(3.235.236.13) 您好!臺灣時間:2021/05/15 03:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林姵吟
研究生(外文):Pei-Yin Lin
論文名稱:離子液體水溶液比熱及電導度量測研究
論文名稱(外文):Measurement of Heat Capacity and Electrical Conductivity of Aqueous Solutions of Ionic Liquids
指導教授:李夢輝李夢輝引用關係
指導教授(外文):Meng-Hui Li
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:87
中文關鍵詞:電導度比熱離子液體
外文關鍵詞:heat capacityionic liquidelectrical conductivity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:247
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗量測四個離子液體水溶液之熱容量與電導度,主要量測系統如下: [Bmim][CF3SO3] (1-butyl-3-methylimidazolium trifluoromethanesulfonate) + H2O, [Bmim][MeSO4] (1-butyl-3-methylimidazolium methylsulfate) + H2O, [Emim][CF3SO3] (1-ethyl-3-methylimidazolium trifluoromethanesulfonate) + H2O, [Emim][C2H5SO4] (1-ethyl-3-methylimidazolium ethylsulfate) + H2O;主要利用示差掃描熱量計(Differential Scanning Calorimeter, DSC)量測熱容量,溫度範圍為303.2–353.2 K,其不確定性為  0.015 (kJkg-1K-1);並利用電導度計量測電導度,溫度範圍為293.2–353.2 K,其不確定性為  0.001 (Sm-1)。本實驗研究值與文獻值有良好之符合性,實驗所量測之離子液體比熱值與電導度值以溫度與濃度為變數做迴歸計算,熱容量值是利用 代入Redlich-Kister equation予以迴歸計算;電導度值是使用其他學者所提出之模式與修正模式來迴歸計算,比較其迴歸結果再加以討論,迴歸計算值與實驗值亦有良好之符合性。本研究成果可作為工程設計基礎數據與計算依據。
The heat capacities and electrical conductivities of four binary aqueous solutions of ionic liquids had been measured. The investigated ionic liquid systems were as follows: [Bmim][CF3SO3] (1-butyl-3-methylimidazolium trifluoromethanesulfonate) + H2O, [Bmim][MeSO4] (1-butyl-3-methylimidazolium methylsulfate) + H2O, [Emim][CF3SO3] (1-ethyl-3-methylimidazolium trifluoromethanesulfonate) + H2O, and [Emim][C2H5SO4] (1-ethyl-3-methylimidazolium ethylsulfate) + H2O. The heat capacities were measured over the temperature range from (303.2 to 353.2) K using a differential scanning calorimeter (DSC). The electrical conductivities were measured using a commercial conductivity meter in the temperature range from (293.2 to 353.2) K. The estimated uncertainties of heat capacity CP and electrical conductivity  measurements were  0.015 (kJkg-1K-1) and  0.001 (Sm-1). The heat capacities and electrical conductivities were presented as a function of temperature and composition. For the studied aqueous ionic liquid systems, the excess molar heat capacity values were represented by typical Redlich-Kister expansion and the  values were correlated using equations from other investigators and its modified forms. The correlations give satisfactory results. The heat capacities and electrical conductivities presented in this work are, in general, of sufficient accuracy for most engineering-design calculations.
目錄
摘要 I
Abstract II
致謝 III
目錄 IV
表目錄 VII
圖目錄 VIII
第1章 緒論 1
1-1 前言 1
1-2 研究動機 4
1-3 研究目的 5
第2章 DSC之理論 6
2-1 DSC之簡介 6
2-2 DSC之種類 6
2-3 DSC量測熱容量原理 11
2-3-1 文獻回顧 11
2-3-2 熱容量值計算 14
2-3-3 熱容量之迴歸模式 16
2-4 電導度之簡介 18
2-5 電導度之理論 18
2-6 電導度之迴歸模式 19
第3章 實驗 22
3-1 實驗藥品 22
3-2 實驗裝置 24
3-3 實驗步驟 25
3-3-1 量測原理 25
3-3-2 樣品之備製 25
3-3-3 DSC爐子之清潔(clean cell) 25
3-3-4 DSC爐子之校正 26
3-3-5 熱容量量測步驟 28
3-4 電導度量測 30
第4章 結果與討論 32
4-1 熱容量實驗結果與討論 32
4-2 雙成份系統熱容量量測 32
4-3 電導度之實驗結果與討論 50
4-4 雙成份系統電導度量測 50
第5章 結論 70
符號表 71
參考文獻 73
自述 78

表目錄
Table 4 1 Heat capacities of [Bmim][CF3SO3] 33
Table 4 2 Heat capacities and excess molar heat capacities of [Bmim][CF3SO3] (1) + H2O (2) 36
Table 4 3 Heat capacities and excess molar heat capacities of [Bmim][MeSO4] (1) + H2O (2) 39
Table 4 4 Heat capacities and excess molar heat capacities of [Emim][CF3SO3] (1) + H2O (2) 43
Table 4 5 Heat capacities and excess molar heat capacities of [Emim][C2H5SO4] (1) + H2O (2) 46
Table 4 6 Parameters of heat capacity of aqueous solutions of ionic liquids 49
Table 4 7 Electrical conductivity of 0.01N KCl 51
Table 4 8 Electrical conductivity of [Bmim][CF3SO3] (1) + H2O (2) 53
Table 4 9 Electrical conductivity of [Bmim][MeSO4] (1) + H2O (2) 57
Table 4 10 Electrical conductivity of [Emim][CF3SO3] (1) + H2O (2) 60
Table 4 11 Electrical conductivity of [Emim][C2H5SO4] (1) + H2O (2) 64
Table 4 12 Parameters of electrical conductivity of Eq. 2-36 67
Table 4 13 Parameters of electrical conductivity of Eq. 2-37 68
Table 4 14 Parameters of electrical conductivity of Eq. 2-38 69


圖目錄
Figure 1 1 大氣中二氧化碳含量的變化趨勢圖 3
Figure 1 2 近百年全球氣溫變化圖 3
Figure 2 1 Schematic of power compensated DSC 8
Figure 2 2 Circuit diagram of heat flow DSC 8
Figure 2 3 Schematic of heat flow DSC 9
Figure 2 4 DSC curves for heat capacity measurement 13
Figure 2 5 DSC curves for heat capacity measurement 15
Figure 4 1 Heat capacities of [Bmim][CF3SO3] 34
Figure 4 2 Heat capacities of [Bmim][CF3SO3] (1) + H2O (2) 37
Figure 4 3 Excess molar heat capacities of [Bmim][CF3SO3] (1) + H2O (2) 38
Figure 4 4 Heat capacities of [Bmim][MeSO4] (1) + H2O (2) 40
Figure 4 5 Excess molar heat capacities of [Bmim][MeSO4] (1) + H2O (2) 41
Figure 4 6 Heat capacities of [Emim][CF3SO3] (1) + H2O (2) 44
Figure 4 7 Excess molar heat capacities of [Emim][CF3SO3] (1) + H2O (2) 45
Figure 4 8 Heat capacities of [Emim][C2H5SO4] + H2O 47
Figure 4 9 Excess molar heat capacities of [Emim][C2H5SO4] (1) + H2O (2) 48
Figure 4 10 Electrical conductivity of 0.01N KCl 52
Figure 4 11 Electrical conductivity of [Bmim][CF3SO3] (1) + H2O(2) 54
Figure 4 12 Electrical conductivity of [Bmim][CF3SO3] (1) + H2O (2) 55
Figure 4 13 Electrical conductivity of [Bmim][MeSO4] (1) + H2O (2) 58
Figure 4 14 Electrical conductivity of [Bmim][MeSO4] (1) + H2O (2) 59
Figure 4 15 Electrical conductivity of [Emim][CF3SO3] (1) + H2O (2) 61
Figure 4 16 Electrical conductivity of [Emim][CF3SO3] (1) + H2O (2) 62
Figure 4 17 Electrical conductivity of [Emim][C2H5SO4] (1) + H2O (2) 65
Figure 4 18 Electrical conductivity of [Emim][C2H5SO4] (1) + H2O (2) 66
Benson, S. W. Thermochemical Kinetics, Wiley, New York, 1968.
Blokhin, A. V.; Paulechka, Y. U.; Kabo, G. J. Thermodynamic Properties of [C6mim][NTf2] in the Condensed State. J. Chem. Eng. Data 2006, 51, 1377-1388.
Bromberg, J. P. Physical Chemistry, Allyn and Bacon, London, 1936.
Brown, M. E. Introduction to Thermal Analysis: Techniques and Applications, Kluwer Academic, London, 2001.
Chiu, L. F.; Liu, H. F.; Li, M. H. Heat Capacity of Alkanolamines by Differential Scanning Calorimetry. J. Chem. Eng. Data 1999, 44, 631-636.
Chueh, C. F.; Swanson, A. C. Estimation of Liquid Heat Capacity. Chem. Eng. Prog. 1973, 69, 83-85.
Comminges, C.; Barhdadi, R.; Laurent, M.; Troupel, M. Determination of Viscosity, Ionic Conductivity, and Diffusion Coefficients in Some Binary Systems: Ionic Liquids + Molecular Solvents. J. Chem. Eng. Data 2006, 51, 680-685.
Crosthwaite, J. M.; Muldoon, M. J.; Dixon, J. K.; Anderson, J. L.; Brennecke, J. F. Phase Transition and Decomposition Temperatures, Heat Capacities and Viscosities of Pyridinium Ionic Liquids. J. Chem. Thermodyn. 2005, 37, 559-568.
Davila, M. J.; Aparicio, S.; Alcalde, R.; Garcia, B.; Leal, J. M. On the Properties of 1-Butyl-3-methylimidazolium Octylsulfate Ionic Liquid. Green Chem. 2007, 9, 221-232.
Diedrichs, A.; Gmehling, J. Measurement of Heat Capacities of Ionic Liquids by Differential Scanning Calorimetry. Fluid Phase Equilib. 2006, 244, 68-77.
Ditmars, D. A.; Bernstein, G.; Chang, S. S.; Ishihara, S.; West, E. D. Enthalpy and Heat-Capacity Standard Reference Material-Synthetic Sapphire (α-Al2O3) from 10 to 2250 K. J. Res. Nat. Bur. Stand. 1982, 87, 159-163.
Fernandez, A.; Torrecilla, J. S.; Rodriquez, F. Thermophysical Properties of 1-Ethyl-3-methylimidazolium Ethylsulfate and 1-Butyl-3-methylimidazolium Methylsulfate Ionic Liquids. J. Chem. Eng. Data 2007, 52, 1979-1983.
Fredlake, C. P.; Crosthwaite, J. M.; Hert, D. G.; Aki, S. N. V. K.; Brennecke, J. F. Thermophysical Properties of Imidazolium-Based Ionic Liquids. J. Chem. Eng. Data 2004, 49, 954-964
Garcia-Miaja, G.; Troncoso, J.; Romani, L. Density and Heat Capacity as a Function of Temperature for Binary Mixtures of 1-Butyl-3-methylpyridinium Tetrafluoroborate + Water + Ethanol and + Nitromethane. J. Chem. Eng. Data 2007, 52, 2261-2265.
Giauque, W. F.; Meads, P. F. The Heat Capacities and Entropies of Aluminum and Copper from 15 to 300 K. J. Am. Chem. Soc. 1941, 63, 1897–1901.
Graber, T. A.; Galleguillos, H. R.; Cespedes, C.; Taboada, M. E. Density, Refractive Index, Viscosity, and Electrical Conductivity in the Na2CO3 + Poly(ethylene glycol) + H2O System from (293.15 to 308.15)K. J. Chem. Eng. Data 2004, 49, 1254-1257.
Haines, P. J. Principles of Thermal Analysis and Calorimetry, Royal Society of Chemistry, UK, 2002.
Haines, P. J. Thermal Methods of Analysis: Principles, Applications and Problems, Blackie Academic & Professional: New York, 1995.
Hatakeyama, T.; Quinn, F. X. Thermal Analysis: Fundamentals and Applicaqtions to Polymer Science John Wiley & Sons, New York, 1994.
Kabo, G. J.; Blokhin, A. V.; Paulechka, Y. U.; Kabo, A. G.; Shymanovich, M. P.; Magee, J. W. Thermodynamic Properties of 1-Butyl-3-methylimidazolium Hexafluorophosphate in the Condensed State. J. Chem. Eng. Data 2004, 49, 453-461.
Kanakubo, M.; Harris, K. R.; Tsuchihashi, N.; Ibuki, K.; Ueno, M. Effect of Pressure on Transport Properties of the Ionic Liquid 1-Butyl-3-methylimidazolium Hexafluorophosphate. J. Phys. Chem. B 2007, 111, 2062-2069.
MacFarlane, D. R.; Meakin, P.; Sun, J.; Amini, N.; Forsyth, M. Pyrrolidinium Imides: A New Family of Molten Salts and Conductive Plastic Crystal Phases. J. Phys. Chem. B 1999, 103, 4164-4170.
Missenard, F. A. Methode Additive pour la Determination de la Chaleur Molaire des Liquides. C. R. Acad. Sci. 1965, 260, 5521-5523.
Osborne, N. S.; Sitmson, H. F.; Ginnings, D. C. Measurements of Heat Capacity and Heat of Vaporization of Water in the Range 0oC to 100oC. J. Res. Natl. Bur. Stand. 1939, 23, 197-260.
Paulechka, Y. U.; Blokhin, A. V.; Kabo, G. J.; Strechan, A. A. Thermodynamic Properties and Polymorphism of 1-Alkyl-3-methylimidazolium Bis(triflamides). J. Chem. Thermodyn. 2007, 39, 866-877.
Reid, B. E.; Prausnitz, J. M.; Poling, B. E. The Properties of Gases & Liquids, McGraw-Hill, New York, 1988.
Rogers, R. D.; Seddon, K. R. Ionic Liquids as Green Solvent: Progress and Prospects, Oxford University Press, Washington, DC, 2003.
Rogers, R. D.; Seddon, K. R. Ionic Liquids: Industrial Applications to Green Chemistry, Oxford University Press, Washington, DC, 2002.
Seddon, K. R. Ionic Liquids for Clean Technology. J. Chem. Technol. Biotechnol. 1997, 68, 351-356.
Strechan, A. A.; Paulechka, Y. U.; Kabo, A. G.; Blokhin, A. V.; Kabo, G. J. 1-Butyl-3-methylimidazolium Tosylate Ionic Liquid: Heat Capacity, Thermal Stability, and Phase Equilibrium of Its Binary Mixtures with Water and Caprolactam. J. Chem. Eng. Data 2007, 52, 1791-1799.
Su, W. C.; Chou, C. H.; Wong, D. S. H.; Li, M.-H. Diffusion Coefficients and Conductivities of Alkylimidazolium Tetrafluoroborates and Hexafluorophosphates. Fluid Phase Equilib. 2007, 252, 74-78.
Sun, J.; Forsyth, M.; MacFarlane, D. R. Room-Temperature Molten Salts Based on the Quaternary Ammonium Ion. J. Phys. Chem. B 1998, 102, 8858-8864.
Tokuda, H.; Hayamizu, K.; Ishii, K.; Susan, M. A. B. H.; Watanabe, M. Physicochemical Properties and Structures of Room Temperature Ionic Liquids. 2. Variation of Alkyl Chain Length in Imidazolium Cation. J. Phys. Chem. B 2005, 109, 6103-6110.
Tokuda, H.; Ishii, K.; Susan, M. A. B. H.; Tsuzuki, S.; Hayamizu, K.; Watanabe, M. Physicochemical Properties and Structures of Room-Temperature Ionic Liquids. 3. Variation of Cationic Structures. J. Phys. Chem. 2006, 110, 2833-2839.
Tokuda, H.; Tsuzuki, S.; Susan, M. A. B. H.; Hayamizu, K.; Watanabe, M. How Ionic Are Room-Temperature Ionic Liquids? An Indicator of the Physicochemical Properties. J. Phys. Chem. B 2006, 110, 19593-19600.
Troncoso, J.; Cerdeirina, C. A.; Sanmamed, Y. A.; Romani, L.; Rebelo, L. P. N. Thermodynamic Properties of Imidazolium-Based Ionic Liquids: Densities, Heat Capacities, and Enthalpies of Fusion of [bmim][PF6] and [bmim][NTf2]. J. Chem. Eng. Data 2006, 51, 1856-1859.
Vila, J.; Gines, P.; Pico, J. M.; Franjo, C.; Jimenez, E.; Varela, L. M.; Cabeza, O. Temperature Dependence of the Electrical Conductivity in EMIM-Based Ionic Liquids Evidence of Vogel Tamman Fulcher behavior. Fluid Phase Equilib. 2006, 242, 141-146.
Vila, J.; Gines, P.; Rilo, E.; Cabeza, O.; Varela, L. M. Great Increase of the Electrical Conductivity of Ionic Liquids in Aqueous Solutions. Fluid Phase Equilib. 2006, 247, 32-39.
Vila, J.; Rilo, E.; Segade, L.; Cabeza, O.; Varela, L. M. Electrical Conductivity of Aqueous Solutions of Aluminum Salts. Phys. Rev. E 2005, 71, 031201.
Vila, J.; Varela, L. M.; Cabeza, O. Cation and Anion Sizes Influence in the Temperature Dependence of the Electrical Conductivity in Nine Imidazolium Based Ionic Liquids. Electr. Acta 2007, 52, 7413-7417.
Widegren, J. A.; Magee, J. W. Density, Viscosity, Speed of Sound, and Electrolytic Conductivity for the Ionic Liquid 1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide and Its Mixtures with Water. J. Chem. Eng. Data 2007, 52, 2331-2338.
Widegren, J. A.; Saurer, E. M.; Marsh, K. N.; Magee, J. W. Electrolytic Conductivity of Four Imidazolium-Based Room-Temperature Ionic Liquids and the Effect of a Water Impurity. J. Chem. Thermodyn. 2005, 37, 569-575.
Wong, D. S. H.; Chen, J. P.; Chang, J. M.; Chou, C. H. Phase Equilibria of Water and Ionic Liquids [emim][PF6] and [bmim][PF6] Fluid Phase Equilib. 2002, 194, 1089-1095.
Wu, J.-C. The Characteristics of Ionic Liquid and Its Application on The Catalytic Reactions. Shiyou Jikan 2005, 41, 51-60.
Yu, Y.-H.; Soriano, A. N.; Li, M.-H. Heat Capacities and Electrical Conductivities of 1-ethyl-3-methylimidazolium-based Ionic Liquids J. Chem. Thermodyn. 2009, 41, 103-108.
Yu, Y.-H.; Soriano, A. N.; Li, M.-H. Heat Capacities and Electrical Conductivities of 1-n-butyl-3-methylimidazolium-based Ionic Liquids Thermochimica Acta 2009, 482, 42-48.
Yu, Y.-H.; Soriano, A. N.; Li, M.-H. Heat Capacity and Electrical Conductivity of Aqueous Mixtures of [Bmim][BF4] and [Bmim][PF6] J. Twn. Inst. Chem. Engrs. 2009, 40, 205-212.
Zhang, Z.-H.; Tan, Z.-C.; Sun, L.-X.; Jia-Zhen, Y.; Lv, X.-C.; Shi, Q. Thermodynamic Investigation of Room Temperature Ionic Liquid: The Heat Capacity and Standard Enthalpy of Formation of EMIES. Thermochim. Acta 2006, 447, 141-146.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊