(3.236.231.61) 您好!臺灣時間:2021/05/11 16:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄒輝祥
研究生(外文):Hui-Hsiang Tsou
論文名稱:薄膜塗覆二氧化鈦在紫外光照射下進行之自淨作用特性分析
論文名稱(外文):Characterization of self-cleaning membrane coated with TiO2 particles under UV irradiation
指導教授:游勝傑黃郁慈黃郁慈引用關係
指導教授(外文):Sheng-Jie YOUYu-Tzu Huang
學位類別:碩士
校院名稱:中原大學
系所名稱:土木工程研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:97
中文關鍵詞:積垢阻抗UV/TiO2光催化作用PVDF/TiO2混合薄膜抗積垢薄膜
外文關鍵詞:UV/TiO2PhotocatalysisAnti-fouling mFouling resistance
相關次數:
  • 被引用被引用:1
  • 點閱點閱:215
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
以二氧化鈦(TiO2)進行薄膜表面改質,可以增加表面親水性進而提高薄膜通量,擁有光催化作用(Photocatalytic)並得到自淨作用(Self-cleaning)的附加特性,以降低積垢的現象。本研究針對PVDF高分子薄膜,在經過表面或高分子鑄膜液中加入不同含量的TiO2光觸媒之後製成單層式與雙層式PVDF/TiO2混合薄膜,除分析改質後薄膜之基本特性外,並且對偶氮染料RB-5以及大腸桿菌E.coli進行光催化實驗。結果顯示,經由改質過後的PVDF/TiO2混合薄膜對於RB-5偶氮染料具有光降解特性,並對於大腸桿菌E.coli具有降低活性的特性,其降解效果隨TiO2含量增加而增加,光催化作用對於偶氮染料中的有機物結構以及色度具有全面性的降解效果;此外,薄膜對蛋白質積垢現象實驗中,以BSA為蛋白質基質,其結果顯示改質過後的PVDF/TiO2混合薄膜對於BSA所造成的阻抗確實有明顯趨緩之效果,隨TiO2增加,單層PVDF/TiO2薄膜其cake layer及pore blocking所引起的阻抗隨之減少,而降低薄膜積垢現象,但是雙層PVDF/TiO2之總阻抗則因cake layer及pore blocking隨TiO2含量增加進而形成更嚴重之fouling。
The modification of membrane by addition of TiO2 drastically enhances the hydrophilic and antifouling properties of neat membrane. In this study the single and double layer TiO2 entrapped PVDF membranes were prepared by adding different amount of TiO2 into casting solution. The different properties of modified PVDF membrane such as photocatalytic, antibacterial and antifouling were teated using RB5 degradation, E.coli removal and protein (BSA) fouling respectively and results were compared with neat PVDF membrane. The addition of different amount of TiO2 (1-4%) significantly affects the hydrophilicity, pore size, photoactive self-cleaning and antibacterial properties of membrane surface. The result showed that the modified membrane have better antibacterial and photocatalytic activity as compared to neat PVDF membrane and with increasing TiO2 content increases the efficiency of RB5 degradation and E.coli inactivation. The protein (BSA) fouling experiment showed that the total fouling resistance of single layer PVDF/TiO2 membrane was decreased due to reduction of cake layer and pore blocking resistance, while that of double layer PVDF/TiO2 membrane was increased due to increment of cake layer and pore blocking resistances. Reaults showed that flux and TMP of modified membrane can be recovered to its initial value by simple UV rreatment.
目錄
中文摘要................................................................................................................... I

英文摘要................................................................................................................... II

致 謝…………………………………………………………………………... III

目 錄................................................................................................................... IV

圖 目 錄................................................................................................................... VI

表 目 錄................................................................................................................... VII

第一章 緒論............................................................................................................. 1
1.1研究動機........................................................................................................ 1
1.2研究目的與內容............................................................................................ 2
1.3研究架構........................................................................................................ 3
第二章 文獻回顧..................................................................................................... 4
2.1活性污泥膜濾法 (Membrane Bioreactor MBR).......................................... 4
2.1.1活性污泥膜濾法之特性…………….…………….............................. 5
2.1.2薄膜材質特性….………………….………..………………….......... 6
2.1.3薄膜積垢…………………….………………………..……………… 6
2.2半導體催化劑………………………………….…………………………... 8
2.2.1二氧化鈦(titanium dioxide, TiO2)光觸媒…………………………… 8
2.2.2光化學反應機制...…………………………………………………… 9
2.3影響光催化反應之因素…………………………………………………… 11
2.3.1溶液之pH值…………………………...…………………………….. 11
2.3.2光源之波長和強度……………………………………....................... 11
2.3.3反應時的溶氧量……………………………………........................... 13
2.4自淨除污作用(Self Cleanning)…...……………………………………….. 14
2.4.1自淨作用機制………………………………………………………... 14
2.4.2 TiO2塗覆方法……………………………………………………….. 16
第三章 實驗設備與方法………………………….……………………….……... 19
3.1薄膜製作……………………...………………………….………………… 19
3.1.1製膜材料……………………………………………………………... 19
3.1.2單層式TiO2混合薄膜製作步驟……………..……………………… 19
3.1.3雙層式TiO2混合薄膜製作步驟……………………………............. 20
3.2光催化實驗…..…………………………………………………………….. 22
3.2.1光催化測試項目……………………………………………………... 22
3.2.2染料光催化實驗步驟………………………………………….…..... 24
3.2.3 E.coli光催化實驗…………………………………………................ 25
3.3活性污泥膜濾法運用之實驗……………………………………………… 26
3.3.1MBR模擬測試項目與條件………………………………………….. 26
3.3.2BSA進行MBR模擬測試………………………………...................... 27
3.4 薄膜特性分析儀器與運作……………………………………………….. 30
第四章 結果與討論………………………….…………………………………… 31
4.1薄膜特性分析…..………………………………………………………….. 31
4.1.1 薄膜表面特性分析…………………………………………………. 31
4.1.2 薄膜孔洞特性分析…………………………………………………. 40
4.1.3 薄膜表面親、疏水特性分析……………………………………….. 41
4.2 光催化特性測試…..……………………………………………………… 46
4.2.1 偶氮染料光降解測試………………………………………………. 46
4.2.2 大腸桿菌(E.coli)光降解測試………………………………………. 52
4.3 MBR運作測試…..………………………………………………………… 54
4.3.1 BSA運作測試……………………………………………………….. 55
第五章 結論與建議………………………….…………………………………… 79
5.1 結論………………………….…………………………………………..... 79
5.2 建議………………………….…………………………………………..... 80
參考文獻………………………….……………………………………………….. 81


圖 目 錄
圖 1.1 研究架構…………………………..………………..………………................ 3
圖 2.1 傳統活性污泥程序與薄膜生物處理技術的比較…………………………… 5
圖 2.2 光催化活性機制概要圖………………...………..…..…................................. 10
圖 2.3 光催化作用簡易機制..…………………………….………………...….......... 15
圖 2.4 自淨作用簡易機制............................................................................................ 15
圖 2.5 自淨作用特性.................................................................................................... 16
圖 2.6 (a)光催化機制與程序(b)UV/TiO2薄膜之自淨/抗積垢機制和程序............... 18
圖 3.1 單層式TiO2混合薄膜製程示意圖………………………................................ 20
圖 3.2 雙層式TiO2混合薄膜製程示意圖…………………………………………… 21
圖 3.3 染料RB-5結構圖…………………….……………..……………..…………. 23
圖 3.4 光催化實驗反應器簡圖.................................................................................... 23
圖 3.5 染料光催化實驗流程……….…………….………………………….............. 24
圖 3.6 E.coli光催化實驗…………………….……………..……………..…………. 25
圖 3.7 進行MBR實際測試…………………….……………………………………. 27
圖 3.8 BSA與實際污泥進行MBR模擬測試運作流程………………………........ 28
圖 4.1 單層式PVDF/TiO2-0wt%薄膜表面SEM示意圖…………………………… 32
圖 4.2 單層式PVDF/TiO2-1wt%薄膜表面SEM示意圖…………………………… 33
圖 4.3 單層式PVDF/TiO2-2wt%薄膜表面SEM示意圖…………………………… 34
圖 4.4 單層式PVDF/TiO2-4wt%薄膜表面SEM示意圖…………………………… 35
圖 4.5 雙層式PVDF/TiO2-0wt%薄膜表面SEM示意圖…………………………… 36
圖 4.6 雙層式PVDF/TiO2-1wt%薄膜表面SEM示意圖…………………………… 37
圖 4.7 雙層式PVDF/TiO2-2wt%薄膜表面SEM示意圖…………………………… 38
圖 4.8 雙層式PVDF/TiO2-4wt%薄膜表面SEM示意圖…………………………… 39
圖 4.9 薄膜孔徑大小與主要分佈…………………….……………..………………. 40
圖 4.10 單層式混合薄膜表面角度變化趨勢圖…………………….………………... 43
圖 4.11 單層式PVDF/TiO2-1w%接觸角示意圖…………………….……………….. 44
圖 4.12 偶氮染料RB-5光降解全波長變化…………………….……………………. 47
圖 4.13 不同含量之TiO2薄膜對於染料RB-5波長254nm光降解變化. ………….. 48
圖 4.14 不同含量之TiO2薄膜對於染料RB-5波長310nm光降解變化…………… 49
圖 4.15 不同含量之TiO2薄膜對於染料RB-5波長595nm光降解變化…………… 50
圖 4.16 不同TiO2含量薄膜光降解染料色度之一階動力常數……………………… 51
圖 4.17 不同TiO2含量光降解染料色度之一階動力常數變化趨勢………………… 51
圖 4.18 在不同TiO2含量薄膜光催化下E.coli存活率…………………….………… 53
圖 4.19 單層式混合薄膜在BSA中透膜壓力之變化. ………………………………. 55
圖 4.20 單層式混合薄膜在BSA中過濾通量之變化………………………………... 56
圖 4.21 單層式各含量混合薄膜在BSA中MBR運作阻抗示意圖………………… 57
圖 4.22 單層式各含量混合薄膜在BSA中MBR運作各階段阻抗示意圖…………. 58
圖 4.23 單層式各含量混合薄膜在BSA中MBR運作不可逆的阻抗殘留示意圖… 59
圖 4.24 單層式混合薄膜在BSA中MBR運作TMP變化示意圖………………….. 60
圖 4.25 單層式各含量混合薄膜在BSA中MBR運作TMP恢復特性示意圖……… 61
圖 4.26 單層式混合薄膜在BSA中MBR運作Flux變化示意圖……………………. 62
圖 4.27 單層式各含量混合薄膜在BSA中MBR運作Flux恢復特性示意圖……… 63
圖 4.28 單層式各含量混合薄膜在BSA中MBR運作滲透率特性示意圖…………. 64
圖 4.29 雙層式混合薄膜在BSA中透膜壓力之變化………………………………... 65
圖 4.30 雙層式混合薄膜在BSA中過濾通量之變化………………………………... 66
圖 4.31 雙層式各含量混合薄膜在BSA中MBR運作阻抗示意圖…… 67
圖 4.32 雙層式各含量混合薄膜在BSA中MBR運作各階段阻抗示意圖………… 68
圖 4.33 雙層式各含量混合薄膜在BSA中MBR運作不可逆的阻抗殘留示意圖… 69
圖 4.34 雙層式混合薄膜在BSA中MBR運作TMP變化示意圖………………….. 70
圖 4.35 雙層式各含量混合薄膜在BSA中MBR運作TMP恢復特性示意圖……… 71
圖 4.36 雙層式混合薄膜在BSA中MBR運作Flux變化示意圖………………….. 72
圖 4.37 雙層式各含量混合薄膜在BSA中MBR運作Flux恢復特性示意圖……… 73
圖 4.38 雙層式各含量混合薄膜在BSA中MBR運作滲透率特性示意圖………… 74
圖 4.39 不同型式之2wt%混合薄膜在BSA中MBR運作滲透率特性比較圖…….. 75
圖 4.40 不同型式之2wt%混合薄膜在BSA中MBR運作阻抗比較圖…………….. 76
圖 4.41 不同型式之2wt%混合薄膜TMP恢復特性比較圖………………………… 77
圖 4.42 不同型式之2wt%混合薄膜Flux恢復特性比較圖………………………….. 77


表 目 錄
表 2.1 不同半導體能帶隙能量及受激發所需最大波長………………………... 12
表 4.1 單層式薄膜平均孔徑(μm)………………………………………………... 41
表 4.2 單層式PVDF/TiO2薄膜表面角度變化…………………………………... 42

參考文獻
1.Adachi, M.; Murata, Y.; Harada, M.; Yoshikawa, S. Chem. Lett, 942. . (2000).
2.Alaoui, O. T., Q. T. Nguyen, C. Mbareck and T. Rhlalou (2009) Elaboration and study of poly(vinylidene fluoride)–anatase TiO2 composite membranes in photocatalytic degradation of dyes. Applied Catalysis A: General, 358, 13–20.
3.Asatekin, A., A. Menniti, S. Kang, M. Elimelech, E. Morgenroth and A.M. Mayes (2006) Antifouling nanofiltration membranes for membrane bioreactors from self-assembling graft copolymers. Journal of Membrane Science, 285(1–2), 81–89.
4.Bae, T. H. and T. M. Tak (2005)(1) Effect of TiO2 nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration. Journal of Membrane Science, 249, 1–8.
5.Bae, T. H. and T. M. Tak (2005)(2) Preparation of TiO2 self-assembled polymeric nanocomposite membranes and examination of their fouling mitigation effects in a membrane bioreactor system. Journal of Membrane Science, 266, 1–5.
6.Brindle, K. and Stephenson, T. (1996) “The application of membrane biological reactors for the treatment of wastewaters,” Biotechnol. Bioeng. 49 601-610.
7.Chang I. S., Lee C. H. and Ahn K. H. (1999) Membrane filtration characteristics in membrane coupled activated sludge system:the effect of floc structure of activated sludge on membrane fouling. Sep. Sci. Technol., 34, 1743-1758.

8.Chang, S., P. Le Clech, B. Jefferson and S. Judd (2002) Membrane fouling in membrane bioreactors for wastewater treatment. J. Environ. Eng. –ASCE, 128, 1018–1029.
9.Choi J. H. and H. Y. Ng (2008) Effect of membrane type and material on performance of submerged membrane bioreactor. Chemosphere, 71, 853-859.
10.Clech, P. L., V. Chen and T.A.G. Fane (2006) Review -Fouling in membrane bioreactors used in wastewater treatment. Journal of Membrane Science. 284(1-2), 17-53.
11.Dagan, G.; Tomkiewicz, M. J. Phys. Chem., 97, 12651. (1993).
12.Fujishima A.; Honda K. “Electrochemical Photolysis of Water at Semiconductor Electrode Nature” Nature, 238, 37, (1972).
13.Fukushima, K.; Yamada, I. J. Appl. Phys., 65, 619. (1989).
14.Genne, I., S. Kuypers and R. Leysen (1996) Effect of the addition of ZrO2 to polysulfone based of membrane, J. Membr. Sci., 11, 334–337.
15.Gogniat, G., M. Thyssen, M. Denis, C. Pulgarin and S. Dukan (2006) The bactericidal effect of TiO2 photocatalysis involves adsorption onto catalyst and the loss of membrane integrity Federation of European Microbiological Societies FEMS Microbiol Lett 258 18–24
16.Gültekin, I. and N.H. Ince (2006) Degradation of aryl-azo-naphthol dyes by ultrasound, ozone and their combination: Effect of α-substituents Ultrasonics Sonochemistry, Volume 13(3), 208-214.
17.Herrmann J. H. (1999) Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catalysis Today, 53(1), 115-129.

18.Herrmann, J.M., Guillard C. and Pichat P., “Heterogeneous photocatalysis: an emerging technology for water treatment.” Catalysis Today. Vol 17, PP 7–20. (1993).
19.Hoffmann, M. R., Martin S. T., Choi W. and Bahnemann D. W., “Environmental application of semiconductor photocatalysis.” Chem. Rev. Vol 95, PP 69-96. (1995).
20.Hoffmann, M.R., S.T. Martin, W. Choi and D.W. Bahnemann (1995) Environmental applications of semiconductor photocatalysis, Chem. Rev. 95 (1), pp. 69–96.
21.Irie, H., K. Sunada and K. Hashimoto (2004) Recent Developments in TiO2 Photocatalysis: Novel Applications to Interior Ecology Materials and Energy Saving Systems Electrochemistry, 72(12), 807-812.
22.Judd, S. (2006) The MBR book: Principles and Applications of Membrane Bioreactors in Water and Wastewater Treatment, Elsevier, Oxford London, 2006.
23.Kamat, P. V.; Dawson, A. J. Phys. Chem. B., 105, 960. (2001).
24.Kim, S. H., S. Y. Kwak, B. H. Sohn and T. H. Park (2003) Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem. Journal of Membrane Science, 211, 157–165.
25.Kimura, K., N. Yamato, H. Yamamura and Y. Watanabe (2005) Membrane fouling in pilot-scale membrane bioreactors (MBRs) treating municipal wastewater, Environ. Sci. Technol. 39, pp. 6293–6299.
26.Konstantinou I.K. and T.A. Albanis (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations. A review, Appl. Catal. B: Environ. 49(1), 1-14.
27.Kwak, S.Y., S. H. Kim and S. S Kim (2001) Hybrid Organic/Inorganic Reverse Osmosis (RO) Membrane for Bactericidal Anti-Fouling. 1. Preparation and Characterization of TiO2 Nanoparticle Self-Assembled Aromatic Polyamide Thin-Film-Composite (TFC) Membrane Environmental Science & Technology, Vol. 35, No. 11. (1 June 2001), pp. 2388-2394.
28.Li, J. F., Z. L. Xu, H. Yang, L. Y. Yu and M. Liu (2009) Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane. Applied Surface Science, 255, 4725–4732.
29.Linsebigler, A. L., G. Lu and J. T. Yates (1995) Review- Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chem. Rev., 95(3), 735–758.
30.Luo, M. L., J. Q. Zhao, W. Tang and C. S. Pu (2005) Hydrophilic modification of poly(ether sulfone) ultrafiltration membrane surface by self-assembly of TiO2 nanoparticles. Applied Surface Science, 249, 76–84.
31.Luo, M. l., W. Tang, J. Q. Zhao and C. S. Pu (2006) Hydrophilic modification of poly(ether sulfone) used TiO2 nanoparticles by a sol–gel process. Journal of Materials Processing Technology, 172, 431–436.
32.Madaeni, S.S. and N. Ghaemi (2007) Characterization of self-cleaning RO membranes coated with TiO2 particles under UV irradiation. Journal of Membrane Science, 303, 221–233.

33.Maness, P. C., S. Smolinski, D. M. Blake, Z. Huang, E. J. Wolfrum and W. A. Jacoby (1999) Bactericidal Activity of Photocatalytic TiO2 Reaction: toward an Understanding of Its Killing Mechanism Applied And Environmental Microbiology, Sept. 1999, Vol. 65, No. 9, p. 4094–4098.
34.Mansourpanah, Y., S.S. Madaeni, A. Rahimpour, A. Farhadian and A.H. Taheri (2009) Formation of appropriate sites on nanofiltration membrane surface for binding TiO2 photo-catalyst: Performance, characterization and fouling-resistant Capability. Journal of Membrane Science, 330, 297–306.
35.Melin, T., B. Jefferson, D. Bioxio, C. Thoeye, W. De. Wilde, J. De Koning, J. Van der Graaf and T. Wintgens (2006) Membrane bioreactor technology for wastewater treatment and reuse. Desalination, 187, 271-282.
36.Meng, F., S. R. Chae, A. Drews, M. Kraume, H. S. Shinand F. Yang (2009) Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane material Water Research, 43(6), 1489-1512.
37.Mills, A. and Hunte S. Le., “An overview of semiconductor photocatalysis.” Journal of photochemistry and photobiology A: Chemistry. Vol 108, PP 1-35. (1997).
38.Qiu, C., F. Xu, Q.T. Nguyen and Z. Ping (2005) Nanofiltration membrane prepared from cardo polyetherketone ultrafiltration membrane by UV induced grafting method, J. Membr. Sci., 255,107–115.
39.Rahimpour, A. and S.S. Madaeni, (2007) Polyethersulfone (PES)/cellulose acetate phthalate (CAP) blend ultrafiltration membranes: preparation, morphology, performance and anti-fouling properties. J. Membr. Sci., 305, 299–312.

40.Rahimpour, A., S.S. Madaeni, A.H. Taheri and Y. Mansourpanah (2008) Coupling TiO2 nanoparticles with UV irradiation for modification of polyethersulfone ultrafiltration membranes. Journal of Membrane Science 313, 158–169.
41.Ravanchi, M. T., T. Kaghazchi and A. Kargari (2009) Application of membrane separation processes in petrochemical industry: a review. Desalination, 235(1-3), 199-244.
42.Stephenson, T., Judd, S., Jefferson, B. and Brindle, K. (2000) “Membrane bioreactors for wastewater treatment,” London: IWA Publishing. P59-61.
43.Sun, D. D., J. H. Tay and K. M. Tan (2003) Photocatalytic degradation of E. Coliform in water. Water Research, 37, 3452–3462
44.Thomas, H., Judd, S. and Murrer, J. (2000) “Fouling characteristics of membrane filtration in membrane bioreactor,” Membr. Technol. 122 10-13.
45.Tian, J. Y., H. Liang, J. Nan, Y.L. Yang, S. J. You and G. B. Li (2009) Submerged membrane bioreactor (sMBR) for the treatment of contaminated raw water. Chemical Engineering Journal, 148(2-3), 296-305.
46.Visvanathan, C., Aim, R.B. and Parameshwaran, K. (2000) “Membrane separation bioreactor for wastewater treatment,” Crit. Rev. Environ. Sci. Technol. 30 1-48.
47.Wang, Y., J.H. Kim, K.H. Choo, Y.S. Lee and C.H. Lee (2000) Hydrophilic modification of polypropylene microfiltration membranes by ozone-induced graft polymerization, J. Membr. Sci., 169, 269-275.
48.Williams, M. D. and M. Pirbazari (2007) Membrane bioreactor process for removing biodegradable organic matter from water. Water Research. 41(17), 3880-3893.

49.Yamashita, H., H. Nakao, M. Takeuchi, Y. Nakatani and M. Anpo (2003) Coating of TiO2 photocatalysts on super-hydrophobic porous teflon membrane by an ion assisted deposition method and their self-cleaning performance. Nuclear Instruments and Methods in Physics Research B, 206, 898–901.
50.Yang, Y. and P. Wang (2006) Preparation and characterizations of a new PS/TiO2 hybrid membranes by sol–gel process. Polymer, 47, 2683–2688.
51.Yang, Y., H. Zhang, P. Wang, Q. Zheng and J. Li (2007) The influence of nano-sized TiO2 fillers on the morphologies and properties of PSF UF membrane. Journal of Membrane Science, 288, 231–238.
52.Yoo, J.E., J.H. Kim, Y. Kim (2003) Novel ultrafiltration membranes prepared from the newmiscible blends of polysulfone with poly(1-vinylpyrrolidoneco-styrene) copolymers, J. Membr. Sci., 216, 95–106.
53.Yu, H.-Y., M.-X. Hu, Z.-K. Xu, J.-L.Wang and S.-Y. Wang (2005)a. Surface modification of polypropylene microporous membranes to improve their antifouling property in MBR: NH3 plasma treatment. Separation and Purification Technology, 45(1), 8–15.
54.Yu, H.-Y., Y.-J. Xie, M.-X. Hu, J.-L. Wang, S.-Y. Wang and Z.-K. Xu (2005)b. Surface modification of polypropylene microporous membrane to improve its antifouling property in MBR: CO2 plasma treatment. Journal of Membrane Science, 254(1–2), 219–227.

55.Zhang, C. H., F.L.Yang, W. J. Wang and B. Chen (2008) Preparation and characterization of hydrophilic modification of polypropylene non-woven fabric by dip-coating PVA (polyvinyl alcohol) Separation and Purification Technology, 61(3), 276-286.
56.Zhao, W., Z. Wu, H. Shi and D. Wang (2005) UV photodegradation of azo dye Diacryl Red X-GRL Journal of Photochemistry and Photobiology A: Chemistry, Volume 171, Issue 2, 30 April 2005, Pages 97-106.
57.Zhao, Z.P., J. Li, D.X. Zhang and C.X. Chen (2004) Nanofiltration membrane prepared from polyacrylonitrile ultrafiltration membrane by low-temperature plasma. I. Graft of acrylic acid in gas, J. Membr. Sci., 232,1–8.
58.傅宏剛、王建強、王哲、閆鵬飛、于海濤,TiO2光催化劑表面修飾研究進展,黑龍江大學化學化工學院,黑龍江大學自然科學學報,Sept. Vol.18 No.3。(2001).
59.吳文群,,含氧碳氫化合物在TiO2粉末表面上的吸附與光反應研究,成功大學。(2000).
60.黃碧瑩,TiO2 與Pt/TiO2 系統對單氯酚光分解之研究,國立中興大學。(2002).
61.王國華,以二氧化鈦懸浮膠體顆粒去除2-氯酚之光分解反應研究,國立中興大學。(1991).
62.鍾鳴遠,異相光催化分解水中單一取代基酚類化合物之反應研究,國立中興大學研究所。(1995).
63.呂仁明,以紫外線/二氧化鈦程序處理2-氯酚溶液反應行為之研究,國立臺灣工業技術學院。(1993).
64.吳致誠,UV/TiO2程序中氫氧自由基之生成研究,國立中興大學。(2002).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔