跳到主要內容

臺灣博碩士論文加值系統

(44.192.20.240) 您好!臺灣時間:2024/02/27 12:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王明宏
研究生(外文):Ming-Hung Wang
論文名稱:乙二醇水溶液之雙成份擴散係數量測研究
論文名稱(外文):Measurement of Binary Mutual Diffusion Coefficient of Several Aqueous Glycol Solutions
指導教授:李夢輝李夢輝引用關係
指導教授(外文):Meng-Hui Li
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:117
中文關鍵詞:泰勒分散法擴散係數乙二醇
外文關鍵詞:glycolsdiffusion coefficientTaylor dispersion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:124
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究為量測乙二醇ethylene glycol (EG), diethylene glycol (DEG), triethylene glycol (TEG), tetraethylene glycol (T4EG), propylene glycol (PG), dipropylene glycol (DPG);在水溶液中之無限稀釋擴散係數以及交互擴散係數數據(mutual diffusion coefficient)。測量方法依據泰勒分散法(Taylor dispersion method) 之原理。實驗操作在一大氣壓下;溫度範圍為30至50°C;濃度範圍為0 ~ 80 mol % (x1 = 0.2 ~ 0.8),實驗先量測EG (1) + water (2)的擴散係數並與文獻值比較以確認。量測方法之正確性。實驗所得數據由一簡單關係式來Snijder et al. (1993) equation來表示,並由UNIDIF模式(Hsu and Chen, 1998) 及Li et al. (2001) 和本研究修正的modified Darken equation來表示而決定參數,最後由RHS (rough hard sphere theory) 理論(Dymond, 1974) 來解釋實驗上所取得的擴散係數跟溫度、濃度的關係。
This study presents the measurement of the diffusion coefficients of glycols in water at infinite dilution and the mutual diffusion coefficients of six aqueous glycols systems namely: ethylene glycol (EG), diethylene glycol (DEG), triethylene glycol (TEG), tetraethylene glycol (T4EG), propylene glycol (PG), dipropylene glycol (DPG). The diffusion coefficients had been measured using on the Taylor dispersion method. Experimental works were performed at atmospheric pressure, with temperature range of 30 to 50°C, and concentration range of 0 to 80 mol % (x1 = 0.2 ~ 0.8). Experimental validation using the binary system of EG and water showed that the experimental setup provides accurate mutual diffusion coefficient data. The diffusion coefficients of glycols in water at infinite dilution are found to varied systematically with the molar mass of the glycols. The obtained mutual diffusion coefficients were correlated by using a simple relation of Snijder et al. (1993) equation, UNIDIF equation (Hsu and Chen, 1998) and modified Darken equations(Li t al. 2001). The rough hard sphere theory (Dymond, 1974) also successfully describes the experimental mutual diffusivities in this study.
摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 VII
圖目錄 X
第1章 緒論 1
1-1 前言 1
1-2 研究動機 2
1-3 研究目的 2
第2章 泰勒分散法測量擴散係數 4
2-1 泰勒分散法原理 4
2-2 工作方程式的改良 8
2-3 泰勒分散法在螺旋管之應用 10
2-4 回歸模式與計算 11
2-4-1 Snijder et al. (1993) equation 11
2-4-2 UNIDIF model 11
2-4-3 Rough hard sphere theory 13
2-4-4 Modified Darken equation 14
第3章 實驗裝置與方法 18
3-1 實驗藥品及裝置 18
3-1-1 實驗藥品 18
3-1-2 實驗裝置 18
3-2 實驗步驟 19
3-3 數據處理與計算 20
第4章 結果與討論 25
4-1 實驗方法之確認 25
4-2 無限稀釋擴散係數量測 28
4-3 乙二醇水溶液交互擴散係數測量 36
4-3-1 EG + H2O 系統 36
4-3-2 DEG + H2O系統 44
4-3-3 TEG + H2O系統 52
4-3-4 T4EG + H2O系統 60
4-3-5 PG + H2O系統 68
4-3-6 DPG + H2O系統 76
4-4 Rough hard sphere理論探討擴散係數 87
第5章 結論 98
符號說明 100
參考文獻 103
自述 106


Table 1-1 Literature review on the diffusion coefficient of aqueous glycol
solution------------------------------------------------------------------------ 3
Table 3-1 藥品名稱----------------------------------------------------------- 18
Table 3-2 流量確認----------------------------------------------------------- 22
Table 4-1 Mutual diffusion coefficients of ethylene glycol + water at 25°C
------------------------------------------------------------------------------- 26
Table 4-2 Mutual diffusion coefficients of EG in water at infinite dilution
------------------------------------------------------------------------------- 29
Table 4-3 Mutual diffusion coefficients of DEG in water at infinite
dilution---------------------------------------------------------------------- 30
Table 4-4 Mutual diffusion coefficients of TEG in water at infinite
dilution ---------------------------------------------------------------------- 31
Table 4-5 Mutual diffusion coefficients of T4EG in water at infinite
dilution ---------------------------------------------------------------------- 32
Table 4-6 Mutual diffusion coefficients of PG in water at infinite dilution
------------------------------------------------------------------------------- 33
Table 4-7 Mutual diffusion coefficients of DPG in water at infinite
dilution---------------------------------------------------------------------- 34
Table 4-8 Mutual diffusion coefficients of EG (1) + H2O (2) at x1 = 0.2 37
Table 4-9 Mutual diffusion coefficients of EG (1) + H2O (2) at x1 = 0.4 38
Table 4-10 Mutual diffusion coefficients of EG (1) + H2O (2) at x1 = 0.6
------------------------------------------------------------------------------- 39
Table 4-11 Mutual diffusion coefficients of EG (1) + H2O (2) at x1 = 0.8
------------------------------------------------------------------------------- 40
Table 4-12 Mutual diffusion coefficients of DEG (1) + H2O (2) at x1 = 0.2
------------------------------------------------------------------------------- 45
Table 4-13 Mutual diffusion coefficients of DEG (1) + H2O (2) at x1 = 0.4
------------------------------------------------------------------------------- 46
Table 4-14 Mutual diffusion coefficients of DEG (1) + H2O (2) at x1 = 0.6
------------------------------------------------------------------------------- 47
Table 4-15 Mutual diffusion coefficients of DEG (1) + H2O (2) at x1 = 0.8
------------------------------------------------------------------------------- 48
Table 4-16 Mutual diffusion coefficients of TEG (1) + H2O (2) at x1 = 0.2
------------------------------------------------------------------------------- 53
Table 4-17 Mutual diffusion coefficients of TEG (1) + H2O (2) at x1 = 0.4
------------------------------------------------------------------------------- 54
Table 4-18 Mutual diffusion coefficients of TEG (1) + H2O (2) at x1 = 0.6
------------------------------------------------------------------------------- 55
Table 4-19 Mutual diffusion coefficients of TEG (1) + H2O (2) at x1 = 0.8
------------------------------------------------------------------------------- 56
Table 4-20 Mutual diffusion coefficients of T4EG (1) + H2O (2) at x1 =
0.2 --------------------------------------------------------------------------- 61
Table 4-21 Mutual diffusion coefficients of T4EG (1) + H2O (2) at x1 =
0.4 --------------------------------------------------------------------------- 62
Table 4-22 Mutual diffusion coefficients of T4EG (1) + H2O (2) at x1 =
0.6 --------------------------------------------------------------------------- 63
Table 4-23 Mutual diffusion coefficients of T4EG (1) + H2O (2) at x1 =
0.8 --------------------------------------------------------------------------- 64
Table 4-24 Mutual diffusion coefficients of PG (1) + H2O (2) at x1 = 0.2
------------------------------------------------------------------------------- 69
Table 4-25 Mutual diffusion coefficients of PG (1) + H2O (2) at x1 = 0.4
------------------------------------------------------------------------------- 70
Table 4-26 Mutual diffusion coefficients of PG (1) + H2O (2) at x1 = 0.6
------------------------------------------------------------------------------- 71
Table 4-27 Mutual diffusion coefficients of PG (1) + H2O (2) at x1 = 0.8
------------------------------------------------------------------------------- 72
Table 4-28 Mutual diffusion coefficients of DPG (1) + H2O (2) at x1 = 0.2
------------------------------------------------------------------------------- 77
Table 4-29 Mutual diffusion coefficients of DPG (1) + H2O (2) at x1 = 0.4
------------------------------------------------------------------------------- 78
Table 4-30 Mutual diffusion coefficients of DPG (1) + H2O (2) at x1 = 0.6
------------------------------------------------------------------------------- 79
Table 4-31 Mutual diffusion coefficients of DPG (1) + H2O (2) at x1 = 0.8
------------------------------------------------------------------------------- 80
Table 4-32 Determined parameters for the mutual diffusivity coefficient
equation by Snijder et al. (1993) equation ----------------------------- 84
Table 4-33 Determined parameters for the UNIDIF model --------------- 85
Table 4-34 Determined parameters for the modified Darken equation -- 85
Table 4-35 Calculation results (in AAD) using the applied models------ 86
Table 4-36 The calculated VD and σAB (or σB) for aqueous glycol solution
------------------------------------------------------------------------------- 89
Table 4-37 Comparison of the estimated hard-sphere diameter σA from
linear extrapolated diameters of σAB with the van der Waals diameter
σvdW according to Bondi -------------------------------------------------- 90


圖目錄
Figure 2-1 Concentration distribution of a solute at various positions in
Taylor dispersion method------------------------------------------------- 16
Figure 2-2 Regimes of various dispersion solutions for a solute in a
straight diffusion tube----------------------------------------------------- 17
Figure 3-1 Experimental setup------------------------------------------------ 23
Figure 3-2 Gaussian Normal Distribution Curve --------------------------- 24
Figure 4-1 Mutual diffusion coefficients of ethylene glycol + water at
25°C ------------------------------------------------------------------------- 27
Figure 4-2 Mutual diffusion coefficients of glycols in water at infinite
dilutions at different temperature---------------------------------------- 35
Figure 4-3 Mutual diffusion coefficients of aqueous EG solution at
different temperature ------------------------------------------------------ 41
Figure 4-4 Mutual diffusion coefficients of aqueous EG solution as
function of mole fraction of EG and calculated by UNIDIF model 42
Figure 4-5 Mutual diffusion coefficients of aqueous EG solution as
function of mole fraction of EG and calculated by modified Darken
equation --------------------------------------------------------------------- 43
Figure 4-6 Mutual diffusion coefficients of aqueous DEG solution at
different temperature ------------------------------------------------------ 49
Figure 4-7 Mutual diffusion coefficients of aqueous DEG solution as
function of mole fraction of DEG and calculated by UNIDIF model
------------------------------------------------------------------------------- 50
Figure 4-8 Mutual diffusion coefficients of aqueous DEG solution as
function of mole fraction of DEG and calculated by modified Darken
equation --------------------------------------------------------------------- 51
Figure 4-9 Mutual diffusion coefficients of aqueous TEG solution at
different temperature ------------------------------------------------------ 57
Figure 4-10 Mutual diffusion coefficients of aqueous TEG solution as
function of mole fraction of TEG and calculated by UNIDIF model58
Figure 4-11 Mutual diffusion coefficients of aqueous TEG solution as
function of mole fraction of TEG and calculated by modified Darken
equation --------------------------------------------------------------------- 59
Figure 4-12 Mutual diffusion coefficients of aqueous T4EG solution at
different temperature ------------------------------------------------------ 65
Figure 4-13 Mutual diffusion coefficients of aqueous T4EG solution as
function of mole fraction of T4EG and calculated by UNIDIF model
------------------------------------------------------------------------------- 66
Figure 4-14 Mutual diffusion coefficients of aqueous T4EG solution as
function of mole fraction of T4EG and calculated by modified Darken
equation --------------------------------------------------------------------- 67
Figure 4-15 Mutual diffusion coefficients of aqueous PG solution at
different temperature ------------------------------------------------------ 73
Figure 4-16 Mutual diffusion coefficients of aqueous PG solution as
function of mole fraction of PG and calculated by UNIDIF model- 74
Figure 4-17 Mutual diffusion coefficients of aqueous PG solution as
function of mole fraction of PG and calculated by modified Darken
equation --------------------------------------------------------------------- 75
Figure 4-18 Mutual diffusion coefficients of aqueous DPG solution at
different temperature ------------------------------------------------------ 81
Figure 4-19 Mutual diffusion coefficients of aqueous DPG solution as
function of mole fraction of DPG and calculated by UNIDIF model
------------------------------------------------------------------------------- 82
Figure 4-20 Mutual diffusion coefficients of aqueous DPG solution as
function of mole fraction of DPG and calculated by modified Darken
equation --------------------------------------------------------------------- 83
Figure 4-21 Free-volume relation for mutual diffusion coefficients of
aqueous EG solution ------------------------------------------------------ 91
Figure 4-22 Free-volume relation for mutual diffusion coefficients of
aqueous DEG solution ---------------------------------------------------- 92
Figure 4-23 Free-volume relation for mutual diffusion coefficients of
aqueous TEG solution ---------------------------------------------------- 93
Figure 4-24 Free-volume relation for mutual diffusion coefficients of
aqueous T4EG solution --------------------------------------------------- 94
Figure 4-25 Free-volume relation for mutual diffusion coefficients of
aqueous PG solution ------------------------------------------------------ 95
Figure 4-26 Free-volume relation for mutual diffusion coefficients of
aqueous DPG solution ---------------------------------------------------- 96
Figure 4-27 Free-volume relation for mutual diffusivity coefficients at
infinite dilution of aqueous glycol solution ---------------------------- 97
Alizadeh, A.; Nieto de Castro, C. A.; Wakeham, W. A. The Theory of the Taylor Dispersion Technique for Liquid Diffusivity Measurements. Int. J. Thermophysics. 1980, 1, 243-284.
Aris, R. On the Dispersion of a Solute in a Fluid Flowing Through a Tube. Proc. R. Soc. London. 1956, A235, 67-77.
Baldauf, W.; Knapp, H. Measurements of Diffusivities in Liquids by the Dispersion Method. Chem. Eng. Sci. 1983, 38, 1031-1037.
Bird, R. B.; Stewart, w. E.; Lightfoot, E. N. Transport Phenomena, 2 ed, John Wiley & Sons, Inc, 2002.
Bondi, A. van der Waals Volumes and Radii. J. Phys. Chem. 1964, 68, 441-451.
Bueno, J. L.; Suarez, J. J.; Dizy, J.; Medina, I. Infinite Dilution Coefficients: Benzene Derivatives as Solutes in Supercritical Carbon Dioxide. J. Chem. Eng. Data. 1993, 38, 344-349.
Byers, C. H.; King, C. J. Liquid Diffusivities in the Glycol-Water System. J. Phys. Chem. 1966, 70, 2499-203.
Chang, L. C.; Lin, T. I.; Li, M. H. Mutual Diffusion Coefficients of Some Aqueous Alkanolamines Solutions. J. Chem. Eng. Data. 2005, 50, 77-84.
Dullien, F. A. L. Predictive Equations for Self-diffusion in Lliquids:A different approach. AIChE J. 1972, 18, 62-70.
Dymond, J. H. Corrected Enskog Theory and the Transport Coefficients of Liquids. J. Chem. Phys. 1974, 60, 969-973.
Fernandez-Sempere, J.; Ruiz-Bevia, F.; Colom-Valiente, J.; Mas-Perez, F. Determination of Diffusion Coefficients of Glycols. J. Chem. Eng. Data 1996, 41, 47-48.
Hsu, Y. D.; Chen, Y. P. Correlation of the Mutual Diffusion Coefficient of Binary Liquid Mixtures. Fluid Phase Equilibria 1998, 152, 149-168.
Janssen, L. A. M. Axial Dispersion in Laminar Flow Through Coiled Tubes. Chem. Eng. Sci. 1976, 31, 215-218.
Kao, C. Z.; Li, M. H. Diffusion Coefficients of Aqueous N,N-Diethylethanolamine, N,N-Dimethylethanolamine, Monoisopropanolamine, Piperazine, and Sulfolane Solutions. J. Chin. Inst. Chem. Engrs. 2006, 37, 341-353.
Li, J.; Liu, H.; Hu, Y. A Mutual-diffusion-coefficient Model Based on Local Composition. Fluid Phase Equilibria 2001, 187-188, 193-208.
Merliss, F. E.; Colver, C. P. Molecular Diffusion Coefficients for the Triethylene Glycol-Water System. J. Chem. Eng. Data 1969, 14, 149-153.
Probstein, R. F. Physicochemical Hydrodynamics, 2 ed, Butterworth Publishers, Boston, 1989.
Ramakanth, C.; Mukherjee, A. K.; Das, T. R. Diffusion Coefficients for Selected Binary Liquid Systems: Cyclohexane and n-Alkyl Alcohols. J. Chem. Eng. Data. 1991, 36, 384-387.
Reid, R. C.; Prausnitz, J. M.; Poling, B. E. The Properties of Gases and Liquids, ed, McGraw-Hill, New York, 1988.
Snijder, E. D.; te Riele, M. J. M.; Versteeg, G. F.; van Swaaij, W. P. M. Diffusion Coefficients of Several Aqueous Alkanolamine Solutions. J. Chem. Eng. Data. 1993, 38, 475-480.
Sun, T.; Teja, A. S. Density, Viscosity and Thermal Conductivity of Aqueous Solutions of Propylene Glycol, Dipropylene Glycol, and Tripropylene Glycol between 290 K and 460 K. J. Chem. Eng. Data 2004, 49, 1311-1317.
Sun, T.; Teja, A. S. Density, Viscosity, and Thermal Conductivity of Aqueous Ethylene, Diethylene, and Triethylene Glycol Mixtures between 290 K and 450 K. J. Chem. Eng. Data 2003, 48, 198-202.
Taylor, F. R. S. Conditions under Which Dispersion of a solute in a Stream of Solvent can be Used to Measure Molecular Diffusion. Proc. R. Soc. London. 1954, A225, 473-477.
Taylor, F. R. S. Dispersion of Soluble Matter in Solvent Flowing Slowly Through a Tube. Proc. R. Soc. London. 1953, A219, 186-203.
Ternstrom, G.; Sjostrand, A.; Aly, G.; Jernqvist, A. Mutual Diffusion Coefficients of Water + Ethylene Glycol and Water + Glycerol Mixtures. J. Chem. Eng. Data 1996, 41, 876-879.
Tyrrel, H. J. V.; Harris, K. R. Diffusinon in Liquids, a Theoretical and Experimental Study, ed, Butterworth, London, 1984.
Wilke, C. R.; Chang, P. Correlation of Diffusion Coefficients in Dilute Solutions. AIChE J. 1955, 1, 264-270.
徐玉杜,液體混合物擴散係數之測量及計算,1998年。
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top