|
REFERENCES [1] Kohl, A.L., R.B. Nielsen, Gas Purification, 5th ed., Houston, U.S.A., 1997. [2] Rogers, R.K., K.R. Seddon, Ionic Liquids: Industrial Applications to Green Chemistry, Oxford University Press, Washington, D.C, 2002. [3] Rogers, R.K., K.R. Seddon, Ionic Liquids as Green Solvents: Progress and Prospects, Oxford University Press, Washington, D.C., 2003. [4] Bates, E.D., R.D. Mayton, I. Ntai, J.H. Davis, Jr., CO2 Capture by a Task-Specific Ionic Liquid., J. Am. Chem. Soc. 124 (2002) 926-927. [5] Welton, T., Room-Temperature Ionic Liquids: Solvents for Synthesis and Catalysis, Chem. Rev. 99 (1999) 2070-2071. [6] Huddleston, J.G., H.D. Willauer, R.P. Swatloski, A.E. Visser, R.D. Rogers, Room Temperature Ionic Liquids as Novel Media for 'Clean' Liquid- Liquid Extraction, Chem. Commun. (1998) 1765-1766. [7] Brennecke, J.F., E.J. Maginn, Ionic Liquids: Innovative Fluids for Chemical Processing, AIChE J. 47 (2001) 2384-2389. [8] Wilkes, J.S., Properties of Ionic Liquid Solvents for Catalysis, J. Mol. Catal. A: Chem. 214 (2004) 11-17. [9] Plechkova, N.V., K.R. Seddon, Methods and Reagents for Green Chemistry: An Introduction, Wiley-Interscience, 2007. [10] Iglesias-Otero, M.A., J. Troncoso, E. Carballo, L. Romani, Density and Refractive Index in Mixtures of Ionic Liquids and Organic Solvents: Correlations and Predictions, J. Chem. Thermodyn. 40 (2008) 949-956. [11] Shiflett, M.B., A. Yokozeki, Solubilities and Diffusivities of Carbon Dioxide in Ionic Liquids: [bmim][PF6] and [bmim][BF4], Ind. Eng. Chem. Res. 44 (2005) 4453-4464. [12] Blanchard, L.A., Z. Gu, J.F. Brennecke, High-Pressure Phase Behavior of Ionic Liquid/CO2 Systems, J. Phys. Chem. B 105 (2001) 2437-2444. [13] Shariati, A., C.J. Peters, High-Pressure Phase Behavior of Systems with Ionic Liquids: II. The Binary System Carbon Dioxide+1-Ethyl-3-methylimidazolium Hexafluorophosphate, J. Supercrit. Fluids 29 (2004) 43-48. [14] Constantini, M., V.A. Toussaint, A. Shariati, C.J. Peters, I. Kikic, High-Pressure Phase Behavior of Systems with Ionic Liquids: Part IV. Binary System Carbon Dioxide + 1-Hexyl-3-methylimidazolium Tetrafluoroborate, J. Chem. Eng. Data 50 (2005) 52-55. [15] Kumelan, J., A. Perez-Salado Kamps, D. Tuma, G. Maurer, Solubility of CO2 in the Ionic Liquid [hmim][Tf2N], J. Chem. Thermodyn. 38 (2006) 1396-1401. [16] Schilderman, A.M., S. Raeissi, C.J. Peters, Solubility of Carbon Dioxide in the Ionic Liquid 1-Ethyl-3-methylimidazolium Bis( trifluoromethy lsulfony 1)imide, Fluid Phase Equilib. 260 (2007) 19-22. [17] Anthony, J.L., E.J. Maginn, J.F. Brennecke, Solubilities and Thermodynamic Properties of Gases in the Ionic Liquid 1-n-Butyl-3-methylimidazolium Hexafluorophosphate, J. Phys. Chem. B 106 (2002) 7315-7320. [18] Zhang, J., Q. Zhang, B. Qiao, Y. Deng, Solubilities of the Gaseous and Liquid Solutes and Their Thermodynamics of Solubilization in the Novel Room-Temperature Ionic Liquids at Infinite Dilution by Gas Chromatography, J. Chem. Eng. Data 52 (2007) 2277-2283. [19] Aki, S.N.V.K., B.R. Mellein, E.M. Saurer, J.F. Brennecke, High-Pressure Phase Behavior of Carbon Dioxide with Imidazolium-Based Ionic Liquids, J. Phys. Chem. B 108 (2004) 20355-20365. [20] Kim, Y.S., W.Y. Choi, J.H. Jang, K.-P. Yoo, C.S. Lee, Solubility Measurement and Prediction of Carbon Dioxide in Ionic Liquids, Fluid Phase Equilib. 228-229 (2005) 439-445. [21] Lee, B.-C., S.L. Outcalt, Solubilities of Gases in the Ionic Liquid 1-n-Butyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide, J. Chem. Eng. Data 51 (2006) 892-897. [22] Camper, D., P. Scovazzo, C. Koval, R. Noble, Gas Solubilities in Room-Temperature Ionic Liquids, Ind. Eng. Chem. Res. 43 (2004) 3049-3054. [23] Camper, D., C. Becker, C. Koval, R. Noble, Low Pressure Hydrocarbon Solubility in Room Temperature Ionic Liquids Containing Imidazolium Rings Interpreted Using Regular Solution Theory, Ind. Eng. Chem. Res. 44 (2005) 1928-1933. [24] Jacquemin, J., P. Husson, V. Majer, M.F.C. Gomes, Influence of the Cation on the Solubility of CO2 and H2 in Ionic Liquids Based on the Bis(trifluoromethylsulfonyl)imide Anion, J. Solution Chem. 36 (2007) 967-979. [25] Costa Gomes, M.F., Low-Pressure Solubility and Thermodynamics of Solvation of Carbon Dioxide, Ethane, and Hydrogen in 1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide between Temperatures of 283 K and 343 K, J. Chem. Eng. Data 52 (2007) 472-475. [26] Kim, Y.S., J.H. Jang, B.D. Lim, J.W. Kang, C.S. Lee, Solubility of Mixed Gases Containing Carbon Dioxide in Ionic Liquids: Measurements and Predictions, Fluid Phase Equilib. 256 (2007) 70-74. [27] Kumelan, J., A. Perez-Salado Kamps, D. Tuma, G. Maurer, Solubility of CO2 in the Ionic Liquids [bmim][CH3SO4] and [bmim][PF6], J. Chem. Eng. Data 51 (2006) 1802-1807. [28] Shiflett, M.B., A. Yokozeki, Solubility of CO2 in Room Temperature Ionic Liquid [hmim][Tf2N], J. Phys. Chem. B 111 (2007) 2070-2074. [29] Wu, W., W. Li, B. Han, T. Jiang, D. Shen, Z. Zhang, D. Sun, B. Wang, Effect of Organic Cosolvents on the Solubility of Ionic Liquids in Supercritical CO2, J. Chem. Eng. Data 49 (2004) 1597-1601. [30] Anthony, J.L., J.L. Anderson, E.J. Maginn, J.F. Brennecke, Anion Effects on Gas Solubility in Ionic Liquids, J. Phys. Chem. B 109 (2005) 6366-6374. [31] Chen, Y., S. Zhang, X. Yuan, Y. Zhang, X. Zhang, W. Dai, R. Mori, Solubility of CO2 in Imidazolium-based Tetrafluoroborate Ionic Liquids, Thermochim. Acta 441 (2006) 42-44. [32] Cadena, C., J.L. Anthony, J.K. Shah, T.I. Morrow, J.F. Brennecke, E.J. Maginn, Why is CO2 so Soluble in Imidazolium-based Ionic Liquids?, J. Am. Chem. Soc. 126 (2004) 5300-5308. [33] Aaron, D., C. Tsouris, Separation of CO2 from Flue Gas: A Review, Sep. Sci. Technol. 40 (2005) 321-348. [34] Energy Information Administration (EIA), Annual Energy Outlook 2006, 2006a, http://www.eia.doe.gov/oiaf/aeo. [35] Energy Information Administration (EIA), International Energy Outlook 2006, 2006b, http://www.eia.doe.gov/oiaf/ieo/index.html. [36] Energy Information Administration (EIA), Emissions of Greenhouse Gases in the United States 2005, 2006c, DOE/EIA-0573 (2005). [37] Figueroa, J.D., T. Fout, S. Plasynski, H.G. McIlvried, R.D. Srivastava, Advances in CO2 Capture Technology-The U.S. Department of Energy's Carbon Sequestration Program, Int. J. Greenhouse Gas Cont. 2 (2008) 9-20. [38] Klara, S.M., R.D. Srivastava, H.G. McIlvried, Integrated Collaborative Technology Development Program for CO2 Sequestration in Geologic Formations-United States Department of Energy R&D, Energy Conv. and Manage. 44 (2003) 2699-2712. [39] Litynski, J.T., S.M. Klara, H.G. McIlvried, R.D. Srivastava, The United States Department of Energy's Regional Carbon Sequestration Partnerships Program: A Collaborative Approach to Carbon Management, Environ. Int. 32 (2006) 128-144. [40] Litynski, J.T., S. Plasynski, H.G. McIlvried, C. Mahoney, R.D. Srivastava, The United States Department of Energy's Regional Carbon Sequestration Partnerships Program: Validation Phase, Environ. Int. (2007) (in press). [41] Perez-Salado Kamps, A., D. Tuma, J. Xia, G. Maurer, Solubility of CO2 in the Ionic Liquid [bmim][PF6], J. Chem. Eng. Data 48 (2003) 746-749. [42] Zhang, S., X. Yuan, Y. Chen, X. Zhang, Solubilities of CO2 in 1-Butyl-3-methylimidazolium Hexafluorophosphate and 1,1,3,3-Tetramethylguanidium Lactate at Elevated Pressures, J. Chem. Eng. Data 50 (2005) 1582-1585. [43] Maginn, E.J., Design and Evaluation of Ionic Liquids as Novel CO2 Absorbents Quarterly Technical Reports (10/01/06-12/31/06), DOE Award Number: DE-FG26-04NT42122, National Energy Technology Laboratory, 2007. [44] Vaidya, P.D., E.Y. Kenig, Gas-Liquid Reaction Kinetics: A Review of Determination Methods, Chem. Eng. Comm. 194 (2007) 1543-1565. [45] Chakravarty, T., U.K. Phukan, R.H. Weiland, Reaction of Acid Gases with Mixtures of Amines, Chem. Eng. Prog. 81 (1985) 32-36. [46] Bosch, H., G.F. Versteeg, W.P.M. van Swaaij, Gas-Liquid Mass Transfer with Parallel Reversible Reactions-III. Absorption of CO2 into Solutions of Blends of Amines, Chem. Eng. Sci. 44 (1989) 2745-2750. [47] Glasscock, D.A., J.E. Critchfield, G.T. Rochelle, CO2 Absorption/Desorption in Mixtures of Methyldiethanolamine with Monoethanolamine or Diethanolamine, Chem. Eng. Sci. 46 (1991) 2829-2845. [48] Mandal, B.P., A.K. Biswas, S.S. Bandyopadhyay, Absorption of Carbon Dioxide into Aqueous Blends of 2-Aamino-2-methyl-1-propanol and Diethanolamine, Chem. Eng. Sci. 58 (2003) 4137-4144. [49] Seo, D.J., W.H. Hong, Effect of Piperazine on the Kinetics of Carbon Dioxide with Aqueous Solutions of 2-Amino-2-methyl-1-propanol, Ind. Eng. Chem. Res. 39 (2000) 2062-2067. [50] Sun, W.-C., C.-B. Yong, M.-H. Li, Kinetics of the Absorption of Carbon Dioxide into Mixed Aqueous Solutions of 2-Amino-2-methyl-l-propanol and Piperazine, Chem. Eng. Sci. 60 (2005) 503-516. [51] Rangwala, H.A., B.R. Morrell, A.E. Mather, F.D. Otto, Absorption of CO2 into Aqueous Tertiary Amine/MEA solutions, Can. J. Chem. Eng. 70 (1992) 482-490. [52] Seo, D.J., W.H. Hong, Solubilities of Carbon Dioxide in Aqueous Mixtures of Diethanolamine and 2-Amino-2-methyl-1-propanol. J. Chem. Eng. Data, J. Chem. Eng. Data 41 (1996) 258-260. [53] Seo, D.J., W.H. Hong, Effect of Piperazine on the Reaction Rate Constant of Carbon Dioxide into Aqueous N-Methyldiethanolamine Solutions, Hwahak Konghak 37 (1999) 593-597. [54] Zhang, X., C.F. Zhang, S.J. Qin, Z.S. Zheng, A Kinetics Study on the Absorption of Carbon Dioxide into a Mixed Aqueous Solution of Methyldiethanolamine and Piperazine, Ind. Eng. Chem. Res. 40 (2001) 3785-3791. [55] Zhang, X., C.F. Zhang, Y. Liu, Kinetics of Absorption of CO2 into Aqueous Solution of MDEA Blended with DEA, Ind. Eng. Chem. Res. 41 (2002) 1135-1141. [56] Mandal, B.P., S.S. Bandyopadhyay, Simultaneous Absorption of CO2 and H2S Into Aqueous Blends of N-Methyldiethanolamine and Diethanolamine, Environ. Sci. Technol. 40 (2006) 6076-6084. [57] Kumelan, J., A. Perez-Salado Kamps, D. Tuma, G. Maurer, Solubility of CO in the Ionic Liquid [bmim][PF6], Fluid Phase Equilib. 228-229 (2005) 207-211. [58] Yuan, X., S. Zhang, J. Liu, X. Lu, Solubilities of CO2 in Hydroxyl Ammonium Ionic Liquids at Elevated Pressures, Fluid Phase Equilib. 257 (2007) 195-200. [59] Torrecilla, J.S., J. Palomar, J. Garcia, E. Rojo, F. Rodriguez, Modelling of Carbon Dioxide Solubility in Ionic Liquids at Sub and Supercritical Conditions by Neural Networks and Mathematical Regressions, Chemom. Intell. Lab. Syst. 93 (2008) 149-159. [60] Huang, F.-H., M.-H. Li, L.L. Lee, K.E. Starling, An Accurate Equation of State for Carbon Dioxide, J. Chem. Eng. Japan 18 (1985) 490-496. [61] Tokuda, H., K. Hayamizu, K. Ishii, M.A.B.H. Susan, M. Watanabe, Physicochemical Properties and Structures of Room Temperature Ionic Liquids. 1. Variation of Anionic Species, J. Phys. Chem. B 108 (2004) 16593-16600. [62] Dzyuba, S.V., R.A. Bartsch, Influence of Structural Variations in 1-Alkyl(aralkyl)-3-methylimidazolium Hexafluorophosphates and Bis(Trifluorormethyl-Sulfonyl)imides on Physical Properties of the Ionic Liquids, Chem. Phys. Chem. 3 (2002) 161-166. [63] Gu, Z., J.F. Brennecke, Volume Expansivities and Isothermal Compressibilities of Imidazolium- and Pyridinium-based Ionic Liquids J. Chem. Eng. Data 47 (2002) 339-345. [64] Canongia Lopes, J.N., T.C. Cordeiro, J.M.S.S. Esperanca, H.J.R. Guedes, S. Huq, L.P.N. Rebelo, K.R. Seddon, Deviations from Ideality in Mixtures of Two Ionic Liquids Containing a Common Ion, J. Phys. Chem. B 109 (2005) 3519-3525. [65] Seddon, K.R., A. Stark, M.J. Torres, Viscosity and Density of 1-Alkyl-3-methylimidazolium Ionic Liquids, ACS Symp. Ser. 819 (2002) 34-49. [66] Harris, K.R., L.A. Woolf, M. Kanakubo, Temperature and Pressure Dependence of the Viscosity of the Ionic Liquid 1-Butyl-3-methylimidazolium Hexafluorophosphate, J. Chem. Eng. Data 50 (2005) 1777-1782. [67] Troncoso, J., C.A. Cerdeirina, Y.A. Sanmamed, L. Romani, L.P.N. Rebelo, Thermodynamic Properties of Imidazolium-Based Ionic Liquids: Densities, Heat Capacities, and Enthalpies of Fusion of [bmim][PF6] and [bmim][NTf2], J. Chem. Eng. Data 51 (2006) 1856-1859. [68] Seddon, K.R., A. Stark, M.J. Torres, The Influence of Chloride, Water, and Organic Solvents on the Physical Properties of Ionic Liquids, Pure Appl. Chem. 72 (2000) 2275-2287. [69] Gomez, E., B. Gonzales, N. Calvar, E. Tojo, A. Dominguez, Physical Properties of Pure 1-Ethyl-3-methylimidazolium Ethylsulfate and Its Binary Mixtures with Ethanol and Water at Several Temperatures, J. Chem. Eng. Data 51 (2006) 2096-2102. [70] Deetlefs, M., K.R. Seddon, M. Shara, Predicting Physical Properties of Ionic Liquids, Phys. Chem. Chem. Phys. 8 (2006) 642-649. [71] Kim, K., B. Shin, H. Lee, F. Ziegler, Refractive Index and Heat Capacity of 1-Butyl-3-methylimidazolium Bromide and 1-Butyl-3-methylimidazolium Tetrafluoroborate, and Vapor Pressure of Binary systems for 1-Butyl-3-methylimidazolium Bromide + Trifluoroethanol and 1-Butyl-3-methylimidazolium Tetrafluoroborate + Trifluoroethanol, Fluid Phase Equilib. 218 (2004) 215-220. [72] Pereiro, A.B., A. Rodriguez, Thermodynamic Properties of Ionic Liquids in Organic Solvents from (293.15 to 303.15) K, J. Chem. Eng. Data 52 (2007) 600-608. [73] Hwa, S.C.P., W.T. Ziegler, Temperature Dependence of Excess Thermodynamic Properties of Ethanol-Methylcyclohexane and Ethanol-Toluene Systems, J. Phys. Chem. 70 (1966) 2572-2593. [74] Pineiro, A., P. Brocos, A. Amigo, M. Pintos, R. Bravo, Surface Tensions and Refractive Indices of (Tetrahydrofuran + n-Alkane) at T = 298.15 K, J. Chem. Thermodyn. 31 (1999) 931-942. [75] Hirschfelder, J.O., C.F. Curtiss, R.B. Bird, Molecular Theory of Gases and Liquids, Wiley, London, 1964. [76] Born, M., E. Wolf, Principles of Optics, Pergamon, Oxford, 1983. [77] Gardas, R.L., J.A.P. Coutinho, Extension of the Ye and Shreeve Group Contribution Method for Density Estimation of Ionic Liquids in a Wide Range of Temperatures and Pressures, Fluid Phase Equilib. 263 (2007) 26-32. [78] Ye, C., J.M. Shreeve, Rapid and Accurate Estimation of Densities of Room-Temperature Ionic Liquids and Salts, J. Phys. Chem. A 111 (2007) 1456-1461. [79] Bender, E., Equations of State Exactly Representing the Behavior of Pure Substances, 5th Symposium on Thermophysical Properties, New York, 1970, . [80] Zafarani-Moattar, M.T., H. Shekaari, Application of Prigogine Flory Patterson Theory to Excess Molar Volume and Speed of Sound of 1-n-Butyl-3-methylimidazolium Hexafluorophosphate or 1-n-Butyl-3-methylimidazolium Tetrafluoroborate in Methanol and Acetonitrile, J. Chem. Thermodyn. 38 (2006) 1377-1384. [81] Zhou, Q., L.-S. Wang, Densities and Viscosities of 1-Butyl-3-methylimidazolium Tetrafluoroborate + H2O Binary Mixtures from (303.15 to 353.15) K, J. Chem. Eng. Data 51 (2006) 905-908. [82] Tokuda, H., S. Tsuzuki, M.A.B.H. Susan, K. Hayamizu, M. Watanabe, How Ionic Are Room-Temperature Ionic Liquids? An Indicator of the Physicochemical Properties, J. Phys. Chem. B 110 (2006) 19593-19600. [83] Navia, P., J. Troncoso, L. Romani, Excess Magnitudes for Ionic Liquid Binary Mixtures with a Common Ion, J. Chem. Eng. Data 52 (2007) 1369-1374. [84] Gardas, R.L., M.G. Freire, P.J. Carvalho, I.M. Marrucho, I.M.A. Fonseca, A.G.M. Ferreira, J.A.P. Coutinho, High-Pressure Densities and Derived Thermodynamic Properties of Imidazolium-based Ionic Liquids, J. Chem. Eng. Data 52 (2007) 80-88. [85] Sanmamed, Y.A., D. Gonzalez-Salagado, J. Troncoso, C.A. Cerdeirina, L. Romani, Viscosity-induced Errors in the Density Determination of Room Temperature Ionic Liquids using Vibrating Tube Densitometry, Fluid Phase Equilib. 252 (2007) 96-102. [86] Kabo, G.J., A.V. Blokhin, Y.U. Paulechka, A.G. Kabo, M.P. Shymanovich, J.W. Magee, Thermodynamic Properties of 1-Butyl-3-methylimidazolium Hexafluorophosphate in the Condensed State, J. Chem. Eng. Data 49 (2004) 453-461. [87] Zafarani-Moattar, M.T., H. Shekaari, Volumetric and Speed of Sound of Ionic Liquid, 1-Butyl-3-methylimidazolium Hexafluorophosphate with Acetonitrile and Methanol at T ) (298.15 to 318.15) K, J. Chem. Eng. Data 50 (2005) 1694-1699. [88] Jacquemin, J., P. Husson, V. Majer, M.F. Costa Gomes, Low-pressure Solubilities and Thermodynamics of Solvation of Eight Gases in 1-Butyl-3-methylimidazolium Hexafluorophosphate, Fluid Phase Equilib. 240 (2006) 87-95. [89] Pereiro, A.B., A. Rodriguez, Study on the Phase Behaviour and Thermodynamic Properties of Ionic Liquids Containing Imidazolium Cation with Ethanol at Several Temperatures, J. Chem. Thermodyn. 39 (2007) 978-989. [90] Domanska, U., A. Pobudkowska, A. Wisniewska, Solubility and Excess Molar Properties of 1,3-Dimethylimidazolium Methylsulfate, or 1-Butyl-3-Methylimidazolium Methylsulfate, or 1-Butyl-3-Methylimidazolium Octylsulfate Ionic Liquids with n-Alkanes and Alcohols: Analysis in Terms of the PFP and FBT Models, J. Solution Chem. 35 (2006) 311-334. [91] Pereiro, A.B., P. Verdia, E. Tojo, A. Rodriguez, Physical Properties of 1-Butyl-3-methylimidazolium Methylsulfate as a Function of Temperature, J. Chem. Eng. Data 52 (2007) 377-380. [92] Fredlake, C.P., J.M. Crosthwaite, D.G. Hert, S.N.V.K. Aki, J.F. Brennecke, Thermophysical Properties of Imidazolium-based Ionic Liquids, J. Chem. Eng. Data 49 (2004) 954-964. [93] Nishida, T., Y. Tashiro, M. Yamamoto, Physical and electrochemical properties of 1-alkyl-3-methylimidazolium tetrafluoroborate for electrolyte, J. Fluorine Chem. 120 (2003) 135-141. [94] van Valkenburg, M.E., R.L. Vaughn, M. Williams, J.S. Wilkes, Thermochemistry of Ionic Liquid Heat-Transfer Fluids, Thermochim. Acta 425 (2005) 181-188. [95] Vila, J., P. Gines, E. Rilo, O. Cabeza, L.M. Varela, Great Increase of the Electrical Conductivity of Ionic Liquids in Aqueous Solutions, Fluid Phase Equilib. 247 (2006) 32-39. [96] Shiflett, M.B., A. Yokozeki, Liquid-Liquid Equilibria in Binary Mixtures of 1,3-Propanediol + Ionic Liquids [bmim][PF6], [bmim][BF4], and [emim][BF4], J. Chem. Eng. Data 52 (2007) 1302-1306. [97] Krummen, M., P. Wasserscheid, J. Gmehling, Measurement of Activity Coefficients at Infinite Dilution in Ionic Liquids Using the Dilutor Technique, J. Chem. Eng. Data 47 (2002) 1411-1417. [98] Rodriguez, H., J.F. Brennecke, Temperature and Composition Dependence of the Density and Viscosity of Binary Mixtures of Water + Ionic Liquid, J. Chem. Eng. Data 51 (2006) 2145-2155. [99] Jacquemin, J., P. Husson, V. Mayer, I. Cibulka, High-Pressure Volumetric Properties of Imidazolium-Based Ionic Liquids: Effect of the Anion, J. Chem. Eng. Data 52 (2007) 2204-2211. [100] Gonzalez, E.J., B. Gonzales, N. Calvar, A. Dominguez, Physical Properties of Binary Mixtures of the Ionic Liquid 1-Ethyl-3-methylimidazolium Ethyl Sulfate with Several Alcohols at T = (298.15, 313.15, and 328.15) K and Atmospheric Pressure, J. Chem. Eng. Data 52 (2007) 1641-1648. [101] Wandschneider, A., J.K. Lehmann, A. Heintz, Surface Tension and Density of Pure Ionic Liquids and Some Binary Mixtures with 1-Propanol and 1-Butanol, J. Chem. Eng. Data 53 (2008) 596-599. [102] Vercher, E., A.V. Orchilles, P.J. Miguel, A. Martinez-Andreu, Volumetric and Ultrasonic Studies of 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate Ionic Liquid with Methanol, Ethanol, 1-Propanol, and Water at Several Temperatures, J. Chem. Eng. Data 52 (2007) 1468-1482. [103] Rebelo, L.P.N., V. Najdanovic-Visak, Z.P. Visak, M. Nunes da Ponte, J. Szydlowski, C.A. Cerdeirina, J. Troncoso, L. Romani, J.M.S.S. Esperanca, H.J.R. Guedes, H.C. de Sousa, A Detailed Thermodynamic Analysis of [C4mim][BF4] + Water as a Case Study to Model Ionic Liquid Aqueous Solutions, Green Chem. 6 (2004) 369-381. [104] Gomes de Azevedo, R., J.M.S.S. Esperanca, V. Najdanovic-Visak, Z.P. Visak, H.J.R. Guedes, M. Nunes da Ponte, L.P.N. Rebelo, Thermophysical and Thermodynamic Properties of 1-Butyl-3-methylimidazolium Tetrafluoroborate and 1-Butyl-3-methylimidazolium Hexafluorophosphate over an Extended Pressure Range, J. Chem. Eng. Data 50 (2005) 997-1008. [105] Tomida, D., A. Kumagai, K. Qiao, C. Yokoyama, Viscosity of [bmim][PF6] and [bmim][BF4] at High Pressure 1, Int. J. Thermophys. 27 (2006) 39-47. [106] Gardas, R.L., M.G. Freire, P.J. Carvalho, I.M. Marrucho, I.M.A. Fonseca, A.G.M. Ferreira, J.A.P. Coutinho, P-r-T Measurements of Imidazolium-based Ionic Liquids, J. Chem. Eng. Data 52 (2007) 1881-1888. [107] Tomida, D., S. Kenmochi, T. Tsukada, K. Qiao, C. Yokoyama, Thermal Conductivities of [bmim][PF6], [hmim][PF6], and [omim][PF6] from 294 to 335 K at Pressures up to 20 MPa, Int. J. Thermophys. 28 (2007) 1147-1160. [108] Zhao, H., S.V. Malhotra, R.G. Luo, Preparation and Characterization of Three Room-Temperature Ionic Liquids, Phys. Chem. Liq. 41 (2003) 487-492. [109] Zhang, S., X. Li, H. Chen, J. Wang, J. Zhang, M. Zhang, Determination of Physical Properties for the Binary System of 1-Ethyl-3-methylimidazolium Tetrafluoroborate + H2O, J. Chem. Eng. Data 49 (2004) 760-764. [110] Yang, J.-Z., X.-M. Lu, J.-S. Gui, W.-G. Xu, H.-W. Li, Volumetric Properties of Room Temperature Ionic Liquid 2: The Concentrated Aqueous Solutions of {1-Methyl-3-ethylimidazolium Ethylsulfate + Water} in a Temperature Range of 278.2 K to 338.2 K, J. Chem. Thermodyn. 37 (2005) 1250-1255. [111] Iglesias-Otero, M.A., J. Troncoso, E. Carballo, Density and Refractive Index for Binary Systems of the Ionic Liquid [Bmim][BF4] with Methanol, 1,3-Dichloropropane, and Dimethyl Carbonate, J. Solution Chem. 36 (2007) 1219-1230. [112] Kumar, A., Estimates of Internal Pressure and Molar Refraction of Imidazolium Based Ionic Liquids as a Function of Temperature, J. Solution Chem. 37 (2008) 203-214. [113] Liu, W., T. Zhao, Y. Zhang, H. Wang, M. Yu, The Physical Properties of Aqueous Solutions of the Ionic Liquid [BMIM][BF4], J. Solution Chem. 35 (2006) 1337-1346. [114] Huddleston, J.G., A.E. Visser, W.M. Reichert, H.D. Willauer, G.A. Broker, R.D. Rogers, Characterization and Comparison of Hydrophilic and Hydrophobic Room Temperature Ionic Liquids Incorporating the Imidazolium Cation, Green Chem. 3 (2001) 156-164. [115] Bendova, M., Z. Wagner, Liquid-Liquid Equilibrium in Binary System [bmim][PF6] + 1-Butanol, J. Chem. Eng. Data 51 (2006) 2126-2131. [116] Pereiro, A.B., J.L. Legido, A. Rodriguez, Physical Properties of Ionic Liquids Based on 1-Alkyl-3-methylimidazolium Cation and Hexafluorophosphate as Anion and Temperature Dependence, J. Chem. Thermodyn. 39 (2007) 1168-1175. [117] Zafarani-Moattar, M.T., R. Majdan-Cegincara, Viscosity, Density, Speed of Sound, and Refractive Index of Binary Mixtures of Organic Solvent + Ionic Liquid, 1-Butyl-3-methylimidazolium Hexafluorophosphate at 298.15 K, J. Chem. Eng. Data 52 (2007) 2359-2364. [118] Arce, A., E. Rodil, A. Soto, Volumetric and Viscosity Study for the Mixtures of 2-Ethoxy-2-methylpropane, Ethanol, and 1-Ethyl-3-methylimidazolium Ethyl Sulfate Ionic Liquid, J. Chem. Eng. Data 51 (2006) 1453-1457. [119] Pitzer, K.S., Thermodynamics of Electrolytes. 1. Theoretical Basis and General Equations, J. Phys. Chem. A 77 (1973) 268-277. [120] Pitzer, K.S., J.M. Simonson, Thermodynamics of Multicomponent, Miscible, Ionic Systems: Theory and Equations, J. Phys. Chem. 30 (1986) 3005-3009. [121] Clegg, S.L., K.S. Pitzer, Thermodynamics of Multicomponent, Miscible, Ionic Solutions: Generalized Equations for Symmetrical Electrolytes, J. Phys. Chem. 96 (1992) 3513-3520. [122] Clegg, S.L., P. Brimblecombe, Equilibrium Partial Pressures and Mean Activity and Osmotic Coefficients of 0-100% Nitric Acid as a Function of Temperature, J. Phys. Chem. 94 (1990) 5369-5380. [123] Clegg, S.L., P. Brimblecombe, Application of a Multicomponent Thermodynamic Model to Activities and Thermal Properties of 0-40 mol/kg Aqueous Sulfuric Acid from <200 to 328 K, J. Chem. Eng. Data 40 (1995) 43-64. [124] Li, Y.-G., A.E. Mather, Correlation and Prediction of the Solubility of Carbon Dioxide in a Mixed Alkanolamine Solution, Ind. Eng. Chem. Res. 33 (1994) 2006-2015. [125] Raatschen, W., A.H. Harvey, J.M. Prausnitz, Equation of State for Solutions of Electrolytes in Mixed Solvents, Fluid Phase Equilib. 38 (1987) 19-38. [126] Lemoine, B., Y.-G. Li, R. Cadours, C. Bouallou, D. Richon, Partial Vapor Pressure of CO2 and H2S over Aqueous Methyldiethanolamine Solutions, Fluid Phase Equilib. 172 (2000) 261-277. [127] Edwards, T.J., G. Maurer, J. Newman, J.M. Prausnitz, Vapor-Liquid Equilibria in Multicomponent Aqueous Solutions of Volatile Weak Electrolytes, AIChE J. 24 (1978) 966-976. [128] Bates, R.G., G.F. Allen, Acid Dissociation Constant and Related Thermodynamic Quantities for Triethanolammonium Ion in Water from 0 to 50 oC, J. Res. Natl. Bur. Stand. 64A (1960) 343. [129] Silkenbaumer, D., B. Rumpf, R.N. Lichtenthaler, Solubility of Carbon Dioxide in Aquoeus Solutions of 2-Amino-2-methyl-1-propanol and N-methyldiethanolamine and Their Mixtures in the Temperature Range from 313 to 353 K and Pressure up to 2.7 MPa, Ind. Eng. Chem. Res. 37 (1998) 3133-3141. [130] Pagano, J.M., D.E. Goldberg, W.C. Fernelius, A Thermodynamic Study of Homopiperazine, Piperazine, and N-(2-Aminoethyl)-piperazine and Their Complexes with Copper (II) Ion, J. Phys. Chem. 65 (1961) 1062. [131] Chen, C.-C., H.I. Britt, J.F. Boston, L.B. Evans, Extension and Application of the Pitzer Equation for Vapor-Liquid Equilibrium of Aqueous Electrolyte Systems with Molecular Solutes, AIChE J. 25 (1979) 820-830. [132] Hsu, C.H., M.-H. Li, Densities of Aqueous Blended Amines, J. Chem. Eng. Data 42 (1997) 502-507. [133] Wang, Y.W., S. Xu, F.D. Otto, A.E. Mather, Solubility of N2O in Alkanolamines and in Mixed Solvents, Chem. Eng. J. 48 (1992) 31-40. [134] IPCS, International Programme on Chemical Safety and Commission of the European Communities, 1999, CEC. [135] Wolfarth, C., Permittivity (Dielectric Constant) of Liquids. In Handbook of Chemistry and Physics 2004 - 2005, 82nd ed., Lides, D. R., Ed., CRC Press, Boca Raton, FL., 2004. [136] Hsieh, C.-J., J.-M. Chen, M.-H. Li, Dielectric Constants of Aqueous Diisopropanolamine, Diethanolamine, N-methyldiethanolamine, Triethanolamine, and 2-Amino-2-methyl-1-propanol Solutions, J. Chem. Eng. Data 52 (2007) 619-623. [137] Bishnoi, S., G.T. Rochelle, Thermodynamics of Piperazine/Methyldiethanolamine/Water/Carbon Dioxide, Ind. Eng. Chem. Res. 41 (2002) 604-612. [138] Li, Y.-G., A.E. Mather, Correlation and Prediction of the Solubility of CO2 and H2S in Aqueous Solutions of Triethanolamine, Ind. Eng. Chem. Res. 35 (1996) 4804-4809. [139] Kundu, M., A. Chitturi, S.S. Bandyopadhyay, Prediction of Equilibrium Solubility of CO2 in Aqueous Alkanolamines using Differential Evolution Algorithm, Can. J. Chem. Eng. 86 (2008) 117-126. [140] Cullinane, J.T., G.T. Rochelle, Thermodynamics of Aqueous Potassium Carbonate, Piperazine, and Carbon Dioxide, Fluid Phase Equilib. 227 (2005) 197-213.
|