跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/16 19:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃宗涵
研究生(外文):Tsung-Han Huang
論文名稱:活性污泥膜濾法積垢物蛋白質組成分析
論文名稱(外文):Identification of protein foulant in membrane bioreactor
指導教授:游勝傑黃郁慈黃郁慈引用關係
指導教授(外文):Sheng-Jie YouYu-Tzu Huang
學位類別:碩士
校院名稱:中原大學
系所名稱:土木工程研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:78
中文關鍵詞:活性污泥膜濾法蛋白質薄膜材料胞外聚合物薄膜積垢
外文關鍵詞:materialEPSMembrane bioreactorProteinfouling
相關次數:
  • 被引用被引用:0
  • 點閱點閱:252
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
活性污泥膜濾法(Membrane bioreactor)在操作時產生之薄膜積垢問題會造成透膜壓力上昇。薄膜通量下降以及增加操作與維護的支出,是MBR無法廣泛應用之限制因子。許多文獻均指出薄膜積垢主要是由胞外聚合物所組成(Extracellular Polymeric Substances,EPS),EPS由蛋白質、碳水化合物、腐植質、核酸及脂質所組成,其中又以蛋白質最為主要。近年許多研究均針對蛋白質做定量分析,以期能夠發現其與薄膜積垢之關聯性,未有研究針對薄膜積垢之蛋白質進行定性分析,因此本研究於反應槽內置入PAN、PVDF及PTFE不同材質之薄膜,再以生物技術對薄膜積垢物之蛋白質種類進行鑑定,並一併探討膜材特性與蛋白質之關聯性。實驗結果發現薄膜表面之形態(孔洞形式、大小、表面粗糙度)會影響積垢物的生成,透過分析薄膜表面蛋白質分子量的分佈,發現孔洞較大之薄膜表面,小分子量蛋白質比例較高;薄膜表面親疏水性對所黏附上之蛋白質親疏水性並無顯著關連,且黏附於薄膜表面之蛋白質絕大部份皆屬於疏水性蛋白質。積垢物中具轉譯功能之蛋白質佔了29~58%,而由蛋白質位於原細菌位置來看,發現黏附於薄膜表面屬細菌內部之蛋白質佔67%以上,可能與細菌老化水解有關。未來可應用此鑑定技術分析薄膜表面之積垢物,以降低積垢物對MBR操作之不良影響,以利MBR之發展應用。
Development of membrane bioreactors has been limited by problems of membrane fouling, which will decrease the flux but increase the TMP (trans-membrane pressure) and cost for maintenance and operation. Many literature has indicated the major constituent of fouling is extracellular polymeric substances(EPS) which is composed by protein, carbohydrate, humic substances, nucleic acid and lipid. And,the most part of EPS is protein. Recently, many research has aimed at the quantitative analysis of protein in order to find out the relationship between protein and membrane fouling. However, no research focuses on the qualitative analysis of protein. Therefore, this research set membrane of different material(PAN,PVDF,PTFE) in the reactor, and performed biological technique to identify the species of proteins on fouling and discuss the relativity of protein and materials. Results showed the surface morphology of membrane(pore formation, size, roughness) will affect the forming of fouling.We analyzed the distribution of the molecular weight of protein and found out the membranous surface with larger pores will cause higher ratio of small protein to aggregate. There is no significant connection between species of proteins and hydrophilicity or hydrophobicity of surface , while hydrophobic protein aggregated on the surface more easier than hydrophilic protion. The location of 29%~58% of protein with functions relation to translation. More than 67% of protein located within bacteria, this may be related to the lysis of bacteria. We will apply our research to identity surface foulant of membranes and reduce fouling effect on MBR.
摘 要 I
英文摘要 II
致 謝 III
目 錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 3
1.3 研究架構 4
第二章 文獻回顧 5
2.1 活性污泥膜濾法(Membrane Bioreactor,MBR) 5
2.1.1 系統發展 6
2.1.2 薄膜材料 8
2.2 薄膜積垢 9
2.2.1 積垢形成機制 9
2.2.2 薄膜清洗方式 12
2.2.3 胞外聚合物(Extracellular Polymeric Substances,EPS) 13
2.3 蛋白質 16
2.3.1 蛋白質組成 16
2.3.2 蛋白質結構 17
2.3.3 蛋白質特性 17
2.3.4 Bradford 蛋白質定量 18
2.3.5 SDS-PAGE 18
2.3.6 ESI-tandem MS 19
第三章 材料與方法 22
3.1 模廠特性 22
3.1.1 進流水與污泥特性 22
3.1.2 薄膜特性 23
3.2 純菌培養 23
3.2.1 菌種篩選 23
3.2.2 DNA萃取及菌種確認 23
3.2.3 純菌模廠操作 24
3.3 薄膜積垢分析 25
3.3.1 蛋白質濃度測定(Bradford) 25
3.3.2 薄膜積垢純化 25
3.3.3 蛋白質濃縮 27
3.3.4 SDS-PAGE 27
3.4 實驗設備 29
第四章 結果與討論 30
4.1 薄膜積垢蛋白質分析 30
4.1.1 蛋白質數量 30
4.1.2 蛋白質功能 34
4.2 薄膜材質對於積垢特性的影響 46
4.2.1 薄膜孔徑對積垢中蛋白質特性之影響 46
4.2.2 薄膜親疏水性對積垢中蛋白質特性之影響 56
4.2.3 薄膜積垢上比例較高之蛋白質 58
第五章 結論與建議 60
5.1 結論 60
5.2 建議 61
參考文獻 62
附錄 66


圖目錄
圖 1.1 研究架構圖…………………………………………………………………… 4
圖 2.1 沉浸式與側流式薄膜系統…………………………………………………… 6
圖 2.2 薄膜表面積垢形成示意圖…………………………………………………… 9
圖 2.3 薄膜積垢阻抗與形成因素之關聯性………………………………………… 10
圖 2.4 影響薄膜積垢生成因素……………………………………………………… 11
圖 2.5 薄膜積垢清洗方式…………………………………………………………… 12
圖 2.6 積垢生成速率與操作條件影響圖…………………………………………… 13
圖 2.7 MS基本運作原理……………………………………………………………… 19
圖 2.8 ESI source運作圖解……………………………………………………… 20
圖 2.9 四極桿分離特定m/z之示意圖……………………………………………… 20
圖 3.1 長期操作之模廠……………………………………………………………… 22
圖 3.2 模廠設計……………………………………………………………………… 24
圖 3.3 SDS-PAGE示意圖…………………………………………………………… 27
圖 4.1 Acinetobacter反應槽積垢物蛋白質SDS-PAGE表現…………………… 31
圖 4.2 Ralstonia反應槽積垢物蛋白質SDS-PAGE表現………………………… 32
圖 4.3 Acinetobacter反應槽積垢物蛋白質功能統計………………………… 34
圖 4.4 Ralstonia反應槽積垢物蛋白質功能統計………………………………… 35
圖 4.5 Acinetobacter反應槽PAN薄膜積垢物蛋白質功能分佈比例…………… 36
圖 4.6 Acinetobacter反應槽PVDF薄膜積垢物蛋白質功能分佈比例………… 37
圖 4.7 Acinetobacter反應槽PTFE薄膜積垢物蛋白質功能分佈比例………… 38
圖 4.8 Ralstonia反應槽PAN薄膜積垢物蛋白質功能分佈比例………………… 38
圖 4.9 Ralstonia反應槽PVDF薄膜積垢物蛋白質功能分佈比例………………… 39
圖 4.10 Ralstonia反應槽PTFE薄膜積垢物蛋白質功能分佈比例………………… 40
圖 4.11 Acinetobacter反應槽積垢物蛋白質位置統計………………………… 42
圖 4.12 Ralstonia反應槽積垢物蛋白質位置統計………………………………… 43
圖 4.13 Acinetobacter反應槽薄膜積垢物蛋白質功能分佈比例……………… 44
圖 4.14 Ralstonia反應槽薄膜積垢物蛋白質功能分佈比例……………………… 45
圖 4.15 PAN薄膜表面及積垢物情形………………………………………………… 47
圖 4.16 PVDF薄膜表面及積垢物情形………………………………………………… 49
圖 4.17 PTFE薄膜表面 SEM 20K ………………………………………………… 50
圖 4.18 PTFE薄膜表面 SEM 20K.………………………………………………… 51
圖 4.19 PAN薄膜表面AFM圖………………………………………………………… 52
圖 4.20 PVDF薄膜表面AFM圖………………………………………………………… 53
圖 4.21 PTFE薄膜表面AFM圖………………………………………………………… 53
圖 4.22 Acinetobacter反應槽積垢物蛋白質大小統計…………………………… 54
圖 4.23 Ralstonia反應槽積垢物蛋白質大小統計………………………………… 55
圖 4.24 膜表面接觸角示意圖.……………………………………………………… 56
圖 4.25 OMP38_ACIBA胺基酸序列…………………………………………………… 59



表目錄
表 2.1 活性污泥膜濾法的優缺點………………………………………… 5
表 2.2 MBR系統發展……………………………………………………… 7
表 2.3 胞外聚合物中蛋白質與醣類組成………………………………… 14
表 2.4 Bound EPS組成整理……………………………………………… 15
表 2.5 Free EPS組成整理…………………………………………………15
表 2.6 胺基酸性質與分類………………………………………………… 16
表 3.1 薄膜特性…………………………………………………………… 23
表 4.1 積垢物中蛋白質定序數量統計…………………………………… 33
表 4.2 Acinetobacter反應槽積垢物蛋白質親疏水性統計……………57
表 4.3 Ralstonia反應槽積垢物蛋白質親疏水性統計………………… 57
表 4.4 蛋白質資料………………………………………………………… 59
1.A. Drews ,C.H. Lee and M.Kraume ,”Membrane fouling – a review on the role of EPS”,Desalination,200,186(2006)

2.B.S. McSwain, R.L. Irvine, P.A. Wilderer,”The influence of settling time on the formation of aerobic granules”,Water Science Technology,50,195(2004)

3.C.L.Daniel,”Introduction to Proteomics-Tools for the New Bioloogy”,Humana Press Inc,55(2002)

4.M.Cheryan,”Ultrafiltration and Microfiltration Handbook” Technomic Publishing Company, Lancaster,(1998).

5.C.C. Ho, A.L. Zydney,”Effect of membrane morphology on the initial rate of protein fouling during microfiltration”,Journal of Membrane Science,155,261(1999)

6.D.T.Sponza.,”Extracellular polymer substances and physicochemical properties of flocs in steady- and unsteady-state activated sludge systems”,Process Biochemistry,37,983(2002)

7.F.Yang, B.Li, M.Ye and H.Ma, ”Mathematical model analysis on the enhancement of aeration efficiency using ladder-type flat membrane module forms in the Submerged Membrane Bio-reactor (SMBR)”, Science in China Series : Technological Sciences ,52,1363(2009)

8.F.Meng and F.Yang,”Fouling mechanisms of deflocculated sludge, normal sludge, and bulking sludge in membrane bioreactor”,Journal of membrane sciences,305,48(2007)

9.F.Meng, H.Zhang, F.Yang, Y.Li and X.Zhang,”Identification of activated sludge properties affecting membrane fouling in submerged membrane bioreactors”,Separation and Purification Technology,51,95(2006)

10.H.Y.Ng, J.H.Choi and S.K.Park ,”Membrane fouling in a submerged membrane bioreactor using track-etched and phase-inversed porous membranes”,Separation and Purification Technology ,65,184(2009)

11.H.Matsuyama ,”Effect of surface morphology om membrane fouling by humic acid with the use of cellulose acetate butyrate hohhlw fiber membranes”, Journal of membrane science ,320,493(2008)

12.H.Liu and H.P.Fang ,”Extraction of extracellular polymeric substances (EPS) of Sludges”Journal of Biotechnology,95,249(2002)

13.I.S.Chang, C.H.Lee and K.H.Ahn, ”Membrane filtration characteristics in membrane coupled activated sludge system: the effect of floc structure on membrane fouling”, Separation Science Technology, 34,1743(1999)

14.J.Chen, G.C.Du, Z.Z.Hua, H.Liu ,Y.J.Li and X.F.Li ,”Correlation between extracellular polymeric substances and aerobic biogranulation in membrane bioreactor”,Separation and Purification Technology,59,26(2008)

15.K.Kinkle, P.L.Bishop and X.Zhang, ”Comparison of extraction methods for quantifying extracellular polymers in biofilms”Water Science Technology,39,211(1999)

16.K.Yamamoto, M.Hiasa, T.Mahmood and T.Matsuo,”Direct solid-liquid separation using hollow fiber membrane in an activated sludge aeration tank”,Water science and technology,21,43(1989)

17.K.L.Jones ,”Protein and humic acid adsorption onto hydrophilic membrane surfaces: effects of pH and ionic strength”,Journal of membrane science ,165,31(2000)

18.L.Ji and J.Zhou,”Influence of aeration on microbial polymers and membrane fouling in submerged membrane bioreactors”,Journal of membrane science,276,168(2006)

19.M.Kitit, N.O.Yigita, I.Harmana, G.Civelekoglua, H.Koseoglua and N.Cicekb,”Membrane fouling in a pilot-scale submerged membrane bioreactor operated under various conditions”,Desalination,231,124(2008)

20.N.J.Jang, X.Ren , G.Kim , C.Ahn and S.Kim, ”Characteristics of soluble microbial products and extracellular polymeric substances in the membrane bioreactor for water reuse”,Desalination,202,90(2007)

21.R.J.Doyle,”Strategies in experimental microbial research in: N. Mozes,P.S. Handley, H.J. Busscher, P.G. Rouxhet”, Microbial Cell Surface Analysis, VCH Publishers,292(1991)

22.S.L.Khor, D.D.Sun, Y.Liu and J.O.Leckie,”Biofouling development and rejection enhancement in long SRT MF membrane bioreactor”Process Biochemistry,42,1641(2007)

23.S.Judd ,”A review of fouling of membrane bioreactors in sewage treatment”Water Science Technology,49(2),229(2004)

24.S.Judd and C.Judd,”THE MBR Book:Principles and applications of membrane bioreactors in water and wastewater treatment”(2006)

25.S.S.Madaeni, A.G.Fane, D.E.Wiley,“Factors influencing critical flux inmembrane filtration of activated sludge”, Journal Chemistry Technology Biotechnol.74,539(1999)

26.T.Biswas ,”Role of porin of shigella dysenteriae type 1 in modulation of lipopolysaccharide mediated nitric oxide and interleukin-1 by murine peritoneal macrophages”, Immunology and Medical Microbiology,29,129(2000)

27.Y.C.Su, C.P.Huang, H.C.Lee and R.Pan,” Characteristics of membrane fouling in submerged membrane bioreactor under sub-critical flux operation”,Water science & technology,57,601(2008)

28.Z.Wang, Z.Wu, G.Yu, J.Liu and Z.Zhou ,”Relationship between characteristics and membrane flux determination in submerged membrane bioreactors”, Journal of Membrane Science,284,87(2006)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊