跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/18 20:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇艾倫
研究生(外文):Allan N. Soriano
論文名稱:離子液體吸收二氧化碳之氣液平衡、密度及折射率量測與混合醇胺水溶液吸收二氧化碳之氣液平衡模式建立
論文名稱(外文):Measurements of Density and Refractive Index, and VaporLiquid Equilibrium for Absorption of CO2 using Ionic Liquids and VaporLiquid Equilibrium Model Development for Absorption of CO2 using Aqueous Blended Amine Solution
指導教授:李夢輝李夢輝引用關係
指導教授(外文):Meng-Hui Li
學位類別:博士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:177
中文關鍵詞:二氧化碳吸收醇胺離子液體
外文關鍵詞:ionic liqidsalkanolaminecarbon dixoide solubility
相關次數:
  • 被引用被引用:0
  • 點閱點閱:332
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於地球環境氣候巨變,人類開始注意到二氧化碳排放對地球的危害,因此,重要的是發展新技術,以改善這一問題。目前有許多的技術用於分離和捕集二氧化碳,這些技術被使用於化學工業和氣體工業。使用醇胺(也稱為alkanolamines)吸收二氧化碳是現今最常見的技術,但此吸收方法存在著許多問題,如大量的能源消耗,成本增加及腐蝕設備的問題。因此,我們必須找到一種新的二氧化碳吸收劑來取代過去的溶劑,過去十年中,一種新的溶劑,稱為室溫離子液體日益受到重視,經過不同研究發現其良好的吸收性質,已被用於取代傳統的有機溶劑。
因此,我們將針對這兩種吸收劑做進一步的研究,本研究分為兩部分,第一部將討論離子液體及其特性而第二部將針對醇胺吸收二氧化碳進行討論 。第一部分是離子液體吸收二氧化碳溶解度及熱物性質的量測及計算,第二部分著重於將現有文獻中醇胺吸收二氧化碳氣液平衡數據加入回歸模式的計算,因為離子液體吸收二氧化碳文獻上數據非常稀少,所以需要以實驗來得到數據,而醇胺吸收二氧化碳因為文獻上數據非常充足,所以我們只針對計算方面來研究。
在第一部分的熱物性質測量方面,我們對於九種離子液體密度和折射率進行測量和計算回歸,實驗中所使用的離子液體為1-butyl-3-methylimidazolium tetrafluoroborate,1-butyl-3-methylimidazolium hexafluorophosphate,1-butyl-3-methylimidazolium methylsulfate,1-butyl-3-methylimidazolium trifluoromethanesulfonate,1-ethyl-3-methylimidazolium dicyanamide,1-ethyl-3-methylimidazolium tetrafluoroborate,1-ethyl-3-methylimidazolium ethylsulfate,1-ethyl-3-methylimidazolium trifluoromethanesulfonate,和 1-ethyl-3-methylimidazolium 2-(2-methoxyethoxy) ethylsulfate。密度和折射率量測壓力為常壓,最高量測溫度為353.2 K,也將實驗數據和溫度做回歸得到滿意的結果,這兩種熱物性質也使用多種不同的計算模式來做回歸,如Lorentz-Lorenz,Dale-Gladstone,Eykman,Oster,Arago-Biot,Newton,和 modified Eykman方程式等。
溶解度研究的第一部分包括吸收二氧化碳在九種離子液體中的溶解度溫度範圍從303.2到343.2 K和壓力達6.8 MPa,氣體溶解度定義為離子液體吸收達飽和(平衡)時的溶解度,也必須考慮到浮力效應對溶解度測量的影響,準確的狀態方程和密度的相關性為二氧化碳和離子液體,分別用來確定影響的浮力的氣體溶解度。在計算方面二氧化碳在離子液體中溶解度,我們將它表示成溫度及壓力的函數,本溶解度數據也使用亨利定律方程來做進一步回歸並得到滿意的結果。
第二部分中的氣體溶解研究,用簡化之CleggPitzer方程來計算探討二氧化碳在醇胺水溶液系統的溶解度,該研究系統是CO2TEAPZ H2O和CO2AMPPZH2O系統。TEA全名為triethanolamine,PZ為piperazine,AMP為2-amino-2-methyl-1-propanol,我們也針對化學平衡及工作方程式加以討論,並利用回歸文獻值的數據來證明此回歸模式的可行性,由於時間的關係我們只呈現出一些三成份CO2–MDEA–H2O系統初步的計算結果。
There is a growing concern that anthropogenic carbon dioxide emissions are contributing to global climate change. Thus, it is critical to develop technologies to mitigate this problem. A wide range of technologies currently exists for separation and capture of carbon dioxide. Such techniques have been used in the chemical industry and in the production of technical gases for industrial and laboratory use. Absorption with amine-based absorbents (also known as alkanolamines) is the most common technology for carbon dioxide removal as of today. It is a process with considerable inherent problems such as intensive energy consumption, cost increases, and corrosion problems. In this regard, it is also necessary to find a new kind of sequestering agent for carbon dioxide absorption. In the last decade, a new kind of solvents, referred to as room-temperature ionic liquids has received increasing attention among different investigators by virtue of their ability to replace successfully the traditional organic solvents for carbon dioxide absorption.
To this end, these two classes of absorbents for carbon dioxide absorption were investigated in this work. This study was divided into two general parts. First part dealt with ionic liquids and the second part studied the alkanolamines. The first part is an experimental and computational work on physical property measurements and solubility studies of carbon dioxide in certain groups of room-temperature ionic liquids. On the other hand, the second part is a pure computational study about carbon dioxide solubility in aqueous alkanolamine solutions where available data in literature were used to fit in the developed model for vapor-liquid equilibrium of the investigated systems. Experimental measurements were applied to ionic liquids since data for this absorbent are very scarce and a pure computational approach was considered in the alkanolamines since there are a lot of available data for this class of absorbent.
In the physical property measurements of the first part, properties like density and refractive index of nine room-temperature ionic liquids were measured and the relationship between these properties were examined. The studied room-temperature ionic liquids were 1-butyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium hexafluorophosphate, 1-butyl-3-methylimidazolium methylsulfate, 1-butyl-3-methylimidazolium trifluoromethanesulfonate, 1-ethyl-3-methylimidazolium dicyanamide, 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-ethyl-3-methylimidazolium ethylsulfate, 1-ethyl-3-methylimidazolium trifluoromethanesulfonate, and 1-ethyl-3-methylimidazolium 2-(2-methoxyethoxy) ethylsulfate. The density and refractive index of the investigated room-temperature ionic liquids were measured at atmospheric pressure and temperature up to 353.2 K. The present measurements on density and refractive index were presented and successfully correlated as a function of temperature. The relationships between these two properties were likewise satisfactory modeled using various known equations namely: LorentzLorenz, DaleGladstone, Eykman, Oster, AragoBiot, Newton, and modified Eykman.
The solubility studies in the first part include the absorption of carbon dioxide in the nine room-temperature ionic liquids for temperatures ranging from 303.2 to 343.2 K and pressures up to 6.8 MPa. The gas solubilities were determined from absorption saturation (equilibrium) data at each temperature and pressure. The buoyancy effect was accounted for in the evaluation of the gas solubilities. An accurate equation of state and density correlation for carbon dioxide and ionic liquids, respectively, were employed to determine the effect of buoyancy on the gas solubilities. The gas solubilities in the studied room-temperature ionic liquids were presented as a function of temperature and pressure. The present solubility data were satisfactory correlated using an extended Henry’s law equation.
In the second part of this work, the simplified Clegg–Pitzer equations were used to represent the vapor-liquid equilibrium of quarternary aqueous alkanolamine systems. The studied quarternaries were CO2–TEA–PZ–H2O and CO2–AMP–PZ–H2O. TEA corresponds to triethanolamine, PZ to piperazine, and AMP to 2-amino-2-methyl-1-propanol. The chemical equilibria for the two systems were discussed and the working equations were carefully derived. Available data (experimental and determined parameters) from literatures were used to validate the developed model. Unfortunately, due to lack of time, only the preliminary results were shown here, i.e., the results of calculation validity using the ternary system CO2–MDEA–H2O, and the results are very promising.
Table of Contents
摘要 i
Abstract iii
Acknowledgement v
Table of Contents vi
List of Tables ix
List of Figures xi
Nomenclature xiv
Chapter 1: INTRODUCTION 1
1.1 Background 1
1.2 Objectives 1
1.3 Significance 2
1.4 Scope and Limitation 3
Chapter 2: REVIEW OF RELATED LITERATURE 5
2.1 Global Warming 5
2.2 Greenhouse Gases 6
2.3 CO2 Emission, Taiwan and the World 6
2.4 Feasible Process for CO2 Reduction: CO2 Capture Technologies 8
2.5 Post-Combustion CO2 Capture 9
2.6 CO2 Absorption 10
2.6.1 CO2 absorbents 11
2.6.2 CO2 solubility studies 12
2.6.2.1 CO2 solubility experimental measurements 12
2.6.2.2 CO2 solubility models 13
2.7 Physicochemical Properties: Density and Refractive Index 15
Chapter 3: EXPERIMENTAL SECTION 17
3.1 Chemicals 17
3.2 Density and Refractive Index Measurements 17
3.3 Carbon Dioxide Solubility Measurements 18
3.3.1 Buoyancy effect calculations 20
3.3.1.1 Buoyancy effect on empty pan 20
3.3.1.2 Buoyancy effect on ionic liquid 21
3.3.2 Density data correlations 21
Chapter 4: RESULTS AND DISCUSSION 34
4.1 Density Measurements Data 34
4.2 Refractive Index Data and Correlation 36
4.3 Density and Refractive Index Correlations 38
4.4 CO2 Solubility in RTILs: Measurements Data 39
4.4.1 Buoyancy correction effect 40
4.4.2 Validation of experimental method 40
4.5 CO2 Absorption in RTIL: Modeling using Extended Henry’s Law Equation 42
4.6 CO2 Absorption in Aqueous Alkanolamine Solution: Modeling using Simplified CleggPitzer Equations 107
4.6.1 Thermodynamic Framework 107
4.6.1.1 Chemical Equilibria 107
4.6.1.2 Standard States 109
4.6.1.3 Thermodynamic Expression 110
4.6.1.4 Interaction Parameters 118
4.6.1.5 Analysis of Compositions 118
4.6.1.6 Model Application 121
Chapter 5: CONCLUSIONS AND RECOMMENDATIONS 130
REFERENCES 133
APPENDIX A: Conceptual Framework of Solubility Measurements 144
APPENDIX B: Sample Data from ThermoCahn 145
APPENDIX C: List of Publications * 146
APPENDIX D: Curriculum Vitae 155
.

List of Tables
Table
No. Title Page No.
2.1 Worldwide ranking on CO2 discharged 16
2.2 Worldwide ranking on average personal CO2 discharged 16
3.1 Ionic liquids investigated in this work 25
3.2 Cation and anion volumes of the investigated ionic liquids 26
3.3 Calculation of densities for the investigated [Bmim]-based RTILs using Eq. (3.6) 27
3.4 Calculation of densities for the investigated [Emim]-based RTILs using Eq. (3.6) 28
3.5 Determined parameters of Eq. (3.5) for the studied ionic liquids 29
3.6 Calculation of densities for the investigated ionic liquids using Eq. (3.5) 30
4.1 Density  and refractive index n of the investigated [Bmim]-based ionic liquids at various temperatures 46
4.2 Density  and refractive index n of the investigated [Emim]-based ionic liquids at various temperatures 47
4.3 Calculation of refractive indices for the studied ionic liquids using Eq. (4.1) 48
4.4 Determined parameters of Eq. (4.1) for the studied ionic liquids 48
4.5 Parameters k and i of different empirical equations from Eq. (4.2) 49
4.6 Solubility of carbon dioxide a (on molality scale) in [Bmim][BF4] 50
4.7 Solubility of carbon dioxide a (on molality scale) in [Bmim][PF6] 50
4.8 Solubility of carbon dioxide a (on molality scale) in [Bmim][MeSO4] 51
4.9 Solubility of carbon dioxide a (on molality scale) in [Bmim][CF3SO3] 51
4.10 Solubility of carbon dioxide a (on molality scale) in [Emim][C2N3] 52
4.11 Solubility of carbon dioxide a (on molality scale) in [Emim][BF4] 52
4.12 Solubility of carbon dioxide a (on molality scale) in [Emim][EtSO4] 53
4.13 Solubility of carbon dioxide a (on molality scale) in [Emim][CF3SO3] 53
4.14 Solubility of carbon dioxide a (on molality scale) in [Emim][MDEGSO4] 54
4.15 Henry’s constant of CO2 in the studied [Bmim]-based RTILs at zero pressure 55
4.16 Henry’s constant of CO2 in the studied [Emim]-based RTILs at zero pressure 56
4.17 Determined parameters li of Eq. (4.9) for the studied RTILs 57
4.18 Determined parameters of and for the Henry’s law equation 57
4.19 Temperature dependence of the equilibrium constants for the studied reactions and Henry’s constant for CO2 124
4.20 Temperature dependence of the density for pure solvents 124
4.21 Temperature dependence of the dielectric constant for pure solvents 125
4.22 Fitted values of solventsolvent interaction parameters Ann’ 125
4.23 Fitted values of ionion interaction parameters BMX 126
4.24 Fitted values of ionsolvent interaction parameters Wsolvent, MX 126
4.25 CO2 solubility into 23.63 wt % MDEA aqueous solutions 126
4.26 Interaction parameters for MDEA–H2O–CO2 system 127


List of Figures
Figure
No. Title Page No.
3.1 Cations and anions structure of the investigated room-temperature ionic liquids 31
3.2 Experimental set-up for CO2 solubility measurements using a thermogravimetric microbalance 32
3.3 Calibration curves of the empty sample pan from this work. 33
4.1 Comparison of density data for [Bmim][BF4] 58
4.2 Comparison of density data for [Bmim][PF6] 59
4.3 Comparison of density data for [Bmim][MeSO4] 60
4.4 Comparison of density data for [Bmim][CF3SO3] 61
4.5 Comparison of density data for [Emim][BF4] 62
4.6 Comparison of density data for [Emim][EtSO4] 63
4.7 Comparison of density data for [Emim][CF3SO3] 64
4.8 Comparison of refractive index data for [Bmim][BF4] 65
4.9 Comparison of refractive index data for [Bmim][PF6] 66
4.10 Comparison of refractive index data for [Bmim][MeSO4] 67
4.11 Comparison of refractive index data for [Emim][EtSO4] 68
4.12 Comparison of density calculations for the investigated [Bmim]-based ionic liquids 69
4.13 Comparison of density calculations for the investigated [Emim]-based ionic liquids 70
4.14 Solubility of CO2 in the studied RTILs at 303.2 K 71
4.15 Buoyancy effect (changes in CO2 solubility) as a function of pressure for [Bmim][BF4] at different temperatures 72
4.16 Buoyancy effect (changes in CO2 solubility) as a function of pressure for [Bmim][PF6] at different temperatures 73
4.17 Buoyancy effect (changes in CO2 solubility) as a function of pressure for [Bmim][MeSO4] at different temperatures 74
4.18 Buoyancy effect (changes in CO2 solubility) as a function of pressure for [Bmim][CF3SO3] at different temperatures 75
4.19 Buoyancy effect (changes in CO2 solubility) as a function of pressure for [Emim][C2N3] at different temperatures 76
4.20 Buoyancy effect (changes in CO2 solubility) as a function of pressure for [Emim][BF4] at different temperatures 77
4.21 Buoyancy effect (changes in CO2 solubility) as a function of pressure for [Emim][EtSO4] at different temperatures 78
4.22 Buoyancy effect (changes in CO2 solubility) as a function of pressure for [Emim][CF3SO3] at different temperatures 78
4.23 Buoyancy effect (changes in CO2 solubility) as a function of pressure for [Emim][MDEGSO4] at different temperatures 80
4.24 Comparison of CO2 solubility in [Bmim][BF4] at low and moderate pressure 81
4.25 Comparison of CO2 solubility in [Bmim][BF4] at high pressure 82
4.26 Comparison of CO2 solubility in [Bmim][PF6] 83
4.27 Comparison of CO2 solubility in [Bmim][MeSO4] 84
4.28 Comparison of CO2 solubility in [Bmim][CF3SO3] 85
4.29 Comparison of CO2 solubility in [Emim][EtSO4] 86
4.30 Pressure dependence of for [Bmim][BF4] at different temperatures 87
4.31 Pressure dependence of for [Bmim][PF6] at different temperatures 88
4.32 Pressure dependence of for [Bmim][MeSO4] at different temperatures 89
4.33 Pressure dependence of for [Bmim][CF3SO3] at different temperatures 90
4.34 Pressure dependence of for [Emim][C2N3] at different temperatures 91
4.35 Pressure dependence of for [Emim][BF4] at different temperatures 92
4.36 Pressure dependence of for [Emim][EtSO4] at different temperatures 93
4.37 Pressure dependence of for [Emim][CF3SO3] at different temperatures 94
4.38 Pressure dependence of for [Emim][MDEGSO4] at different temperatures 95
4.39 Determined Henry’s constant of CO2 in the studied [Bmim]-based RTILs (at zero pressure) as a function of temperature 96
4.40 Determined Henry’s constant of CO2 in the studied [Emim]-based RTILs (at zero pressure) as a function of temperature 97
4.41 Equilibrium solubility of CO2 in [Bmim][BF4] at different temperatures 98
4.42 Equilibrium solubility of CO2 in [Bmim][PF6] at different temperatures 99
4.43 Equilibrium solubility of CO2 in [Bmim][MeSO4] at different temperatures 100
4.44 Equilibrium solubility of CO2 in [Bmim][CF3SO3] at different temperatures 101
4.45 Equilibrium solubility of CO2 in [Emim][C2N3] at different temperatures 102
4.46 Equilibrium solubility of CO2 in [Emim][BF4] at different temperatures 103
4.47 Equilibrium solubility of CO2 in [Emim][EtSO4] at different temperatures 104
4.48 Equilibrium solubility of CO2 in [Emim][CF3SO3] at different temperatures 105
4.49 Equilibrium solubility of CO2 in [Emim][MDEGSO4] at different temperatures 106
4.50 CO2 Solubility in 23.63 wt % MDEA aqueous solutions at 297.7 K 128
4.51 Liquid-phase concentration of a CO2-loaded 23.63 wt % MDEA aqueous solution at 297.7 K. 129
REFERENCES
[1] Kohl, A.L., R.B. Nielsen, Gas Purification, 5th ed., Houston, U.S.A., 1997.
[2] Rogers, R.K., K.R. Seddon, Ionic Liquids: Industrial Applications to Green Chemistry, Oxford University Press, Washington, D.C, 2002.
[3] Rogers, R.K., K.R. Seddon, Ionic Liquids as Green Solvents: Progress and Prospects, Oxford University Press, Washington, D.C., 2003.
[4] Bates, E.D., R.D. Mayton, I. Ntai, J.H. Davis, Jr., CO2 Capture by a Task-Specific Ionic Liquid., J. Am. Chem. Soc. 124 (2002) 926-927.
[5] Welton, T., Room-Temperature Ionic Liquids: Solvents for Synthesis and Catalysis, Chem. Rev. 99 (1999) 2070-2071.
[6] Huddleston, J.G., H.D. Willauer, R.P. Swatloski, A.E. Visser, R.D. Rogers, Room Temperature Ionic Liquids as Novel Media for 'Clean' Liquid- Liquid Extraction, Chem. Commun. (1998) 1765-1766.
[7] Brennecke, J.F., E.J. Maginn, Ionic Liquids: Innovative Fluids for Chemical Processing, AIChE J. 47 (2001) 2384-2389.
[8] Wilkes, J.S., Properties of Ionic Liquid Solvents for Catalysis, J. Mol. Catal. A: Chem. 214 (2004) 11-17.
[9] Plechkova, N.V., K.R. Seddon, Methods and Reagents for Green Chemistry: An Introduction, Wiley-Interscience, 2007.
[10] Iglesias-Otero, M.A., J. Troncoso, E. Carballo, L. Romani, Density and Refractive Index in Mixtures of Ionic Liquids and Organic Solvents: Correlations and Predictions, J. Chem. Thermodyn. 40 (2008) 949-956.
[11] Shiflett, M.B., A. Yokozeki, Solubilities and Diffusivities of Carbon Dioxide in Ionic Liquids: [bmim][PF6] and [bmim][BF4], Ind. Eng. Chem. Res. 44 (2005) 4453-4464.
[12] Blanchard, L.A., Z. Gu, J.F. Brennecke, High-Pressure Phase Behavior of Ionic Liquid/CO2 Systems, J. Phys. Chem. B 105 (2001) 2437-2444.
[13] Shariati, A., C.J. Peters, High-Pressure Phase Behavior of Systems with Ionic Liquids: II. The Binary System Carbon Dioxide+1-Ethyl-3-methylimidazolium Hexafluorophosphate, J. Supercrit. Fluids 29 (2004) 43-48.
[14] Constantini, M., V.A. Toussaint, A. Shariati, C.J. Peters, I. Kikic, High-Pressure Phase Behavior of Systems with Ionic Liquids: Part IV. Binary System Carbon Dioxide + 1-Hexyl-3-methylimidazolium Tetrafluoroborate, J. Chem. Eng. Data 50 (2005) 52-55.
[15] Kumelan, J., A. Perez-Salado Kamps, D. Tuma, G. Maurer, Solubility of CO2 in the Ionic Liquid [hmim][Tf2N], J. Chem. Thermodyn. 38 (2006) 1396-1401.
[16] Schilderman, A.M., S. Raeissi, C.J. Peters, Solubility of Carbon Dioxide in the Ionic Liquid 1-Ethyl-3-methylimidazolium Bis( trifluoromethy lsulfony 1)imide, Fluid Phase Equilib. 260 (2007) 19-22.
[17] Anthony, J.L., E.J. Maginn, J.F. Brennecke, Solubilities and Thermodynamic Properties of Gases in the Ionic Liquid 1-n-Butyl-3-methylimidazolium Hexafluorophosphate, J. Phys. Chem. B 106 (2002) 7315-7320.
[18] Zhang, J., Q. Zhang, B. Qiao, Y. Deng, Solubilities of the Gaseous and Liquid Solutes and Their Thermodynamics of Solubilization in the Novel Room-Temperature Ionic Liquids at Infinite Dilution by Gas Chromatography, J. Chem. Eng. Data 52 (2007) 2277-2283.
[19] Aki, S.N.V.K., B.R. Mellein, E.M. Saurer, J.F. Brennecke, High-Pressure Phase Behavior of Carbon Dioxide with Imidazolium-Based Ionic Liquids, J. Phys. Chem. B 108 (2004) 20355-20365.
[20] Kim, Y.S., W.Y. Choi, J.H. Jang, K.-P. Yoo, C.S. Lee, Solubility Measurement and Prediction of Carbon Dioxide in Ionic Liquids, Fluid Phase Equilib. 228-229 (2005) 439-445.
[21] Lee, B.-C., S.L. Outcalt, Solubilities of Gases in the Ionic Liquid 1-n-Butyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide, J. Chem. Eng. Data 51 (2006) 892-897.
[22] Camper, D., P. Scovazzo, C. Koval, R. Noble, Gas Solubilities in Room-Temperature Ionic Liquids, Ind. Eng. Chem. Res. 43 (2004) 3049-3054.
[23] Camper, D., C. Becker, C. Koval, R. Noble, Low Pressure Hydrocarbon Solubility in Room Temperature Ionic Liquids Containing Imidazolium Rings Interpreted Using Regular Solution Theory, Ind. Eng. Chem. Res. 44 (2005) 1928-1933.
[24] Jacquemin, J., P. Husson, V. Majer, M.F.C. Gomes, Influence of the Cation on the Solubility of CO2 and H2 in Ionic Liquids Based on the Bis(trifluoromethylsulfonyl)imide Anion, J. Solution Chem. 36 (2007) 967-979.
[25] Costa Gomes, M.F., Low-Pressure Solubility and Thermodynamics of Solvation of Carbon Dioxide, Ethane, and Hydrogen in 1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide between Temperatures of 283 K and 343 K, J. Chem. Eng. Data 52 (2007) 472-475.
[26] Kim, Y.S., J.H. Jang, B.D. Lim, J.W. Kang, C.S. Lee, Solubility of Mixed Gases Containing Carbon Dioxide in Ionic Liquids: Measurements and Predictions, Fluid Phase Equilib. 256 (2007) 70-74.
[27] Kumelan, J., A. Perez-Salado Kamps, D. Tuma, G. Maurer, Solubility of CO2 in the Ionic Liquids [bmim][CH3SO4] and [bmim][PF6], J. Chem. Eng. Data 51 (2006) 1802-1807.
[28] Shiflett, M.B., A. Yokozeki, Solubility of CO2 in Room Temperature Ionic Liquid [hmim][Tf2N], J. Phys. Chem. B 111 (2007) 2070-2074.
[29] Wu, W., W. Li, B. Han, T. Jiang, D. Shen, Z. Zhang, D. Sun, B. Wang, Effect of Organic Cosolvents on the Solubility of Ionic Liquids in Supercritical CO2, J. Chem. Eng. Data 49 (2004) 1597-1601.
[30] Anthony, J.L., J.L. Anderson, E.J. Maginn, J.F. Brennecke, Anion Effects on Gas Solubility in Ionic Liquids, J. Phys. Chem. B 109 (2005) 6366-6374.
[31] Chen, Y., S. Zhang, X. Yuan, Y. Zhang, X. Zhang, W. Dai, R. Mori, Solubility of CO2 in Imidazolium-based Tetrafluoroborate Ionic Liquids, Thermochim. Acta 441 (2006) 42-44.
[32] Cadena, C., J.L. Anthony, J.K. Shah, T.I. Morrow, J.F. Brennecke, E.J. Maginn, Why is CO2 so Soluble in Imidazolium-based Ionic Liquids?, J. Am. Chem. Soc. 126 (2004) 5300-5308.
[33] Aaron, D., C. Tsouris, Separation of CO2 from Flue Gas: A Review, Sep. Sci. Technol. 40 (2005) 321-348.
[34] Energy Information Administration (EIA), Annual Energy Outlook 2006, 2006a, http://www.eia.doe.gov/oiaf/aeo.
[35] Energy Information Administration (EIA), International Energy Outlook 2006, 2006b, http://www.eia.doe.gov/oiaf/ieo/index.html.
[36] Energy Information Administration (EIA), Emissions of Greenhouse Gases in the United States 2005, 2006c, DOE/EIA-0573 (2005).
[37] Figueroa, J.D., T. Fout, S. Plasynski, H.G. McIlvried, R.D. Srivastava, Advances in CO2 Capture Technology-The U.S. Department of Energy's Carbon Sequestration Program, Int. J. Greenhouse Gas Cont. 2 (2008) 9-20.
[38] Klara, S.M., R.D. Srivastava, H.G. McIlvried, Integrated Collaborative Technology Development Program for CO2 Sequestration in Geologic Formations-United States Department of Energy R&D, Energy Conv. and Manage. 44 (2003) 2699-2712.
[39] Litynski, J.T., S.M. Klara, H.G. McIlvried, R.D. Srivastava, The United States Department of Energy's Regional Carbon Sequestration Partnerships Program: A Collaborative Approach to Carbon Management, Environ. Int. 32 (2006) 128-144.
[40] Litynski, J.T., S. Plasynski, H.G. McIlvried, C. Mahoney, R.D. Srivastava, The United States Department of Energy's Regional Carbon Sequestration Partnerships Program: Validation Phase, Environ. Int. (2007) (in press).
[41] Perez-Salado Kamps, A., D. Tuma, J. Xia, G. Maurer, Solubility of CO2 in the Ionic Liquid [bmim][PF6], J. Chem. Eng. Data 48 (2003) 746-749.
[42] Zhang, S., X. Yuan, Y. Chen, X. Zhang, Solubilities of CO2 in 1-Butyl-3-methylimidazolium Hexafluorophosphate and 1,1,3,3-Tetramethylguanidium Lactate at Elevated Pressures, J. Chem. Eng. Data 50 (2005) 1582-1585.
[43] Maginn, E.J., Design and Evaluation of Ionic Liquids as Novel CO2 Absorbents Quarterly Technical Reports (10/01/06-12/31/06), DOE Award Number: DE-FG26-04NT42122, National Energy Technology Laboratory, 2007.
[44] Vaidya, P.D., E.Y. Kenig, Gas-Liquid Reaction Kinetics: A Review of Determination Methods, Chem. Eng. Comm. 194 (2007) 1543-1565.
[45] Chakravarty, T., U.K. Phukan, R.H. Weiland, Reaction of Acid Gases with Mixtures of Amines, Chem. Eng. Prog. 81 (1985) 32-36.
[46] Bosch, H., G.F. Versteeg, W.P.M. van Swaaij, Gas-Liquid Mass Transfer with Parallel Reversible Reactions-III. Absorption of CO2 into Solutions of Blends of Amines, Chem. Eng. Sci. 44 (1989) 2745-2750.
[47] Glasscock, D.A., J.E. Critchfield, G.T. Rochelle, CO2 Absorption/Desorption in Mixtures of Methyldiethanolamine with Monoethanolamine or Diethanolamine, Chem. Eng. Sci. 46 (1991) 2829-2845.
[48] Mandal, B.P., A.K. Biswas, S.S. Bandyopadhyay, Absorption of Carbon Dioxide into Aqueous Blends of 2-Aamino-2-methyl-1-propanol and Diethanolamine, Chem. Eng. Sci. 58 (2003) 4137-4144.
[49] Seo, D.J., W.H. Hong, Effect of Piperazine on the Kinetics of Carbon Dioxide with Aqueous Solutions of 2-Amino-2-methyl-1-propanol, Ind. Eng. Chem. Res. 39 (2000) 2062-2067.
[50] Sun, W.-C., C.-B. Yong, M.-H. Li, Kinetics of the Absorption of Carbon Dioxide into Mixed Aqueous Solutions of 2-Amino-2-methyl-l-propanol and Piperazine, Chem. Eng. Sci. 60 (2005) 503-516.
[51] Rangwala, H.A., B.R. Morrell, A.E. Mather, F.D. Otto, Absorption of CO2 into Aqueous Tertiary Amine/MEA solutions, Can. J. Chem. Eng. 70 (1992) 482-490.
[52] Seo, D.J., W.H. Hong, Solubilities of Carbon Dioxide in Aqueous Mixtures of Diethanolamine and 2-Amino-2-methyl-1-propanol. J. Chem. Eng. Data, J. Chem. Eng. Data 41 (1996) 258-260.
[53] Seo, D.J., W.H. Hong, Effect of Piperazine on the Reaction Rate Constant of Carbon Dioxide into Aqueous N-Methyldiethanolamine Solutions, Hwahak Konghak 37 (1999) 593-597.
[54] Zhang, X., C.F. Zhang, S.J. Qin, Z.S. Zheng, A Kinetics Study on the Absorption of Carbon Dioxide into a Mixed Aqueous Solution of Methyldiethanolamine and Piperazine, Ind. Eng. Chem. Res. 40 (2001) 3785-3791.
[55] Zhang, X., C.F. Zhang, Y. Liu, Kinetics of Absorption of CO2 into Aqueous Solution of MDEA Blended with DEA, Ind. Eng. Chem. Res. 41 (2002) 1135-1141.
[56] Mandal, B.P., S.S. Bandyopadhyay, Simultaneous Absorption of CO2 and H2S Into Aqueous Blends of N-Methyldiethanolamine and Diethanolamine, Environ. Sci. Technol. 40 (2006) 6076-6084.
[57] Kumelan, J., A. Perez-Salado Kamps, D. Tuma, G. Maurer, Solubility of CO in the Ionic Liquid [bmim][PF6], Fluid Phase Equilib. 228-229 (2005) 207-211.
[58] Yuan, X., S. Zhang, J. Liu, X. Lu, Solubilities of CO2 in Hydroxyl Ammonium Ionic Liquids at Elevated Pressures, Fluid Phase Equilib. 257 (2007) 195-200.
[59] Torrecilla, J.S., J. Palomar, J. Garcia, E. Rojo, F. Rodriguez, Modelling of Carbon Dioxide Solubility in Ionic Liquids at Sub and Supercritical Conditions by Neural Networks and Mathematical Regressions, Chemom. Intell. Lab. Syst. 93 (2008) 149-159.
[60] Huang, F.-H., M.-H. Li, L.L. Lee, K.E. Starling, An Accurate Equation of State for Carbon Dioxide, J. Chem. Eng. Japan 18 (1985) 490-496.
[61] Tokuda, H., K. Hayamizu, K. Ishii, M.A.B.H. Susan, M. Watanabe, Physicochemical Properties and Structures of Room Temperature Ionic Liquids. 1. Variation of Anionic Species, J. Phys. Chem. B 108 (2004) 16593-16600.
[62] Dzyuba, S.V., R.A. Bartsch, Influence of Structural Variations in 1-Alkyl(aralkyl)-3-methylimidazolium Hexafluorophosphates and Bis(Trifluorormethyl-Sulfonyl)imides on Physical Properties of the Ionic Liquids, Chem. Phys. Chem. 3 (2002) 161-166.
[63] Gu, Z., J.F. Brennecke, Volume Expansivities and Isothermal Compressibilities of Imidazolium- and Pyridinium-based Ionic Liquids J. Chem. Eng. Data 47 (2002) 339-345.
[64] Canongia Lopes, J.N., T.C. Cordeiro, J.M.S.S. Esperanca, H.J.R. Guedes, S. Huq, L.P.N. Rebelo, K.R. Seddon, Deviations from Ideality in Mixtures of Two Ionic Liquids Containing a Common Ion, J. Phys. Chem. B 109 (2005) 3519-3525.
[65] Seddon, K.R., A. Stark, M.J. Torres, Viscosity and Density of 1-Alkyl-3-methylimidazolium Ionic Liquids, ACS Symp. Ser. 819 (2002) 34-49.
[66] Harris, K.R., L.A. Woolf, M. Kanakubo, Temperature and Pressure Dependence of the Viscosity of the Ionic Liquid 1-Butyl-3-methylimidazolium Hexafluorophosphate, J. Chem. Eng. Data 50 (2005) 1777-1782.
[67] Troncoso, J., C.A. Cerdeirina, Y.A. Sanmamed, L. Romani, L.P.N. Rebelo, Thermodynamic Properties of Imidazolium-Based Ionic Liquids: Densities, Heat Capacities, and Enthalpies of Fusion of [bmim][PF6] and [bmim][NTf2], J. Chem. Eng. Data 51 (2006) 1856-1859.
[68] Seddon, K.R., A. Stark, M.J. Torres, The Influence of Chloride, Water, and Organic Solvents on the Physical Properties of Ionic Liquids, Pure Appl. Chem. 72 (2000) 2275-2287.
[69] Gomez, E., B. Gonzales, N. Calvar, E. Tojo, A. Dominguez, Physical Properties of Pure 1-Ethyl-3-methylimidazolium Ethylsulfate and Its Binary Mixtures with Ethanol and Water at Several Temperatures, J. Chem. Eng. Data 51 (2006) 2096-2102.
[70] Deetlefs, M., K.R. Seddon, M. Shara, Predicting Physical Properties of Ionic Liquids, Phys. Chem. Chem. Phys. 8 (2006) 642-649.
[71] Kim, K., B. Shin, H. Lee, F. Ziegler, Refractive Index and Heat Capacity of 1-Butyl-3-methylimidazolium Bromide and 1-Butyl-3-methylimidazolium Tetrafluoroborate, and Vapor Pressure of Binary systems for 1-Butyl-3-methylimidazolium Bromide + Trifluoroethanol and 1-Butyl-3-methylimidazolium Tetrafluoroborate + Trifluoroethanol, Fluid Phase Equilib. 218 (2004) 215-220.
[72] Pereiro, A.B., A. Rodriguez, Thermodynamic Properties of Ionic Liquids in Organic Solvents from (293.15 to 303.15) K, J. Chem. Eng. Data 52 (2007) 600-608.
[73] Hwa, S.C.P., W.T. Ziegler, Temperature Dependence of Excess Thermodynamic Properties of Ethanol-Methylcyclohexane and Ethanol-Toluene Systems, J. Phys. Chem. 70 (1966) 2572-2593.
[74] Pineiro, A., P. Brocos, A. Amigo, M. Pintos, R. Bravo, Surface Tensions and Refractive Indices of (Tetrahydrofuran + n-Alkane) at T = 298.15 K, J. Chem. Thermodyn. 31 (1999) 931-942.
[75] Hirschfelder, J.O., C.F. Curtiss, R.B. Bird, Molecular Theory of Gases and Liquids, Wiley, London, 1964.
[76] Born, M., E. Wolf, Principles of Optics, Pergamon, Oxford, 1983.
[77] Gardas, R.L., J.A.P. Coutinho, Extension of the Ye and Shreeve Group Contribution Method for Density Estimation of Ionic Liquids in a Wide Range of Temperatures and Pressures, Fluid Phase Equilib. 263 (2007) 26-32.
[78] Ye, C., J.M. Shreeve, Rapid and Accurate Estimation of Densities of Room-Temperature Ionic Liquids and Salts, J. Phys. Chem. A 111 (2007) 1456-1461.
[79] Bender, E., Equations of State Exactly Representing the Behavior of Pure Substances, 5th Symposium on Thermophysical Properties, New York, 1970, .
[80] Zafarani-Moattar, M.T., H. Shekaari, Application of Prigogine Flory Patterson Theory to Excess Molar Volume and Speed of Sound of 1-n-Butyl-3-methylimidazolium Hexafluorophosphate or 1-n-Butyl-3-methylimidazolium Tetrafluoroborate in Methanol and Acetonitrile, J. Chem. Thermodyn. 38 (2006) 1377-1384.
[81] Zhou, Q., L.-S. Wang, Densities and Viscosities of 1-Butyl-3-methylimidazolium Tetrafluoroborate + H2O Binary Mixtures from (303.15 to 353.15) K, J. Chem. Eng. Data 51 (2006) 905-908.
[82] Tokuda, H., S. Tsuzuki, M.A.B.H. Susan, K. Hayamizu, M. Watanabe, How Ionic Are Room-Temperature Ionic Liquids? An Indicator of the Physicochemical Properties, J. Phys. Chem. B 110 (2006) 19593-19600.
[83] Navia, P., J. Troncoso, L. Romani, Excess Magnitudes for Ionic Liquid Binary Mixtures with a Common Ion, J. Chem. Eng. Data 52 (2007) 1369-1374.
[84] Gardas, R.L., M.G. Freire, P.J. Carvalho, I.M. Marrucho, I.M.A. Fonseca, A.G.M. Ferreira, J.A.P. Coutinho, High-Pressure Densities and Derived Thermodynamic Properties of Imidazolium-based Ionic Liquids, J. Chem. Eng. Data 52 (2007) 80-88.
[85] Sanmamed, Y.A., D. Gonzalez-Salagado, J. Troncoso, C.A. Cerdeirina, L. Romani, Viscosity-induced Errors in the Density Determination of Room Temperature Ionic Liquids using Vibrating Tube Densitometry, Fluid Phase Equilib. 252 (2007) 96-102.
[86] Kabo, G.J., A.V. Blokhin, Y.U. Paulechka, A.G. Kabo, M.P. Shymanovich, J.W. Magee, Thermodynamic Properties of 1-Butyl-3-methylimidazolium Hexafluorophosphate in the Condensed State, J. Chem. Eng. Data 49 (2004) 453-461.
[87] Zafarani-Moattar, M.T., H. Shekaari, Volumetric and Speed of Sound of Ionic Liquid, 1-Butyl-3-methylimidazolium Hexafluorophosphate with Acetonitrile and Methanol at T ) (298.15 to 318.15) K, J. Chem. Eng. Data 50 (2005) 1694-1699.
[88] Jacquemin, J., P. Husson, V. Majer, M.F. Costa Gomes, Low-pressure Solubilities and Thermodynamics of Solvation of Eight Gases in 1-Butyl-3-methylimidazolium Hexafluorophosphate, Fluid Phase Equilib. 240 (2006) 87-95.
[89] Pereiro, A.B., A. Rodriguez, Study on the Phase Behaviour and Thermodynamic Properties of Ionic Liquids Containing Imidazolium Cation with Ethanol at Several Temperatures, J. Chem. Thermodyn. 39 (2007) 978-989.
[90] Domanska, U., A. Pobudkowska, A. Wisniewska, Solubility and Excess Molar Properties of 1,3-Dimethylimidazolium Methylsulfate, or 1-Butyl-3-Methylimidazolium Methylsulfate, or 1-Butyl-3-Methylimidazolium Octylsulfate Ionic Liquids with n-Alkanes and Alcohols: Analysis in Terms of the PFP and FBT Models, J. Solution Chem. 35 (2006) 311-334.
[91] Pereiro, A.B., P. Verdia, E. Tojo, A. Rodriguez, Physical Properties of 1-Butyl-3-methylimidazolium Methylsulfate as a Function of Temperature, J. Chem. Eng. Data 52 (2007) 377-380.
[92] Fredlake, C.P., J.M. Crosthwaite, D.G. Hert, S.N.V.K. Aki, J.F. Brennecke, Thermophysical Properties of Imidazolium-based Ionic Liquids, J. Chem. Eng. Data 49 (2004) 954-964.
[93] Nishida, T., Y. Tashiro, M. Yamamoto, Physical and electrochemical properties of 1-alkyl-3-methylimidazolium tetrafluoroborate for electrolyte, J. Fluorine Chem. 120 (2003) 135-141.
[94] van Valkenburg, M.E., R.L. Vaughn, M. Williams, J.S. Wilkes, Thermochemistry of Ionic Liquid Heat-Transfer Fluids, Thermochim. Acta 425 (2005) 181-188.
[95] Vila, J., P. Gines, E. Rilo, O. Cabeza, L.M. Varela, Great Increase of the Electrical Conductivity of Ionic Liquids in Aqueous Solutions, Fluid Phase Equilib. 247 (2006) 32-39.
[96] Shiflett, M.B., A. Yokozeki, Liquid-Liquid Equilibria in Binary Mixtures of 1,3-Propanediol + Ionic Liquids [bmim][PF6], [bmim][BF4], and [emim][BF4], J. Chem. Eng. Data 52 (2007) 1302-1306.
[97] Krummen, M., P. Wasserscheid, J. Gmehling, Measurement of Activity Coefficients at Infinite Dilution in Ionic Liquids Using the Dilutor Technique, J. Chem. Eng. Data 47 (2002) 1411-1417.
[98] Rodriguez, H., J.F. Brennecke, Temperature and Composition Dependence of the Density and Viscosity of Binary Mixtures of Water + Ionic Liquid, J. Chem. Eng. Data 51 (2006) 2145-2155.
[99] Jacquemin, J., P. Husson, V. Mayer, I. Cibulka, High-Pressure Volumetric Properties of Imidazolium-Based Ionic Liquids: Effect of the Anion, J. Chem. Eng. Data 52 (2007) 2204-2211.
[100] Gonzalez, E.J., B. Gonzales, N. Calvar, A. Dominguez, Physical Properties of Binary Mixtures of the Ionic Liquid 1-Ethyl-3-methylimidazolium Ethyl Sulfate with Several Alcohols at T = (298.15, 313.15, and 328.15) K and Atmospheric Pressure, J. Chem. Eng. Data 52 (2007) 1641-1648.
[101] Wandschneider, A., J.K. Lehmann, A. Heintz, Surface Tension and Density of Pure Ionic Liquids and Some Binary Mixtures with 1-Propanol and 1-Butanol, J. Chem. Eng. Data 53 (2008) 596-599.
[102] Vercher, E., A.V. Orchilles, P.J. Miguel, A. Martinez-Andreu, Volumetric and Ultrasonic Studies of 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate Ionic Liquid with Methanol, Ethanol, 1-Propanol, and Water at Several Temperatures, J. Chem. Eng. Data 52 (2007) 1468-1482.
[103] Rebelo, L.P.N., V. Najdanovic-Visak, Z.P. Visak, M. Nunes da Ponte, J. Szydlowski, C.A. Cerdeirina, J. Troncoso, L. Romani, J.M.S.S. Esperanca, H.J.R. Guedes, H.C. de Sousa, A Detailed Thermodynamic Analysis of [C4mim][BF4] + Water as a Case Study to Model Ionic Liquid Aqueous Solutions, Green Chem. 6 (2004) 369-381.
[104] Gomes de Azevedo, R., J.M.S.S. Esperanca, V. Najdanovic-Visak, Z.P. Visak, H.J.R. Guedes, M. Nunes da Ponte, L.P.N. Rebelo, Thermophysical and Thermodynamic Properties of 1-Butyl-3-methylimidazolium Tetrafluoroborate and 1-Butyl-3-methylimidazolium Hexafluorophosphate over an Extended Pressure Range, J. Chem. Eng. Data 50 (2005) 997-1008.
[105] Tomida, D., A. Kumagai, K. Qiao, C. Yokoyama, Viscosity of [bmim][PF6] and [bmim][BF4] at High Pressure 1, Int. J. Thermophys. 27 (2006) 39-47.
[106] Gardas, R.L., M.G. Freire, P.J. Carvalho, I.M. Marrucho, I.M.A. Fonseca, A.G.M. Ferreira, J.A.P. Coutinho, P-r-T Measurements of Imidazolium-based Ionic Liquids, J. Chem. Eng. Data 52 (2007) 1881-1888.
[107] Tomida, D., S. Kenmochi, T. Tsukada, K. Qiao, C. Yokoyama, Thermal Conductivities of [bmim][PF6], [hmim][PF6], and [omim][PF6] from 294 to 335 K at Pressures up to 20 MPa, Int. J. Thermophys. 28 (2007) 1147-1160.
[108] Zhao, H., S.V. Malhotra, R.G. Luo, Preparation and Characterization of Three Room-Temperature Ionic Liquids, Phys. Chem. Liq. 41 (2003) 487-492.
[109] Zhang, S., X. Li, H. Chen, J. Wang, J. Zhang, M. Zhang, Determination of Physical Properties for the Binary System of 1-Ethyl-3-methylimidazolium Tetrafluoroborate + H2O, J. Chem. Eng. Data 49 (2004) 760-764.
[110] Yang, J.-Z., X.-M. Lu, J.-S. Gui, W.-G. Xu, H.-W. Li, Volumetric Properties of Room Temperature Ionic Liquid 2: The Concentrated Aqueous Solutions of {1-Methyl-3-ethylimidazolium Ethylsulfate + Water} in a Temperature Range of 278.2 K to 338.2 K, J. Chem. Thermodyn. 37 (2005) 1250-1255.
[111] Iglesias-Otero, M.A., J. Troncoso, E. Carballo, Density and Refractive Index for Binary Systems of the Ionic Liquid [Bmim][BF4] with Methanol, 1,3-Dichloropropane, and Dimethyl Carbonate, J. Solution Chem. 36 (2007) 1219-1230.
[112] Kumar, A., Estimates of Internal Pressure and Molar Refraction of Imidazolium Based Ionic Liquids as a Function of Temperature, J. Solution Chem. 37 (2008) 203-214.
[113] Liu, W., T. Zhao, Y. Zhang, H. Wang, M. Yu, The Physical Properties of Aqueous Solutions of the Ionic Liquid [BMIM][BF4], J. Solution Chem. 35 (2006) 1337-1346.
[114] Huddleston, J.G., A.E. Visser, W.M. Reichert, H.D. Willauer, G.A. Broker, R.D. Rogers, Characterization and Comparison of Hydrophilic and Hydrophobic Room Temperature Ionic Liquids Incorporating the Imidazolium Cation, Green Chem. 3 (2001) 156-164.
[115] Bendova, M., Z. Wagner, Liquid-Liquid Equilibrium in Binary System [bmim][PF6] + 1-Butanol, J. Chem. Eng. Data 51 (2006) 2126-2131.
[116] Pereiro, A.B., J.L. Legido, A. Rodriguez, Physical Properties of Ionic Liquids Based on 1-Alkyl-3-methylimidazolium Cation and Hexafluorophosphate as Anion and Temperature Dependence, J. Chem. Thermodyn. 39 (2007) 1168-1175.
[117] Zafarani-Moattar, M.T., R. Majdan-Cegincara, Viscosity, Density, Speed of Sound, and Refractive Index of Binary Mixtures of Organic Solvent + Ionic Liquid, 1-Butyl-3-methylimidazolium Hexafluorophosphate at 298.15 K, J. Chem. Eng. Data 52 (2007) 2359-2364.
[118] Arce, A., E. Rodil, A. Soto, Volumetric and Viscosity Study for the Mixtures of 2-Ethoxy-2-methylpropane, Ethanol, and 1-Ethyl-3-methylimidazolium Ethyl Sulfate Ionic Liquid, J. Chem. Eng. Data 51 (2006) 1453-1457.
[119] Pitzer, K.S., Thermodynamics of Electrolytes. 1. Theoretical Basis and General Equations, J. Phys. Chem. A 77 (1973) 268-277.
[120] Pitzer, K.S., J.M. Simonson, Thermodynamics of Multicomponent, Miscible, Ionic Systems: Theory and Equations, J. Phys. Chem. 30 (1986) 3005-3009.
[121] Clegg, S.L., K.S. Pitzer, Thermodynamics of Multicomponent, Miscible, Ionic Solutions: Generalized Equations for Symmetrical Electrolytes, J. Phys. Chem. 96 (1992) 3513-3520.
[122] Clegg, S.L., P. Brimblecombe, Equilibrium Partial Pressures and Mean Activity and Osmotic Coefficients of 0-100% Nitric Acid as a Function of Temperature, J. Phys. Chem. 94 (1990) 5369-5380.
[123] Clegg, S.L., P. Brimblecombe, Application of a Multicomponent Thermodynamic Model to Activities and Thermal Properties of 0-40 mol/kg Aqueous Sulfuric Acid from <200 to 328 K, J. Chem. Eng. Data 40 (1995) 43-64.
[124] Li, Y.-G., A.E. Mather, Correlation and Prediction of the Solubility of Carbon Dioxide in a Mixed Alkanolamine Solution, Ind. Eng. Chem. Res. 33 (1994) 2006-2015.
[125] Raatschen, W., A.H. Harvey, J.M. Prausnitz, Equation of State for Solutions of Electrolytes in Mixed Solvents, Fluid Phase Equilib. 38 (1987) 19-38.
[126] Lemoine, B., Y.-G. Li, R. Cadours, C. Bouallou, D. Richon, Partial Vapor Pressure of CO2 and H2S over Aqueous Methyldiethanolamine Solutions, Fluid Phase Equilib. 172 (2000) 261-277.
[127] Edwards, T.J., G. Maurer, J. Newman, J.M. Prausnitz, Vapor-Liquid Equilibria in Multicomponent Aqueous Solutions of Volatile Weak Electrolytes, AIChE J. 24 (1978) 966-976.
[128] Bates, R.G., G.F. Allen, Acid Dissociation Constant and Related Thermodynamic Quantities for Triethanolammonium Ion in Water from 0 to 50 oC, J. Res. Natl. Bur. Stand. 64A (1960) 343.
[129] Silkenbaumer, D., B. Rumpf, R.N. Lichtenthaler, Solubility of Carbon Dioxide in Aquoeus Solutions of 2-Amino-2-methyl-1-propanol and N-methyldiethanolamine and Their Mixtures in the Temperature Range from 313 to 353 K and Pressure up to 2.7 MPa, Ind. Eng. Chem. Res. 37 (1998) 3133-3141.
[130] Pagano, J.M., D.E. Goldberg, W.C. Fernelius, A Thermodynamic Study of Homopiperazine, Piperazine, and N-(2-Aminoethyl)-piperazine and Their Complexes with Copper (II) Ion, J. Phys. Chem. 65 (1961) 1062.
[131] Chen, C.-C., H.I. Britt, J.F. Boston, L.B. Evans, Extension and Application of the Pitzer Equation for Vapor-Liquid Equilibrium of Aqueous Electrolyte Systems with Molecular Solutes, AIChE J. 25 (1979) 820-830.
[132] Hsu, C.H., M.-H. Li, Densities of Aqueous Blended Amines, J. Chem. Eng. Data 42 (1997) 502-507.
[133] Wang, Y.W., S. Xu, F.D. Otto, A.E. Mather, Solubility of N2O in Alkanolamines and in Mixed Solvents, Chem. Eng. J. 48 (1992) 31-40.
[134] IPCS, International Programme on Chemical Safety and Commission of the European Communities, 1999, CEC.
[135] Wolfarth, C., Permittivity (Dielectric Constant) of Liquids. In Handbook of Chemistry and Physics 2004 - 2005, 82nd ed., Lides, D. R., Ed., CRC Press, Boca Raton, FL., 2004.
[136] Hsieh, C.-J., J.-M. Chen, M.-H. Li, Dielectric Constants of Aqueous Diisopropanolamine, Diethanolamine, N-methyldiethanolamine, Triethanolamine, and 2-Amino-2-methyl-1-propanol Solutions, J. Chem. Eng. Data 52 (2007) 619-623.
[137] Bishnoi, S., G.T. Rochelle, Thermodynamics of Piperazine/Methyldiethanolamine/Water/Carbon Dioxide, Ind. Eng. Chem. Res. 41 (2002) 604-612.
[138] Li, Y.-G., A.E. Mather, Correlation and Prediction of the Solubility of CO2 and H2S in Aqueous Solutions of Triethanolamine, Ind. Eng. Chem. Res. 35 (1996) 4804-4809.
[139] Kundu, M., A. Chitturi, S.S. Bandyopadhyay, Prediction of Equilibrium Solubility of CO2 in Aqueous Alkanolamines using Differential Evolution Algorithm, Can. J. Chem. Eng. 86 (2008) 117-126.
[140] Cullinane, J.T., G.T. Rochelle, Thermodynamics of Aqueous Potassium Carbonate, Piperazine, and Carbon Dioxide, Fluid Phase Equilib. 227 (2005) 197-213.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top