[1]李柏甫,(2004),TFT-LCD濺鍍製程之智慧型診斷系統發展,國立成功大學製造工程研究所碩士論文。[2]葉怡成,(2000),類神經網路模式應用與實作,儒林圖書公司。
[3]葉怡成,(2002),應用類神經網路,儒林書局有限公司。
[4]羅華強,(2008),類神經網路-MATLAB的應用,高立圖書有限公司,台北。
[5]Blessing G. V., Slotwinski, J. A. Eitzen, D. G. & Ryan, H. M. (1993). Ultrasonic measurements of surface roughness. Applied Optics, Vol. 32, No. 19, pp. 3433-3437.
[6]Bregler, C. and Omohundro, S. M. (1994). Surface learning with applications to lip-reading, Morgan Kaufmann Publishers, 43-50.
[7]Chang, S. I. and Aw, C. A. (1996). A neural fuzzy control chart for detecting and classifying process means shifts, International Journal of Production Research, 34, 2265-2278.
[8]Cheng, C. S. (1995). A multi-layer neural network model for detecting changes in the process mean, Computers and Industrial Engineering, 28, 51-61.
[9]Chen, J. and Liao, C. M. (2002). Dynamic process fault monitoring based on neural network and PCA, Journal of Process Control, 12, 277-289.
[10]Chen, Y. M. and Lee, M. L. (2002). Neural networks-based scheme for system failure detection and diagnosis, Mathematics and Computers in Simulation, 58, 101-109.
[11]Cherian, R. P., Smith, L. N. and Midha, P. S. (2000). A neural network approach for selection of power metallurgy materials and process parameters, Artificial Intelligence in Engineering, 14, 29-44.
[12]Cui, X. & Shin, K. G. (1993). Direct control and coordination using neural networks. IEEE Trans. System, Man, and Cybernation. Vol. 23, No. 3, pp. 686-697.
[ 13]DeGarmo E. P., Black J. T. & Kohser R. A. (1997). Materials and processes in manufacturing-8th edition. NJ: Prentice Hall.
[14]Dornfield, D. A. & Fei, R. Y. (1986). In-process surface finish characterization. Manufacturing Simulation Processes, Vol. 20, pp. 191-204.
[15]El-Mounayri, H.a; Kishawy, H.b; Briceno, J.a. (2005). Optimization of CNC ball end milling: a neural network-based model, Journal of Materials Processing Tech. Vol: 166, pp. 50-62
[16]Elbestawi, M. A., Ismail, F. & Yuen, K. M. (1994). Surface topography characterization in finish milling. Int. J. Mach. Tools Manufact.. Vol. 34, No. 2, pp. 245-255.
[17]Fuh, K. H. & Wu, C. F. (1995). A proposed statistical model for surface quality prediction in end-milling of Al alloy. Int. J. Mach. Tools Manufacture... Vol. 35, No. 8, pp. 1187-1200.
[18]Hemerly, E. M. & Nascimento, C. L. (1999). An NN-based approach for tuning servocontrollers. Neural Networks, Vol. 12, pp. 513-518.
[19]Hush, D. R., and Horne, B. G., 1993, Progress in supervised neural network: what’s new since lippmann, IEEE Signal Processing Magine, January, 8-39.
[20]Ismail, F., Elbestawi, M. A., Du, R. & Urbasik, K. (1993). Generation of milled surface including tool dynamics and wear. Journal of Engineering for Industry, Vol. 115, pp. 245-252.
[21]Inasaki I. (1985). In-process measurement of surface roughness during cylindrical grinding process. Precision Engineering, Vol. 7, No. 2, pp. 73-76.
[22]Jackson, J. E., (1980), Principal components and factor analysis: part Ⅰ- principal components, Journal of Quality Technology, 12, 201-213.
[23]Jackson, J.E., and Mudholkar, G. S., (1979), Control procedures for residuals associated with principal component analysis, Technometrics, 21, 341-349.
[24]Jang, J. S., Sun, C. T. & Mizutani, E. (1997). Neuro-Fuzzy and Soft Computing. NJ: Prentice Hall.
[25]Johnson, R. A. and Wichern, D. W., (2002), Applied Multivariate Statistical Analysis, 5th ed., Prentice Hall, New Jersey.
[26]Jung, C. Y. & Oh, J. H. (1991). Improvement of surface waviness by cutting force control in milling. Int. J. Mach. Tools Manufacture... Vol. 31, No. 1, pp. 9-21.
[27]Kalpakjian S. (1995). Manufacturing Engineering and Technology, 3rd edition. NY: Addison-Wesley.
[28]Landau, I. D. & M’Saad M. (1998). Adaptive control. NY: Springer
[29]Li, S. & Elbestawi, M. A. (1996). Tool condition monitoring in machining by fuzzy neural networks. Journal of Dynamic Systems, Measurement, and Control, Vol. 118, pp. 665-672.
[30]Lin, S.C. (1994). Computer numerical control-from programming to networking. NY: Delmar.
[31] Lou, S. J. (1997). Development of four in-process surface recognition systems to predict surface roughness in end milling. Doctoral dissertation, IA: Iowa State University
[32] Lou, M. S. & Chen, J. C. (1999). In-process surface roughness recognition system in end-milling operations. International Journal of Advanced Manufacturing Technology, Vol. 15, pp. 200-209.
[33] MacGregor, J. F., (1990), A different view of the funnel experiment, Journal of Quality Technology, 22, 255-259.
[34] MacGregor, J. F., Jaeckle, C., Kiparissides, C. and Koutoudi, M., (1994), Process monitoring and diagnosis by multiblock methods, American Institute of Chemical Engineering Journal, 40, 826-838.
[35] Martelloti, M. E. (1941), An analysis of the milling process. Transactions of the ASME, Vol. 63, pp. 677-700.
[36] Melkote, S. N. & Thangaraj, A. R. (1994). An enhanced end milling surface texture model including the effects of radial rake and primary relief angles. Journal of Engineering for Industry, Vol. 116, pp. 166-174.
[37] Misra, M., Yue, H. H.,Qin, S. J. and Ling, C., (2002), Multivariate process monitoring and fault diagnosis by multi-scale PCA, Computers and Chemical Engineering, 26, 1281-1293.
[38] Mou, J. (1997). A method of using neural networks and inverse kinematics for machine tools error estimation and correction. Journal of Manufacturing Science and Engineering, Vol. 119, pp. 247-254.
[39]Oktem, Hasana; Erzurumlu, Tuncayb; Erzincanli, Fehmib (2006).Prediction of minimum surface roughness in end milling mold parts using neural network and genetic algorithm, Materials and Design ,Vol: 27, pp. 735-744
[40]Raksiri, Chanaa; Parnichkun, Manukida(2004), Geometric and force errors compensation in a 3-axis CNC milling machine, International Journal of Machine Tools and Manufacture Vol: 44, pp. 1283-1291
[41]Raich, A. and Cinar, A., (1996), Statistical process monitoring and disturbance diagnosis in multivariable continuous process, American Institute of Chemical Engineering Journal, 42, 995-1009.
[42] Roverso, D., (2000), Soft computing tools for transient classification, Information Sciences, 127, 137-156.
[43] Po-Tsang Bernie Huang.(2002).A neural networks-based in-process adaptive surface roughness control (NN-IASRC) system in end-milling operations. Copyright © Wilbur Terrance Johnson, (2002). All rights reversed. Graduate College Iowa State University
[44] Smith, S. & Tlusty, J. (1991). An overview of modeling and simulation of the milling process. Journal of Engineering for Industry, Vol. 113, pp. 169-175.
[45] Stark, G. A. & Moon, K. S. (1999). Modeling surface texture in the peripheral milling process using neural network, spline, and fractal methods with evidence of chaos. Journal of Engineering for Industry, Vol. 121, pp. 251-256.
[46] Susic, E. & Grabec, I. (1995). Application of a neural network to the estimation of surface roughness from AE signals generated by friction process. . Int. J. Mach. Tools Manufact.. Vol. 35, No. 8, pp. 1077-1086.
[47] Takeyama, H., Sekiguchi, H., Murata, R. & Matsuzaki, H. (1976). In-process detection of surface roughness in machining. Annals of the CIRP, Vol. 25, No. 1, pp. 467-471.
[48] Tarng,Y. S. & Lee, B. Y. (1993). A sensor for the detection of tool breakage in NC milling,” Journal of Materials Processing Technology, Vol. 36, pp.259-272.
[49] Tsai, Y., Chen, J. C., & Lou, M. S. (1999). In-process surface recognition system based on neural networks in end milling operations. Int. J. Mach. Tools Manufact., Vol. 39, pp. 583-605.
[50] Williams, R. J. and Zipser, D., (1989), A learning algorithm for continually running fully recurrent neural networks, Neural Computation, 1, 271-279.
[51]Wang, X. Chen, P. Tansel, I.N. A, Yenilmezb, Transformations in machining. Part 1. enhancement of wavelet transformation neural network (WT-NN) combination with a preprocessor, International Journal of Machine Tools and Manufacture Vol: 46, pp. 36-42
[52] You, S. J. & Ehmann, K. F. (1991). Synthesis and generation of surface milled by ball nose end mills under tertiary cutter motion. Journal of Engineering for Industry, Vol. 113, pp. 17-24.
[53]Yoon, Moon-Chula; Kim, Young-Gukb(2007), Chatter stability boundary analysis using RBNN, Journal of Materials Processing Tech. Vol: 184, pp. 251-256
[54]Zuperl, U.a; Cus,F (2004), Tool cutting force modeling in ball-end milling using multilevel perceptron, Journal of Materials Processing Tech. Vol: 153-154, Complete , pp. 268-275