跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/03/04 16:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:范姜士屏
研究生(外文):Shih-Ping FanChiang
論文名稱:整合回收再製商與多零售商之二階回收產品存貨系統下最佳回收再製產品與新品訂購批量探討
論文名稱(外文):Exploring the Optimal Lot-size of Remanufactured and New Ordered Products Under Two-echelon Recovered Inventory System by Integrating Multi-retailers and Single Remanufacturer
指導教授:邱裕方邱裕方引用關係
指導教授(外文):Yu-Fang Chiu
學位類別:碩士
校院名稱:中原大學
系所名稱:工業與系統工程研究所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:312
中文關鍵詞:二階回收產品存貨系統逆向物流回收再製產品訂購新品
外文關鍵詞:Remanufactured ProductsNew Ordered ProductsTwo-echelon Recovered Inventory SystemReverse Logistics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:261
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目前在逆向物流存貨系統的相關文獻上,大多數都是在探討僅包括單一回收再製商與單一零售商的一階存貨系統,但卻鮮少討論到考慮包含多零售商的二階回收產品存貨系統,且由於需求與供給往往難以進行預測,因此包含多零售商的二階存貨系統不確定性相當大。本研究參考了回收產品存貨系統的相關研究,探討當不同的製造與再製批量策略運用在包含多零售商的二階存貨系統的情況下,藉由模式的推導去求取最佳的新品訂購與回收再製批量,並考慮在加入回收產品丟棄的處理方法之情況下,對於整個存貨系統的總成本是否有影響。最後藉由模式的分析與驗證來檢定模式在各個情況之間的最小單位時間總成本是否存在顯著差異。結果顯示,除了在模式一不考慮回收產品丟棄機制、單一零售商之回收產品存貨模式中,在修復速率大於需求速率與修復速率等於需求速率的情況之間的最小單位時間總成本沒有顯著差異之外,有顯著差異存在於本模式其餘各個不同情況之間。
In the relevant literatures of reverse logistics inventory system, most of them only explored single-echelon inventory system including single remanufacturer and single retailer, but few discussed two-echelon inventory system including multi-retailers. And due to demand and supply are difficult to forecast, the uncertainty of two-echelon inventory system including multi-retailers is very considerable. This research refers to the related literatures about recovered inventory system to explore different inventory lot-size policies of new ordered and remanufactured products applying in two-echelon inventory system including multi-retailers, then considers whether aggregate disposal option of return products will affect the total cost of inventory system or not. Finally, to test whether the minimal unit total costs exist significant difference or not among different cases of proposed model. The result shows except model 1 that not considers disposal option and including single retailer, there’re no significant difference of minimal unit total costs among Case 1 that repair rate is greater than demand rate and Case 3 that repair rate is equal to demand rate, there’re significant differences among these cases.
目錄
中文摘要 I
ABSTRACT II
目錄 III
圖目錄 IV
表目錄 IX
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的與範圍 3
1.3 研究流程與架構 5
第二章 文獻探討 8
2.1 供應鏈相關定義 8
2.2 物流 11
2.3 存貨議題 15
2.4 綠色供應鏈與逆向物流 22
2.5 再製造 37
2.6 回收產品存貨系統 41
2.7 小結 46
第三章 研究方法 50
3.1 問題描述 50
3.2 研究設計 52
3.3 研究流程 53
3.4 研究假設 55
3.5 符號定義 56
3.6 相關模式與主要參考模式說明 59
3.7 模式建構 75
第四章 模式驗證 147
4.1 數值範例 147
4.2 敏感度分析 164
4.3 假說檢定 265
4.4 小結 284
第五章 結論與未來研究 286
5.1 研究結論 286
5.2 未來研究 289
參考文獻 290

圖目錄
圖1.1 研究架構圖 7
圖2.1 供應鏈流程 (Beamon, 1998) 10
圖2.2 物流流程 (Jones, 1998) 13
圖2.3 物流網路 (Blanchard, 2004) 14
圖2.4 逆向物流機制 (Srivastava, 2008) 26
圖2.5 再製造流程 (Guide Jr. and Srivastava, 1997) 38
圖2.6 逆向物流回收產品存貨系統 (Fleischmann et al., 1997) 42
圖2.7 考慮回收之二階存貨系統 (Mitra, 2009) 46
圖3.1 研究概念圖 52
圖3.2 研究流程圖 54
圖3.3 存貨系統圖 (Koh et al., 2002) 61
圖3.4 (1, R) 存貨策略系統圖 (Teunter, 2001) 68
圖3.5 (M, 1) 存貨策略系統圖 (Teunter, 2001) 69
圖3.6 二階回收產品存貨系統圖 (Mitra, 2009) 74
圖3.7 模式一之存貨系統圖 (p>d) 77
圖3.8 模式一之存貨系統圖 (d>p) 85
圖3.9 模式一之存貨系統圖 (p=d) 94
圖3.10 模式二之存貨系統圖 (p>d) 108
圖3.11 模式二之存貨系統圖 (d>p) 117
圖3.12 模式二之存貨系統圖 (p=d) 132
圖4.1 每批新品之訂購成本對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 1) 167
圖4.2 每批新品之訂購成本對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 2) 169
圖4.3 每批新品之訂購成本對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 3) 170
圖4.4 回收產品修復過程之整備成本對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 1) 172
圖4.5 回收產品修復過程之整備成本對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 2) 173
圖4.6 回收產品修復過程之整備成本對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 3) 174
圖4.7 每批回收再製產品之進貨成本對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 1) 176
圖4.8 每批回收再製產品之進貨成本對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 2) 177
圖4.9 每批回收再製產品之進貨成本對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 3) 178
圖4.10 零售商之整備成本對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 1) 180
圖4.11 零售商之整備成本對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 2) 181
圖4.12 零售商之整備成本對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 3) 182
圖4.13 回收產品之存貨持有成本對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 1) 184
圖4.14 回收產品之存貨持有成本對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 2) 185
圖4.15 回收產品之存貨持有成本對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 3) 186
圖4.16 可利用產品之存貨持有成本對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 1) 188
圖4.17 可利用產品之存貨持有成本對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 2) 189
圖4.18 可利用產品之存貨持有成本對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 3) 190
圖4.19 零售商之存貨持有成本對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 1) 192
圖4.20 零售商之存貨持有成本對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 2) 193
圖4.21 零售商之存貨持有成本對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 3) 194
圖4.22 需求速率對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 1) 196
圖4.23 需求速率對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 2) 197
圖4.24 需求速率對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 3) 198
圖4.25 修復速率對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 1) 200
圖4.26 修復速率對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 2) 201
圖4.27 修復速率對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 3) 202
圖4.28 回收速率對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 1) 204
圖4.29 回收速率對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 2) 205
圖4.30 回收速率對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 3) 206
圖4.31 每批新品之訂購成本對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 1) 210
圖4.32 每批新品之訂購成本對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 2) 211
圖4.33 每批新品之訂購成本對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 3) 212
圖4.34 回收產品修復過程之整備成本對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 1) 214
圖4.35 回收產品修復過程之整備成本對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 2) 215
圖4.36 回收產品修復過程之整備成本對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 3) 216
圖4.37 廢棄物丟棄成本對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 1) 218
圖4.38 廢棄物丟棄成本對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 2) 219
圖4.39 廢棄物丟棄成本對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 3) 220
圖4.40 回收產品再製之處理成本對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 1) 222
圖4.41 廢棄物丟棄成本對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 2) 223
圖4.42 廢棄物丟棄成本對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 3) 224
圖4.43 每批回收再製產品之進貨成本對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 1) 226
圖4.44 每批回收再製產品之進貨成本對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 2) 227
圖4.45 每批回收再製產品之進貨成本對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 3) 228
圖4.46 零售商之整備成本對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 1) 230
圖4.47 零售商之整備成本對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 2) 231
圖4.48 零售商之整備成本對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 3) 232
圖4.49 回收產品之存貨持有成本對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 1) 234
圖4.50 回收產品之存貨持有成本對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 2) 235
圖4.51 回收產品之存貨持有成本對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 3) 236
圖4.52 可利用產品之存貨持有成本對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 1) 238
圖4.53 可利用產品之存貨持有成本對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 2) 239
圖4.54 可利用產品之存貨持有成本對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 3) 240
圖4.55 零售商之存貨持有成本對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 1) 242
圖4.56 零售商之存貨持有成本對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 2) 243
圖4.57 零售商之存貨持有成本對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 3) 244
圖4.58 需求速率對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 1) 246
圖4.59 需求速率對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 2) 247
圖4.60 需求速率對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 3) 248
圖4.61 修復速率對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 1) 250
圖4.62 修復速率對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 2) 251
圖4.63 修復速率對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 3) 252
圖4.64 回收速率對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 1) 254
圖4.65 回收速率對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 2) 255
圖4.66 回收速率對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 3) 256
圖4.67 回收再製產品可再利用比率對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 1) 258
圖4.68 回收再製產品可再利用比率對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 2) 259
圖4.69 回收再製產品可再利用比率對最佳新品訂購量、回收再製產品訂購量與單位時間總成本之影響 (Case 3) 260

表目錄
表2.1 生產過程中的物流活動 (Blanchard, 2004) 15
表2.2 回收產品處理方法之比較 (Thierry et al., 1995) 31
表3.1 符號定義 56
表3.2 Koh et al. (2002) 模式之符號定義 62
表3.3 Teunter (2001) 模式之符號定義 69
表4.1模式一 p>d>r 之參數數據 148
表4.2模式一 p>d>r 之計算結果 149
表4.3模式一 d>p>r 之參數數據 150
表4.4模式一 d>p>r 之計算結果 151
表4.5模式一 p=d>r 之參數數據 153
表4.6模式一 p=d>r 之計算結果 154
表4.7模式二 p>d>r 之參數數據 155
表4.8模式二 p>d>r 之計算結果 157
表4.9模式二 d>p>r 之參數數據 158
表4.10模式二 d>p>r 之計算結果 159
表4.11模式二 p=d>r 之參數數據 161
表4.12模式二 p=d>r 之計算結果 162
表4.13模式一 Case 1各參數值之變動幅度 164
表4.14模式一 Case 2各參數值之變動幅度 165
表4.15模式一 Case 3各參數值之變動幅度 166
表4.16模式一 Case 1在Cp變動下對Qp*、Qr*、TCU1(Qp*,Qr*) 之敏感度分析 167
表4.17模式一 Case 2在Cp變動下對Qp*、Qr*、TCU1(Qp*,Qr*) 之敏感度分析 168
表4.18模式一 Case 3在Cp變動下對Qp*、Qr*、TCU1(Qp*,Qr*) 之敏感度分析 169
表4.19模式一 Case 1在Cs變動下對Qp*、Qr*、TCU1(Qp*,Qr*) 之敏感度分析 171
表4.20模式一 Case 2在Cs變動下對Qp*、Qr*、TCU1(Qp*,Qr*) 之敏感度分析 172
表4.21模式一 Case 3在Cs變動下對Qp*、Qr*、TCU1(Qp*,Qr*) 之敏感度分析 174
表4.22模式一 Case 1在Cr變動下對Qp*、Qr*、TCU1(Qp*,Qr*) 之敏感度分析 175
表4.23模式一 Case 2在Cr變動下對Qp*、Qr*、TCU1(Qp*,Qr*) 之敏感度分析 176
表4.24模式一 Case 3在Cr變動下對Qp*、Qr*、TCU1(Qp*,Qr*) 之敏感度分析 178
表4.25模式一 Case 1在Ce變動下對Qp*、Qr*、TCU1(Qp*,Qr*) 之敏感度分析 179
表4.26模式一 Case 2在Ce變動下對Qp*、Qr*、TCU1(Qp*,Qr*) 之敏感度分析 180
表4.27模式一 Case 3在Ce變動下對Qp*、Qr*、TCU1(Qp*,Qr*) 之敏感度分析 182
表4.28模式一Case 1在Chr變動下對Qp*、Qr*、TCU1(Qp*,Qr*) 之敏感度分析 183
表4.29模式一Case 2在Chr變動下對Qp*、Qr*、TCU1(Qp*,Qr*) 之敏感度分析 184
表4.30模式一Case 3在Chr變動下對Qp*、Qr*、TCU1(Qp*,Qr*) 之敏感度分析 186
表4.31模式一Case 1在Chs變動下對Qp*、Qr*、TCU1(Qp*,Qr*) 之敏感度分析 187
表4.32模式一Case 2在Chs變動下對Qp*、Qr*、TCU1(Qp*,Qr*) 之敏感度分析 188
表4.33模式一Case 3在Chs變動下對Qp*、Qr*、TCU1(Qp*,Qr*) 之敏感度分析 190
表4.34模式一 Case 1在Ci變動下對Qp*、Qr*、TCU1(Qp*,Qr*) 之敏感度分析 191
表4.35模式一 Case 2在Ci變動下對Qp*、Qr*、TCU1(Qp*,Qr*) 之敏感度分析 192
表4.36模式一 Case 3在Ci變動下對Qp*、Qr*、TCU1(Qp*,Qr*) 之敏感度分析 194
表4.37模式一 Case 1在d變動下對Qp*、Qr*、TCU1(Qp*,Qr*) 之敏感度分析 195
表4.38模式一 Case 2在d變動下對Qp*、Qr*、TCU1(Qp*,Qr*) 之敏感度分析 196
表4.39模式一 Case 3在d變動下對Qp*、Qr*、TCU1(Qp*,Qr*) 之敏感度分析 198
表4.40模式一 Case 1在p變動下對Qp*、Qr*、TCU1(Qp*,Qr*) 之敏感度分析 199
表4.41模式一 Case 2在p變動下對Qp*、Qr*、TCU1(Qp*,Qr*) 之敏感度分析 200
表4.42模式一 Case 3在p變動下對Qp*、Qr*、TCU1(Qp*,Qr*) 之敏感度分析 202
表4.43模式一 Case 1在r變動下對Qp*、Qr*、TCU1(Qp*,Qr*) 之敏感度分析 203
表4.44模式一 Case 2在r變動下對Qp*、Qr*、TCU1(Qp*,Qr*) 之敏感度分析 205
表4.45模式一 Case 3在r變動下對Qp*、Qr*、TCU1(Qp*,Qr*) 之敏感度分析 206
表4.46模式二 Case 1各參數值之變動幅度 207
表4.47模式二 Case 2各參數值之變動幅度 208
表4.48模式二 Case 3各參數值之變動幅度 208
表4.49模式二 Case 1在Cp變動下對Qp*、Qr*、TCU2(Qp*,Qr*) 之敏感度分析 210
表4.50模式二 Case 2在Cp變動下對Qp*、Qr*、TCU2(Qp*,Qr*) 之敏感度分析 211
表4.51模式二 Case 3在Cp變動下對Qp*、Qr*、TCU2(Qp*,Qr*) 之敏感度分析 212
表4.52模式二 Case 1在Cs變動下對Qp*、Qr*、TCU2(Qp*,Qr*) 之敏感度分析 213
表4.53模式二 Case 2在Cs變動下對Qp*、Qr*、TCU2(Qp*,Qr*) 之敏感度分析 215
表4.54模式二 Case 3在Cs變動下對Qp*、Qr*、TCU2(Qp*,Qr*) 之敏感度分析 216
表4.55模式二 Case 1在Cd變動下對Qp*、Qr*、TCU2(Qp*,Qr*) 之敏感度分析 217
表4.56模式二 Case 2在Cd變動下對Qp*、Qr*、TCU2(Qp*,Qr*) 之敏感度分析 219
表4.57模式二 Case 3在Cd變動下對Qp*、Qr*、TCU2(Qp*,Qr*) 之敏感度分析 220
表4.58模式二 Case 1在Cq變動下對Qp*、Qr*、TCU2(Qp*,Qr*) 之敏感度分析 221
表4.59模式二 Case 2在Cq變動下對Qp*、Qr*、TCU2(Qp*,Qr*) 之敏感度分析 223
表4.60模式二 Case 3在Cq變動下對Qp*、Qr*、TCU2(Qp*,Qr*) 之敏感度分析 224
表4.61模式二 Case 1在Cr變動下對Qp*、Qr*、TCU2(Qp*,Qr*) 之敏感度分析 225
表4.62模式二 Case 2在Cr變動下對Qp*、Qr*、TCU2(Qp*,Qr*) 之敏感度分析 227
表4.63模式二 Case 3在Cr變動下對Qp*、Qr*、TCU2(Qp*,Qr*) 之敏感度分析 228
表4.64模式二 Case 1在Ce變動下對Qp*、Qr*、TCU2(Qp*,Qr*) 之敏感度分析 229
表4.65模式二 Case 2在Ce變動下對Qp*、Qr*、TCU2(Qp*,Qr*) 之敏感度分析 231
表4.66模式二 Case 3在Ce變動下對Qp*、Qr*、TCU2(Qp*,Qr*) 之敏感度分析 232
表4.67模式二 Case 1在Chr變動下對Qp*、Qr*、TCU2(Qp*,Qr*) 之敏感度分析 233
表4.68模式二 Case 2在Chr變動下對Qp*、Qr*、TCU2(Qp*,Qr*) 之敏感度分析 235
表4.69模式二 Case 3在Chr變動下對Qp*、Qr*、TCU2(Qp*,Qr*) 之敏感度分析 236
表4.70模式二 Case 1在Chs變動下對Qp*、Qr*、TCU2(Qp*,Qr*) 之敏感度分析 237
表4.71模式二 Case 2在Chs變動下對Qp*、Qr*、TCU2(Qp*,Qr*) 之敏感度分析 239
表4.72模式二 Case 3在Chs變動下對Qp*、Qr*、TCU2(Qp*,Qr*) 之敏感度分析 240
表4.73模式二 Case 1在Ci變動下對Qp*、Qr*、TCU2(Qp*,Qr*) 之敏感度分析 241
表4.74模式二 Case 2在Ci變動下對Qp*、Qr*、TCU2(Qp*,Qr*) 之敏感度分析 243
表4.75模式二 Case 3在Ci變動下對Qp*、Qr*、TCU2(Qp*,Qr*) 之敏感度分析 244
表4.76模式二 Case 1在d變動下對Qp*、Qr*、TCU2(Qp*,Qr*) 之敏感度分析 245
表4.77模式二 Case 2在d變動下對Qp*、Qr*、TCU2(Qp*,Qr*) 之敏感度分析 247
表4.78模式二 Case 3在d變動下對Qp*、Qr*、TCU2(Qp*,Qr*) 之敏感度分析 248
表4.79模式二 Case 1在p變動下對Qp*、Qr*、TCU2(Qp*,Qr*) 之敏感度分析 249
表4.80模式二 Case 2在p變動下對Qp*、Qr*、TCU2(Qp*,Qr*) 之敏感度分析 251
表4.81模式二 Case 3在p變動下對Qp*、Qr*、TCU2(Qp*,Qr*) 之敏感度分析 252
表4.82模式二 Case 1在r變動下對Qp*、Qr*、TCU2(Qp*,Qr*) 之敏感度分析 253
表4.83模式二 Case 2在r變動下對Qp*、Qr*、TCU2(Qp*,Qr*) 之敏感度分析 255
表4.84模式二 Case 3在r變動下對Qp*、Qr*、TCU2(Qp*,Qr*) 之敏感度分析 256
表4.85模式二 Case 1在f變動下對Qp*、Qr*、TCU2(Qp*,Qr*) 之敏感度分析 257
表4.86模式二 Case 2在f變動下對Qp*、Qr*、TCU2(Qp*,Qr*) 之敏感度分析 259
表4.87模式二 Case 3在f變動下對Qp*、Qr*、TCU2(Qp*,Qr*) 之敏感度分析 260
表4.88 兩模式之成本數據 (Case 1) 268
表4.89 Wilcoxon Signed Rank Test 檢定結果 (Case 1) 269
表4.90兩模式之成本數據 (Case 2) 270
表4.91 Wilcoxon Signed Rank Test 檢定結果 (Case 2) 272
表4.92兩模式之成本數據 (Case 3) 273
表4.93 Wilcoxon Signed Rank Test 檢定結果 (Case 3) 275
表4.94 兩模式之成本數據 (Case 4) 276
表4.95 Wilcoxon Signed Rank Test 檢定結果 (Case 4) 278
表4.96兩模式之成本數據 (Case 5) 279
表4.97 Wilcoxon Signed Rank Test 檢定結果 (Case 5) 280
表4.98兩模式之成本數據 (Case 6) 282
表4.99 Wilcoxon Signed Rank Test 檢定結果 (Case 6) 283
1. Agrawal, S., R. N. Sengupta and K. Shanker (2007), “Impact of information sharing and lead time on bullwhip effect and on-hand inventory,” European Journal of Operational Research, Volume 192, Issue 2, Pages 576-593.
2. Alshamrani, A., K. Mathur and R. H. Ballou (2007), “Reverse logistics: simultaneous design of delivery routes and returns strategies,” Computers & Operations Research, Volume 34, Issue 2, Pages 595-619.
3. Andreu, J. J. (1995), “The remanufacturing process,” Internal paper from
Manchester, Metropolitan University, UK.
4. Beamon, M. B. (1998), “Supply Chain Design and Analysis: Models and Methods,” International Journal of Production Economics, Volume 55, Issue 3, Pages 281-294.
5. Beamon, M. B. (1999), “Designing the green supply chain,” Logistics Information
Management, Volume 12, Issue 4, Pages 332-342.
6. Biehl, M., E. Prater and M. J. Realff (2007), “Assessing performance and uncertainty in developing carpet reverse logistics systems,” Computers & Operations Research, Volume 34, Issue 2, Pages 443-463.
7. Blanchard, B. S. (2004), “Logistics Engineering and Management, 6th Edition,” Pearson Prentice Hall, Upper Saddle River, N.J., Pages 10-16.
8. Brito, M. P. D. and E. A. van der Laan (2007), “Inventory control with product returns: The impact of imperfect information,” European Journal of Operational Research, Volume 194, Issue 1, Pages 85-101.
9. Carter, C. R. and L. M. Ellram (1998), “Reverse logistics: a review of the literature and framework for future investigation,” Journal of Business Logistics Oak Brook, Volume 19, Issue 1, Pages 85-102.
10. Chase, R. B. (1998), “Production and Operations Management: Manufacturing and Services,” Irwin/McGraw-Hill, Boston, Pages 7-15.
11. Chen, F., A. Federgruen and Y. S. Zheng (2001), “Coordination mechanisms for a distribution system with one supplier and multiple retailers,” Management Science, Volume 47, Issue 5, Pages 693-708.
12. Christopher, M. (1999), “Logistics & Supply Chain Management, Second Edition: Strategies for Reducing Costs and Improving Service,” Financial Times/Prentice Hall, Dorchester, Pages 6-11.
13. Chiou, C. Y., P. Y. Wang, H. C. Chen and C. Y. Yeh (2007), “Green Supplier Selection and Assessment in GSCM Using Analytic Hierarchy Process (AHP) for Information and Electronic Industry,” Journal of e-business, Volume 9, Issue 1, Pages 147-176.
14. Chung, S. L., H. M. Wee and P. C. Yang (2008), “Optimal policy for a closed-loop supply chain inventory system with remanufacturing,” Mathematical and Computer Modelling, Volume 48, Issues 5-6, Pages 867-881.
15. Cohen, M. A., S. Nahmias and W. P. Pierskalla (1980), “A dynamic inventory system with recycling,” Naval Research Logistics Quarterly, Volume 27, Issue 2, Pages 289-296.
16. Cooper, M. C., D. M. Lambert and J. D. Pagh (1997), “Supply Chain Management: More Than a New Name for Logistics,” The International Journal of Logistics Management, Volume 8, Issue 1, Pages 1-14.
17. Cruz-Rivera, R. and J. Ertel (2009), “Reverse logistics network design for the collection of End-of-Life Vehicles in Mexico,” European Journal of Operational Research, Volume 196, Issue 3, Pages 930-939.
18. Dobos, I. and K. Richter (2004), “An extended production recycling model with stationary demand and return rates,” International Journal of Production Economics, Volume 90, Issue 3, Pages 311-323.
19. Fleischmann, M., J. M. Bloemhof-Ruwaard, R. Dekker, E. van der Laan, J. A. E. E. van Nunen and L. N. Van Wassenhove (1997), “Quantitative models for reverse logistics: A review,” European Journal of Operational Research, Volume 103, Issue 1, Pages 1-17.
20. Fleischmann, M., H. R. Krikke, R. Dekker and S. D. P. Flapper (2000), “A characterisation of logistics networks for product recovery,” Omega, Volume 28, Issue 6, Pages 653-666.
21. Fleischmann, M. and R. Kuik (2003), “On optimal inventory control with independent stochastic item returns,” European Journal of Operational Research, Volume 151, Issue 1, Pages 25-37.
22. Goggin, K., E. Reay and J. Browne (2000), “Modeling End-of-Life product recovery chains- A case study,” Production Planning and Control, Volume 11, Issue 2, Pages 187-196.
23. González-Torre, P. L., B. Adenso-Díaz and H. Artiba (2004), “Environmental and reverse logistics policies in European bottling and packaging firms,” International Journal of Production Economics, Volume 88, Issue 1, Pages 95-104.
24. Guide Jr., V. D. R. and R. Srivastava (1997), “An evaluation of order release strategies in a remanufacturing environment,” Computers & Operations Research, Volume 24, Issue 1, Pages 37-47.
25. Guide Jr., V. D. R. (2000), “Production planning and control for remanufacturing: industry practice and research needs,” Journal of Operations Management, Volume 18, Issue 4, Pages 467-483.
26. Ha, D. and S. L. Kim (1997), “Implementation of JIT purchasing: an integrated approach,” Production Planning & Control, Volume 8, Issue 2, Pages 152-157.
27. Hervani, A. A., M. M Helms and J. Sarkis (2005), “Performance measurement for green supply chain management,” Benchmarking. Bradford, Volume 12, Issue 4, Pages 330-353.
28. Heyman, D. P. (1977), “Optimal disposal policies for a single-item inventory system with returns,” Naval Research Logistics, Volume 24, Pages 385-405.
29. Hu, T. L., J. B. Sheu and K. H. Huang (2002), “A reverse logistics cost minimization model for the treatment of hazardous wastes,” Transportation Research Part E: Logistics and Transportation Review, Volume 38, Issue 6, Pages 457-473.
30. Inderfurth, K. (1997), “Simple optimal replenishment and disposal policies for a product recovery system with leadtimes,” OR Spektrum, Volume 19, Pages 111-122.
31. Inderfurth, K. and E. van der Laan (2001), “Leadtime effects and policy improvement for stochastic inventory control with remanufacturing,” International Journal of Production Economics, Volume 71, Issues 1-3, Pages 381-390.
32. Jayaraman, V., V. D. R. Guide Jr. and R. Srivastava (1999), “A closed-loop logistics model for remanufacturing,” The Journal of the Operational Research Society, Volume 50, Issue 5, Pages 497-508.
33. Jones, T. (1998), “Reverse Logistics-Bringing the Product Back: Taking it into the future,” Strategic Supply Chain Alignment-Best Practice in Supply Chain Management, Gower, Brookfield, Hampshire, Pages 19-30.
34. Karaman, A. and T. Altiok (2009), “Approximate analysis and optimization of batch ordering policies in capacitated supply chains,” European Journal of Operational Research, Volume 193, Issue 1, Pages 222-237.
35. Kim, K., I. Song, J. Kim, and B. Jeong (2006), “Supply planning model for remanufacturing system in reverse logistics environment,” Computers & Industrial Engineering, Volume 51, Issue 2, Pages 279-287.
36. Koh, S. G., H. Hwang, K. I. Sohn and C. S. Ko (2002), “An optimal ordering and recovery policy for reusable items,” Computers & Industrial Engineering, Volume 43, Issues 1-2, Pages 59-73.
37. Korugan, A. and S. M. Gupta (1998), “A multi-echelon inventory system with returns,” Computers & Industrial Engineering, Volume 35, Issues 1-2, Pages 145-148.
38. Kumar, S. and P. Malegeant (2006), “Strategic alliance in a closed-loop supply chain, a case of manufacturer and eco-non-profit organization,” Technovation, Volume 26, Issue 10, Pages 1127-1135.
39. Li, X. and Q. Wang (2007), “Coordination mechanisms of supply chain systems,” European Journal of Operational Research, Volume 179, Issue 1, Pages 1-16.
40. Liang, Y., S. Pokharel and G. H. Lim (2009), “Pricing used products for remanufacturing,” European Journal of Operational Research, Volume 193, Issue 2, Pages 390-395.
41. Mabini, M. C., L. M. Pintelon and L. F. Gelders (1992), “EOQ type formulations for controlling repairable inventories,” International Journal of Production Economics, Volume 54, Pages 173-192.
42. Mahadevan, B., D. F. Pyke and M. Fleischmann (2003), “Periodic review, push inventory policies for remanufacturing,” European Journal of Operational Research, Volume 151, Issue 3, Pages 536-551.
43. McGarvin, E. J., L. B. Schwarz and J. E. Ward (1993), “Two-interval inventory-allocation policies in a one-warehouse N-identical-retailer distribution system,” Management Science, Volume 39, Issue 9, Pages 1092-1107.
44. Mentzer, J. T., D. J. Flint and G. T. M. Hult (2001), “Logistics Service Quality as a Segment-Customized Process,” Journal of Marketing, Volume 65, Issue 4, Pages 82-104.
45. Mitra, S. (2009), “Analysis of a two-echelon inventory system with returns,” Omega, Volume 37, Issue 1, Pages 106-115.
46. Muckstadt, J. A. and M. H. Isaac (1981), “An analysis of single item inventory systems with returns,” Naval. Research Logistics Quarter, Volume 28, Pages 237-254.
47. Mukhopadhyay, S. K. and H. Ma (2009), “Joint procurement and production decisions in remanufacturing under quality and demand uncertainty,” International Journal of Production Economics, Volume 120, Issue 1, Pages 5-17.
48. Mutha, A. and S. Pokharel (2009), “Strategic network design for reverse logistics and remanufacturing using new and old product modules,” Computers & Industrial Engineering, Volume 56, Issue 1, Pages 334-346.
49. Nagel, M. H. (2000), “Environmental supply-chain management versus green procurement in the scope of a business and leadership the scope of a business and leadership perspective,” Electronics and the Environment, IEEE, Volume 8, Issue 10, Pages 219-224.
50. Östlin, J., E. Sundin and M. Björkman (2008), “Importance of Closed-Loop Supply Chain Relationships for Product Remanufacturing,” International Journal of Production Economics, Volume 115, Issue 2, Pages 336-348.
51. Raafat, F. (1991), “Survey of literature on continuously deteriorating inventory models,” Journal of Operational Research Society, Volume 42, Issue 1, Pages 27-37.
52. Richter, K. (1996a), “The EOQ repair and waste disposal model with variable setup numbers,” European Journal of Operational Research, Volume 95, Issue 2, Pages 313-324.
53. Richter, K. (1996b), “The extended EOQ repair and waste disposal model,” International Journal of Production Economics, Volume 45, Issues 1-3, Pages 443-447.
54. Sarimveis, H., P. Patrinos, C. D. Tarantilis and C. T. Kiranoudis (2008), “Dynamic modeling and control of supply chain systems: A review,” Computers & Operations Research, Volume 35, Issue 11, Pages 3530-3561.
55. Sarkis, J., N. Darnall, G. Nehman and J. Priest (1995), “The role of supply chain management within the industrial ecosystem,” International Symposium on Electronics and the Environment, Orlando, FL, Pages 229-234.
56. Savaskan, R. C., S. Bhattacharya and L. N. Van Wassenhove (2004), “Closed-Loop Supply Chain Models with Product Remanufacturing,” Management Science. Linthicum, Volume 50, Issue 2, Pages 239-252.
57. Schrady, D. A. (1967), “A deterministic inventory model for repairable items,” Naval Research Logistics Quarterly, Volume 14, Pages 391-398.
58. Schwarz, L. B., B. L. Deuermeyer and R. D. Badinelli (1985), “Fill-Rate Optimization in a One-Warehouse N-Identical Retailer Distribution System,” Management Science, Volume 31, Issue 4, Pages 488-498.
59. Shih, L. H. (2001), “Reverse logistics system planning for recycling electrical appliances and computers in Taiwan,” Resources, Conservation and Recycling, Volume 32, Issue 1, Pages 55-72.
60. Silver, E. A., D. F. Pyke and R. Peterson (1998), “Inventory management and production planning and scheduling,” New York: Wiley.
61. Simchi-Levi, D., P. Kaminsky and E. Simchi-Levi (2003), “Designing and Managing the Supply Chain, 2nd Edition,” McGraw Hill, Boston, Pages 22-50.
62. Simpson, V. P. (1978), “Optimum solution structure for a repairable inventory system,” Operations Research, Volume 26, Pages 270-281.
63. Stevens, G. C. (1989), “Integrating the supply chain,” International Journal of Physical Distribution and Materials Management, Volume 19, Issue 8, Pages 3-8.
64. Stevenson, W. J. (2005), “Operations Management, 8e,” McGraw Hill, Boston, Pages 610-635.
65. Strang, G. (2006), “Linear algebra and its applications,” Belmont, CA: Thomson, Brooks/Cole, 4th edition.
66. Srivastava, S. K. (2008), “Network design for reverse logistics,” Omega, Volume 36, Issue 4, Pages 535-548.
67. Tang, O. and R. W. Grubbstrom (2005), “Considering stochastic lead times in a manufacturing/remanufacturing system with deterministic demands and returns,” International Journal of Production Economics, Volumes 93-94, Pages 285-300.
68. Teunter, R. H., E. van der Laan and K. Inderfurth (2000), “How to set the holding cost rates in average cost inventory models with reverse logistics,” Omega, Volume 28, Issue 4, Pages 409-415.
69. Teunter, R. H. (2001), “Economic ordering quantities for recoverable item inventory systems,” Naval Research Logistics, Volume 48, Issue 6, Pages 484-495.
70. Teunter, R. H. and D. Vlachos (2002), “On the necessity of a disposal option for returned products that can be remanufactured,” International Journal of Production Economics, Volume 75, Issue 3, Pages 257-266.
71. Teunter, R. H. (2004), “Lot-sizing for inventory systems with product recovery,” Computers & Industrial Engineering, Volume 46, Issue 3, Pages 431-441.
72. Thierry, M., M. Salomon, J. V. Nunen and L. V. Wassenhove (1995), “Strategic issues in product recovery management,” California Management Review, Volume37, Pages 114–135.
73. Van der Laan, E., R. Dekker, M. Salomon and A. Ridder (1996), “An (s, Q) inventory model with remanufacturing and disposal,” International Journal Production Economics, Volume 46, Issue 2, Pages 339-350.
74. Van der Laan, E. and M. Salomon (1997), “Production planning and inventory control with remanufacturing and disposal,” European Journal of Operational Research, Volume 102, Issue 2, Pages 264-278.
75. Van der Laan, E., M. Salomon and R. Dekker (1999a), “An investigation of lead-time effects in manufacturing/remanufacturing systems under simple PUSH and PULL control strategies,” European Journal of Operational Research, Volume 115, Issue 1, Pages 195-214.
76. Van der Laan, E., M. Salomon, R. Dekker and L. V. Wassenhove (1999b), “Inventory control in hybrid systems with remanufacturing,” Management Science, Volume 45, Issue 5, Pages 733-747.
77. Van der Laan, E. and R. H. Teunter (2006), “Simple heuristics for push and pull remanufacturing policies,” European Journal of Operational Research, Volume 175, Issue 2, Pages 1084-1102.
78. Wang, B., Y. Z. Bai and M. Li (2004), “The study of green supply chain management for enterprises' sustainable development,” Science and Technology management research, Volume 1, Pages 1-7.
79. Wei, M. S. and K. H. Huang (2001), “Recycling and reuse of industrial wastes in Taiwan,” Waste Management, Volume 21, Pages 93-97.
80. Whisler, W. D. (1967), “A Stochastic Inventory Model for Rented Equipment,” Management Science, Volume 13, No. 9, Series A, Sciences, Pages 640-647.
81. Zhu, Q. and R. P. Cote (2004), “Integrating green supply chain management into an embryonic eco-industrial development: a case study of the Guitang Group,” Journal of Cleaner Production, Volume 12, Issue 8-10, Pages 1025-1035.
82. Zikopoulos, C. and G. Tagaras (2007), “Impact of uncertainty in the quality of returns on the profitability of a single-period refurbishing operation,” European Journal of Operational Research, Volume 182, Issue 1, Pages 205-225.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top