5.7 實例探討 71
第六章 結論與未來研究方向 75
6.1 結論 75
6.2 未來研究方向 76
參考文獻 77
[1] P. L. Liu, “Robust stability for parameterically perturbed time-delay systems with delay-dependence,” Ph.D. dissertation, Dept. Ind. Tech. Edu., National Changhua University of Education, Changhua, 2001.
[2] 陳財煌,不確定線性時延系統之強健容錯控制研究,建國科技大學機電光系統研究所碩士學位論文,2005。
[3] 黃偉筌,時延系統穩定化之強健控制分析研究,建國科技大學電機工程研究所碩士論文,2006。
[4] T. Y. Lu, “Robust stabilization for time-delay systems with delay-dependence-A linear matrix inequality approach,” M.S.E.E. Thesis, Chienkuo Technology University, Changhua, 2006.
[5] T. J. Su and C.G. Huang, “Estimating the delay time for the stability of linear systems,” J. Elect. Eng, Vol. 34, No. 3, pp. 195-198, 1991.
[6] P. L. Liu and T. J. Su, “Robust stability of interval time-delay systems with delay-dependent,” Syst. Control. Lett, Vol. 33, No. 4, pp. 231-239, 1998.
[7] S. Boyd, L. E. Ghaoui, E. Feron and V. Balakrishnan, “Linear Matrix Inequalities in System and Control Theory,” SIAM, PA: Philadelphia, 1994.
[8] H. J. Gao and C. H. Wang, “Comments and further results on a descriptor system approach to control of linear time-delay systems,” IEEE Transactions on Automatic Control, Vol. 48, N0. 3, pp. 520-525, 2003.
[9] S. I. Niculescu, J. M. Dion and L. Dugard, “Robust stabilization for uncertain time-delay systems containing saturating actuators,” IEEE Transactions on Automatic Control, Vol. 41, pp. 742-747, 1996.
[10] S. I. Niculescu, C. E. de Souza, J. M. Dion and L. Dugrad, “Robust stability and stabilization of uncertain linear systems with state delay:single delay case (I),” Proc. IFAC Symp. Robust Control Design, Sep. 1994.
[11] T. J. Su, C. Y. Lu and J. S. H. Tsai, “Delay-dependent robust stabilization for uncertain time-delay systems with saturating actuators-LMI approach,” Proceedings of the American Control Conference, pp. 3357-3358, May. 2002.
[12] H. Su and J. Chu, “Stabilization of a class of uncertain time-delay systems containing saturating actuators,” International Journal of Systems Science, Vol. 30, No. 11, pp. 1193-1203, 1999.
[13] E. Fridman and U. Shaked, “An improvement stabilization method for linear time-delay systems,” IEEE Transactions on Automatic Control, Vol. 47, No. 11, pp. 1931-1937, 2002.
[14] X. Li and C. E. de Souza, “Delay-dependent robust stability and stabilization of uncertain linear delay systems: A linear matrix inequality approach,” IEEE Transactions on Automatic Control, Vol 42, No. 8, pp. 1144-1148, Aug. 1997.
[15] X. Li and C. E. de Souza, “Criteria for robust stability and stabilization of uncertain linear systems with state delay,” Automatica, Vol. 33, pp. 1657-1662, 1997.
[16] C. Y. Lu, J. S. H. Tsai and T. J. Su, “On improved delay-dependent robust stability criteria for uncertain systems with multiple-state delays;” IEEE Transactions on Automatic Control, Vol. 49. No. 2, pp.253-256, Feb. 2002.
[17] M. Wu, Y. He, J. H She and G. P. Liu, “Delay-dependent criteria for robust stability of time-varying delay systems, ” Automatica, Vol. 40, pp. 1435-1439, 2004.
[18] E. K. Boukas and Z. K. Liu, Deterministic and Stochastic Time Delay Systems, Birkhauser, 2002.
[19] J. Dugard and I.E. Verriest, “Stability and control of time-delay systems,” New York:Academic Press, 1997.
[20] Y. S. Moon, P. Park, W. H. Kwon and Y. S. Lee, “Delay-dependent robust stabilization of uncertain state-delayed systems,” Int. J. Control, Vol. 74, No. 14, pp. 1447-1455, 2001.
[21] 何勇,基於自由權矩陣的時滯相關魯棒穩定與鎮定,中南大學博士學位論文,2004。
[22] 楊憲東、葉芳栢,線性與非線性 控制理論,全華科技圖書股份有限公司,1997。
[23] 王允上,Lyapunov準則之強健取樣控制系統設計,逢甲大學電子工程學系碩士班碩士論文,2005。
[24] 林俊良,控制系統數學,全華科技圖書股份有限公司,1999。
[25] S. I. Niculescu and K. Gu, Advances in Time-Delay Systems, Springer Verlag, 2004.
[26] P. L. Liu, “Delay-dependent asymptotic stabilization for uncertain time-delay systems with saturating actuators,” Int. J. Appl, Vol. 15, No. 1, pp. 45-51, 2005.
[27] R. C. Luo and L. Y. Chung, “Stabilization for linear uncertain system with time latency, ” IEEE Transactions on Industrial Electronic, Vol. 49, No. 4, pp. 905-910, Aug. 2002.
[28] S. I. Niculescu, E. Carlos, de. Souza, L. Dugard and J. M. Dion, “Robust exponential stability of uncertain systems with time-varying delays, ” IEEE Transactions on Automatic Control, Vol. 43, No. 5, pp. 743-748, May. 1998.
[29] X. Z. Sun and M. Jiang, “Research of robust stability for uncertain time-delay systems,” Journal of Anhui University of Technology And Science, Vol 23. No2. pp. 39-41, Jun. 2008.
[30] Y. He, M. Wu and J. H. She, “Delay-dependent stability criteria for linear systems with multiple time delays,” IEE Proc. Control Theory Appl, Vol. 153, No. 4, pp. 447-452, July. 2006.
[31] S. P. Xiao and M. Wu, “New delay-dependent robust stability criteria for linear systems with time-delay,” Control and Decision,Vol. 23, No. 1 pp. 110-113, Jan. 2008.
[32] J. J. Yan, J. S. H. Tsai and F. C. Kung, “A new result on the robust stability of uncertain systems with time-varying delay,” IEEE Transactions on circuits and systems, Vol. 48, No. 7, pp. 914-916, July. 2001.
[33] 張志銘,線性時間延遲系統之強健穩定化:線性矩陣不等式的方法,國立高雄應用科技大學電機工程系碩士班碩士論文,2007。
[34] J. Lam, H. Gao and C. Wang, “Stability analysis for continuous systems with two additive time-varying delay components,” Systems & Control Letters, Vol. 56, pp. 16-24, 2007.
[35] 賈新春,不確定系統的魯棒分析及其控制綜合研究,西安交通大學博士學位論文,2003。
[36] 李麗春,魯棒控制在網絡控制系統中的應用,浙江大學碩士學位論文,2007。
[37] J. F. Zhang, “A New Tool in Solving Control Theory Problems:LMI Convex Optimization method,” Computing Technology and Automation, Vol. 22. No. 1, pp. 8-11, Mar. 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊