(3.236.214.19) 您好!臺灣時間:2021/05/10 06:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:張兼榕
研究生(外文):J. R. Jhang
論文名稱:具方形鰭柱之矩形槽道暫態液晶顯影邊壁熱傳特性實驗研究
論文名稱(外文):Experimental study of end-wall heat transfer characteristics of the square pin-fin array in a rectangular channel by using the transient liquid crystal method
指導教授:王紀瑞
指導教授(外文):J. R. Wang
學位類別:碩士
校院名稱:建國科技大學
系所名稱:自動化工程系暨機電光系統研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:132
中文關鍵詞:暫態液晶法鰭柱陣列邊壁熱傳
外文關鍵詞:Transient liquid crystalpin-fin arrayend-wall heat transfer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:252
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用暫態液晶實驗法測定方形鰭柱陣列於矩形槽道內其邊壁熱傳特性,採用壓克力製作之方柱鰭片散熱座,並具有不同軸之軸向與橫向相對方柱間距,鰭柱尺寸為8mm (d) × 8mm (d) × 64mm (Hf),均勻直行排列於240mm (L)×120mm (W)×64mm (H)之矩形槽道內,方形鰭柱數目計有(n=24)、(n=36)、(n=48)、(n=612)、(n=714)、(n=816)等六種,相對方柱間距(SL/d=ST/d)為(7.5mm、5 mm、3.75 mm、2.5 mm、2.14 mm、1.88 mm),測試計有六種相對間距方型鰭柱之排列組合,且採用環境空氣為工作流體,變動參數為雷諾數與鰭柱間距,結果顯示平均紐塞數(Nu)會隨著雷諾數(Re)之增加而增加,也會隨橫向相對方柱間距(XT)降低而增加,不過相較之下軸向相對方柱間距(XL)對紐塞數(Nu)的影響則較不顯著。
在本實驗中可了解到摩擦係數(f)主要形狀阻力所致,故而摩擦係數(f)與雷諾數(Re)的二次方成正比關係,此外,f會隨橫向相對方柱間距降低、或軸向相對方柱間距增大而增大;最後本研究提出矩形槽道內之方型柱狀鰭片散熱座之平均紐塞數對雷諾數之經驗修正公式,和平均紐塞數對應無因次鼓風功率參數(fRe3)之關係式,實驗中發現在相同鼓風功率下,橫向相對方柱間距與軸向相對方柱間距愈小會有較佳之Nu,而fRe3與Nu之關係只與散熱座之鰭柱間距安排有關。
This work investigated the detailed end-wall heat transfer characteristics of the square pin-fin array in a rectangular channel by using the transient liquid crystal method. Use acrylic make square pin-fin teat sink has different relative axial and transverse distances against.The pin fins of dimension 8mm (d) × 8mm (d) × 64mm (Hf) were uniformly filled in the 240mm (L) × 120mm (W) × 64mm (H) channel with in-line arrangement. Six pin-fin numbers were employed. There were (n=24)、(n=36)、(n=48)、(n=612)、(n=714)、(n=816). The working fluid was air. Relative distances against the square pin-fin ( 7.5mm、5 mm、3.75 mm、2.5 mm、2.14 mm、1.88 mm ). A total of seven combinations of relative distance were tested. The working fluid was air. Varied parameters were the Reynolds number and the space between fins. The results showed that the average Nusselt number increases as the Reynold number increases, and decreases as the relative transverse distance against the square pin-fin (XT) decreases. Under comparison, the relative axial distance (XL) has insignificant effect on Nu. Friction coefficient (f) is subject to shape resistance, thus, f is proportional to the square of Re. Also, f increases as the relative transverse distance decreases, and the relative axial distance increases. Lastly, modification of empirical formula of average Nu to Re for in-channel square pin-fin heat sink, and relation of average Nu to dimensionless air blast power parameter (fRe3),are proposed. It was found that under the same blast power, smaller relative axial and transverse distances against the square pin-fin would generate better Nu, and the relation between fRe3 and Nu is only correlated with the interval between the pin-fin.
目  錄

頁次
中文摘要 Ⅰ
英文摘要 Ⅱ
致謝 Ⅲ
目錄 Ⅳ
表目錄 Ⅵ
圖目錄 Ⅶ
符號說明 IV
第一章 緒論 1
  1-1 研究動機與背景 1
  1-2 熱傳遞機制 3
  1-3 文獻回顧 4
1-3-1 鰭片在槽道中研究之應用 4
1-3-2 液晶在熱傳研究之應用 10
  1-4 研究目標 14
1-5 研究架構 15
第二章 理論分析 17
  2-1 實驗理論 17
  2-2 液晶定義與應用 18
第三章 實驗方法 21
  3-1 實驗步驟 21
3-2 實驗設備 22
   3-2-1 熱空氣供應系統 22
3-2-2 實驗測試段 22
3-2-3 方形柱狀鰭片測試段 23
3-2-4 液晶 23
3-2-5 影像擷取系統 24
3-2-6 影像分析程序 25
3-2-7 溫度擷取系統 25
3-2-8 數據擷取器 26
3-3 實驗操作流程 27
3-4 數據整理 28
3-5 不準確度分析 29
第四章 結果與討論 48
  4-1 不同相對間距對平均紐塞數之影響 50
  4-2 不同相對間距對壓降之影響 52
  4-3 雷諾數對摩擦係數之影響 53
4-4 雷諾數對平均紐塞數之影響 54
第五章 結論與未來展望 100
  5-1 本研究之重要結論 100
  5-2 未來展望 102
參考文獻 104
附錄A 110
附錄B 111
附錄C 112
附錄D 113
作者簡歷 117
參 考 文 獻
[1] Hwang, J.J., Lui, C.C., “Detailed heat transfer characteristic comparison in straight and 90-deg turned trapezoidal ducts with pin-fin arrays,” Int.J.Heat Mass Transfer, Vol. 42,pp.4005~4016,1999.
[2] Hwang, J.J., Lui, C.C., “Measurement of endwall heat transfer and pressure drop in a pin-fin wedge duct,” Int.J.Heat Mass Transfer,Vol.45,pp.887~889,2002.
[3] Jeng, T.M., Wang, M.P., Hwang, G.J., and Hung, Y.H., 2004, “Thermal Behavior in Rectangular Channels by Using Transient Liquid Crystal Method,” Experimental Heat Transfer, Vol. 17, pp. 147-160.
[4] Yan, W.M., Mei, S.C., Liu, H.C., Soong, C.Y., Yang, W.J., 2004, “Measurement of detailed heat transfer on a surface under arrays of impinging elliptic jets by a transient liquid crystal technique,” Int. J.Heat Mass Transfer, vol. 47, pp. 5235-5245.
[5] Aldabbagh, L.B.Y., Sezai, I.,“Three-dimensional numerical simulation of an array of impinging laminar square jets with spent fluid removal,” International Jourmal of Thermal Science, Vol. 43, pp. 241~247, 2004.
[6] Akyol, U., Bilen, K.,“Heat transfer and thermal performance analysis of a surface with hollow rectangular fins,” Applied Thermal Engineering, Vol. 26, pp. 209~216, 2006.
[7] Dogruoz, M.B., Urdaneta, M., Ortega, A.,“Experiments and modeling of the hydraulic resistance and heat transfer of in-line square pin fin heat sinks with top by-pass flow,” International Journal of Heat and Mass Transfer, Vol. 48, pp. 5058~5071, 2005.
[8] Gerencser, D.S., Razani, A.,“Optimizational of radiative-convective arrays of pin fins including mutual irradiation between fins,” Int. J. Heat Mass Transfer, Vol. 38, No. 5, pp. 899~907, 1995.
[9] Hwang, J.J., Lui, C.C.,“Detailed heat transfer characteristic comparison in straight and 90-deg turned trapezoidal ducts with pin-fin arrays,” Int. J. Heat Mass Transfer, Vol. 42, pp. 4005~4016, 1999.
[10] Hwang, J.J., Lui, C.C.,“Measurement of endwall heat transfer and pressure drop in a pin-fin wedge duct,” Int. J. Heat Mass Transfer, Vol. 45, pp. 877~889, 2002.
[11] Kobus, C.J., Oshio, T.,“Development of a theoretical model for predicting the thermal performance characteristics of a vertical pin-fin array heat sink under combined forced and natural convection with impinging flow,” Int. J. Heat Mass Transfer, Vol. 48, pp. 1053~1063, 2005.
[12] Bilen, K. Akyol, U., Yapici, S.,“Heat transfer and friction correlations and thermal performance analysis for a finned surface,” Energy Conversion and Management, Vol. 42, pp. 1071~1083, 2001.
[13] Sara, O.N., Yapici, S., Yilmaz, M., Pekdemir, T.,“Second law analysis of rectangular channels with square pin-fins,” Int. Comm. Heat Mass Transfer, Vol. 28, No. 5, pp. 617~630, 2001.
[14] Zhang, L.W., Balachandar, S., Tafti, D.K., Najjar, F.M.,“Heat transfer enhancement mechanisms in inline and staggered parallel-plate fin heat exchangers,” Int. J. Heat Mass Transfer, Vol. 40, No. 10, pp. 2307~2325, 1997.
[15] Tsia, J.P., Hwang, J.J.,“Measurements of heat transfer and fluid flow in a rectangular duct with alternate attached-detached rib-arrays,” International Journal of Heat and Mass Transfer, Vol. 42, pp. 2071~2083, 1999.
[16] Zhao, Z.,“Thermal design of a broadband communication system with detailed modeling of TBGA packages,” Micoelectronics Relisbility, Vol. 43, pp. 785~793, 2003.


[17] J.W. Baughn and D.B. Markel,“Improvements in a New Technique for Measureing and Mapping Heat Transfer Coefficients”1986 Rec. Sci. Instrum., Vol.57,No.4,pp.65-654.
[18] J.W. Baughn, J.E. Mayhew, M.R. Anderson and R.J. Butler,“A Periodic Transient Method Using Liquid Crystals for the Measurement of Local Heat Transfer Coefficients”, ASME, Journal of Heat Transfer, Technical Notes,1998, Vol.120,pp.772-777
[19] P.T Ireland and T.V. Jonse,“The Response Time of Surface Thermometer Employing Encapsulated Thermochromic Liquid Crystals”,Journal of Physics E,1985,Vol 20, pp 1195-119.
[20] Von Wolfersdorf, R. Hoecker and T. Sattelmayer,“A Hybrid Transient Step-Heat Transfer Measurement Technique Using Heater Foils and Liquid Crystal Thermography”, ASME, Journal of Heat Transfer, 1993, Vol.115,pp.319-324.
[21] J.W. Baughn, P.T. Ireland and N. Sanniei,“A Comparison of the Transient and Heatrd-Coating Methods for the Measurement of Local Heat Transfer Coefficients on a pin Fin,”Journal of Heat Transfer, 1989, Vol. 111,pp.877-881.
[22] J.C. Han and S.V. Ekkand,“Turbine Blade Cooling and Heat Transfer Measurement Using a Transient Liquid Crystal Image Method”,Invited Paper for the 5th Cooling on Turbomachinery Seoul National University Seoul, Korea,1996,pp.263-302.
[23] 柳輝忠, 2003 “具渦流促進器表面之衝擊熱傳研究” ,私立華梵大學機電工程研究所碩士論文。
[24] 李旭富, 2002 “應用暫態液晶影像法分析超高密度晶片模組陣列對熱傳之影響” ,國立中山大學機械與機電工程學系研究所碩士論文。
[25] 王盈智, 2001 “暫態液晶量測技術用在電子晶片表面上局部熱傳之實驗研究”,國立中山大學機械工程研究所碩士論文。
[26] 謝瑞青,顏維謀,柳輝忠, 1990 ”以液晶影像技術量測機板上之突出物群周圍之熱傳分佈”,第十六屆機械工程研討會。
[27] R.J. Moffat,“Experimental Heat Transfer,”Keynote Paper, KN11, Proc. 9th Int. Heat Transfer Conf., Jerusalem, 1990, Vol.1, pp.882-890.
[28] R.J. Moffat, R.J., 1986, “Contributions to the theory of single-sample uncertainty analysis,” ASME J. Fluids Engineering, vol. 104, pp. 250-260.
[29] Kuo, C.R., Hwang, G.J., 1994, “Aspect ratio effect on convective heat transfer of radially outward flow in rotating rectangular ducts,” Int. J. Rotating Machinery, vol. 1, pp.1-18.
[30] Dittus, P.W., Boelter, L.M.K., 1930, “Heat transfer in automobile radiators of the turbular type, University of California, Publications in Engineering, vol. 2, pp. 443-461; reprinted in 1985, Int. Comm. Heat Transfer, vol. 12, pp. 3-22.
[31] Chyu, M.K., Ding, H., Downd, J.P., Soechting, F.O., 1998, “Determination of local heat transfer coefficient based on bulk mean temperature using a transient liquid crystals technique,” Experimental Thermal and Fluid Science, vol. 18, pp. 142-149.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔