跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/03/03 23:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐育君
研究生(外文):Yu-Jiun Shiu
論文名稱:1,2-Propanediol與2-Amino-2-methyl-1-propanol水溶液吸收二氧化碳之亨利常數量測研究
論文名稱(外文):Measurement of the Solubility of Carbon Dioxide in Aqueous 1,2-Propanediol and 2-Amino-2-methyl-1-propanol Solutions
指導教授:李夢輝李夢輝引用關係
指導教授(外文):Meng-Hui Li
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:74
中文關鍵詞:溶解度二氧化碳吸收
外文關鍵詞:solubilityabsorption of carbon dioxide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:173
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本研究為探討二氧化碳(CO2)在三成份混和溶液,1,2-丙二醇(PG)、二胺基二甲基丙醇(AMP)與水(H2O)之間的溶解度性質研究,以及對PG + AMP + H2O三成份組成的密度量測研究。所探討的溫度範圍為30、35及40℃,溶解度量測系統為PG (0.02~0.5) + AMP (0.02~0.5) + H2O (0.4~0.8)之濃度組合;密度量測系統為PG (0.02~0.6) + AMP (0.02~0.6) + H2O (0.2~0.8)之濃度組合。
在二氧化碳溶解度實驗中,使用氧化亞氮(N2O)氣體來作量測,再將結果以氧化亞氮相似關係來估算二氧化碳在溶液中的溶解度。
本實驗使用之計算模式,在回歸計算密度結果時使用Hsu and Li(1997a)所提出之Redlich-Kister過剩體積模式,在回歸計算亨利常數結果時則使用Wang et al.(1992)提出differential Henry’s coefficient模式計算。
本研究在密度實驗中發現隨著的溫度升高,溶液的密度值則會隨之下降,反之在溫度下降時則溶液的密度會增高;在二氧化碳溶解度實驗方面得到的結果為CO2在PG與AMP水溶液中的溶解度會隨著PG與AMP比例不同而跟著改變,但得到的溶解度值變化並不大,而主要的影響取決於H2O的濃度比例,二氧化碳在溶液中的溶解度會隨著H2O的莫耳分率減少而變大,反之則變小。
本研究結果得到的數據可用作反應動力學以及酸性氣體吸收方面研究的參考依據。
The objective of this research was to study solubilities of carbon dioxide into mixed solutions of 2-Amino-2-mehtyl-1-propanol(AMP)、1,2-Propanediol(PG) and H2O , and measurement of the densities of aqueous PG and AMP solutions. The concentration of solubility systems were PG (0.02~0.6) + AMP (0.02~0.6) + H2O (0.4~0.8) solutions and the concentration of density systems were PG (0.02~0.6) + AMP (0.02~0.6) + H2O (0.2~0.8) solutions. The temperature range of this study was from 30 to 40℃.
The N2O analogy was applied to estimate the solubilities of CO2 in aqueous amine solutions.
The experiment data of densities and solubilities were represented by the models of Redlich-Kister equation and differential Henry’s coefficient respectively.
The results of density measurements show that when the temperature increases then the values of density decreases and the results of the solubility measurements of CO2 also show depends on different proportions concentration of PG + AMP, but this change not so significant. The main influence on solubilities data produced by change of concentration of water , when the mole fraction of water was decreased and solubilities of CO2 were increased.
The result of this study can be used as a data base for kinetics researches and absorption researches of the acid gas.
目錄
摘要 I
Abstract II
致謝 III
目錄 IV
表目錄 VI
圖目錄 VIII
第1章 緒論 1
1-1 前言 1
1-2 二氧化碳處理 2
1-3 醇胺的使用 3
1-4 研究目的 5
第2章 原理及理論 6
2-1 基本定律 6
2-1-1 勞特定律 6
2-1-2 亨利定律 7
2-2 逸壓與逸壓係數 7
2-3 N2O與CO2在醇胺水溶液之類比理論 9
2-4 氣液間物理吸收模式 10
2-4-1 薄膜理論模式 11
2-4-2 滲透理論模式 12
2-4-3 表面更新理論模式 13
2-5 亨利常數的計算 13
2-6 密度的計算 16
第3章 實驗 18
3-1 實驗藥品 18
3-2 密度的量測 21
3-3 亨利常數的量測 21
第4章 結果與討論 25
4-1 密度量測結果 25
4-1-1 密度雙成份系統 25
4-1-2 密度三成份系統 25
4-2 亨利常數量測結果 26
4-2-1 亨利常數雙成份系統 26
4-2-2 亨利常數三成份系統 27
第5章 結論 57
符號說明 58
參考文獻 60
自述 65

表目錄
Table 3-1 本實驗使用藥品之相關性質與分子結構式 20
Table 4-1 Densities of PG (1) + H2O (3) solutions at 30, 35, 40℃ 29
Table 4-2 Parameters of density equations at 30~40℃ 30
Table 4-3 Densities of PG (1) + AMP (2) + H2O (x3 = 0.2) solutions at 30, 35, 40℃ 32
Table 4-4 Densities of PG (1) + AMP (2) + H2O (x3 = 0.4) solutions at 30, 35, 40℃ 33
Table 4-5 Densities of PG (1) + AMP (2) + H2O (x3 = 0.6) solutions at 30, 35, 40℃ 34
Table 4-6 Densities of PG (1) + AMP (2) + H2O (x3 = 0.8) solutions at 30, 35, 40℃ 35
Table 4-7 Parameters of density equations at 30~40℃ 36
Table 4-8 Solubility of CO2 in water 41
Table 4-9 Estimated solubility of CO2 in PG (1) + H2O (3) using N2O analogy 43
Table 4-10 Parameters of the Henry’s constant equation 44
Table 4-11 Estimated solubility of CO2 in PG (1) + AMP (2) + H2O (x3 = 0.4) using N2O analogy 47
Table 4-12 Estimated solubility of CO2 in PG (1) + AMP (2) + H2O (x3 = 0.6) using N2O analogy 48
Table 4-13 Estimated solubility of CO2 in PG (1) + AMP (2) + H2O (x3 = 0.8) using N2O analogy 49
Table 4-14 Parameters of the Henry’s constant equation 50

圖目錄
Fig.3-1 Schematic drawing of physical gas absorption apparatus 24
Fig.4-1 Density of PG (1) + H2O (3) soultion 31
Fig.4-2 Density of PG (1) + AMP (2) + H2O (x3 = 0.2) solution 37
Fig.4-3 Density of PG (1) + AMP (2) + H2O (x3 = 0.4) solution 38
Fig.4-4 Density of PG (1) + AMP (2) + H2O (x3 = 0.6) solution 39
Fig.4-5 Density of PG (1) + AMP (2) + H2O (x3 = 0.8) solution 40
Fig.4-6 Solubility of CO2 in H2O as a function of temperature 42
Fig.4-7 Solubility of N2O in PG 45
Fig.4-8 Solubility of N2O in PG (1) + H2O (3) 46
Fig.4-9 Solubility of N2O in PG (1) + AMP (2) + H2O (x3 = 0.4) solution 51
Fig.4-10 Solubility of N2O in PG (1) + AMP (2) + H2O (x3 = 0.6) solution 52
Fig.4-11 Solubility of N2O in PG (1) + AMP (2) + H2O (x3 = 0.8) solution 53
Fig.4-12 Comparison of the Solubility of N2O in PG (1) + AMP (2) + H2O (3) in 40℃ 54
Fig.4-13 Comparison of the Henry’s constant between AMP (2) + H2O (3) and PG (1) + AMP (2) + H2O (3) in 30℃ 55
Fig.4-14 Comparison of the Henry’s constant between AMP (2) + H2O (3) and PG (1) + AMP (2) in 30℃ 56
Abu-Arabi, M. K.; Al-Jarrah, A. M.; El-Eideh, M.; Tamimi, A. Physical Solubility and Diffusivity of CO2 in Aqueous Diethanolamine Solutions. J. Chem. Eng. Data 2001, 46, 516-521.
Al-Ghawas, H. A.; Hagewlesche, D. P.; Rulz-Ibanez, G.; Sandall, O. C. Physicochemical Properties Important for Carbon Dioxide Absorption in Aqueous Methyldiethanolamine. J. Chem. Eng. Data 1989, 34, 385-391.
Al-Juaied, M.; Rochelle, G. T. Absorption of CO2 in Aqueous Diglycolamine. Ind. Eng. Chem. Res. 2006, 45, 2473-2482.
Astarita, G.; Savage, D. M.; Longo, J. M.; Promotion of CO2 Mass Transfer in Carbonate Solutions. Chem Eng. Sci. 1981, 36, 581-588.
Astarita, G.; Savage, D. W.; Bisio, A. Gas Treating with Chemical Solvents; John-Wiley and Sons: New York, 1983.
Bensetiti, Z.; Iliuta, I.; Larachi, F.; Grandjean, B. P. A. Solubility of Nitrous Oxide in Amine Solutions. Ind. Eng. Chem. Res. 1999, 38, 328-332.
Chan, C.; Maham, Y.; Mather, A. E.; Mathonat, C. Densities and volumetric properties of the aqueous solutions of 2-amino-2-methyl-1-propanol, n-butyldiethanolamine and n-propylethanolamine at temperatures from 298.15 to 353.15 K. Fluid Phase Equilibria 2002, 198, 239–250.
Clarke, J. K. A. Kinetics of Absorption of Carbon Dioxide in Monoethanolamine Solutions at Short Contact Times. Ind. Eng. Chem. Fundls. 1964, 3, 239-245.
Danckwerts, P. V. Significance of Liquid-Film Coefficients in Gas Absorption. Ind. Eng. Chem. 1951, 43, 1460-1467.
Danckwerts, P. V. Gas-Liquid Reactions; McGraw-Hill Book Co.: New York, 1970.
Guevara, F. M.; Libreros, M. E. R.; Martinez, A. R.; Trejo, A. Solubility of CO2 in aqueous mixtures of diethanolamine with methyldiethanolamine and 2-amino-2-methyl-1-propanol. Fluid Phase Equilibria 1998, 150-151, 721-729.
Gwinner, B.; Roizard, D.; Lapicque, F.; Favre, E. CO2 Capture in Flue Gas: Semiempirical Approach to Select a Potential Physical Solvent. Ind. Eng. Chem. Res. 2006, 45, 5044-5049.
Haimour, N.; Sandall, O. C. Absorption of Carbon Dioxide into Aqueous Methyldiethanolamine. Chem. Eng. Sci. 1984, 39, 1791-1796.
Henni, A.; Hromek, J. J.; Tontiwachwuthikul, P.; Cakma, A. Volumetric Properties and Viscosities for Aqueous AMP Solutions from 25℃ to 70℃. J. Chem. Eng. Data 2003, 48, 551-556.
Henni, A.; Mather, A. E. Solubility of Carbon Dioxide in Methyldiethanolamine +Methanol + Water. J. Chem. Eng. Data 1996,40, 493-495.
Hsu, C. H.; Li, M. H. Densities of Aqueous Blended Amines. J. Chem. Eng. Data 1997, 42, 502-507.
Hayduk, W.; Malik, V. K. Density, Viscosity, and Carbon Dioxide Solubility and Diffusivity in Aqueous Ethylene Glycol Solutions. J. Chem. Eng. Data 1971, 16, 143-146.
Juaied, M. A.; Rocelle, G. T. Absorption of CO2 in Aqueous Diglycolamine. Ind. Eng. Chem. Res. 2006, 45, 2473-2482.
Ko, J. J.; Tsai, T. C.; Lin, C. Y.; Wang, H. M.; Li, M. H. Diffusivity of Nitrous Oxide in Aqueous Alkanolamine Solutions. J. Chem. Eng. Data 2001, 46, 160-165.
Kundu, M.; Bandyopadhyay, S. Solubility of CO2 in Water + Diethanolamine + 2-Amino-2-methyl-1-propanol. J. Chem. Eng. Data 2006, 51, 398-405.
Laddha, S. S.; Danckwerts, P. V. Reaction of Carbon Dioxide with Ethanolamines Kinetics from Gas-Absorption. Chem. Eng. Sci. 1981, 36, 479-482.
Li, M. H.; Lai, M. D. Solubility and Diffusivity of N2O and CO2 in (Monoethanolamine + N-Methyldiethanolamine + Water) and in (Monoethanolamine + 2-Amino-2-mehtyl-1-propanol + Water). J. Chem. Eng. Data. 1995, 40, 486-492.
Little, R. J.; Versteeg, G. F.; Van Swaaij, W. P. M. Kinetics of CO2 with Primary and Secondary Amines in Aqueous Solutions-II. Influence of Temperature on Zwitterion Formation and Deprotonation Rates. Chem. Eng. Sci. 1992, 8, 2037-2045.
Little, R. J.; Versteeg, G. F.; Van Swaaij, W. P. M. Solubility and Diffusivity Data for the Absorption of COS, CO2, and N2O in Amine Solutions. J. Chem. Eng. Data 1992, 37 (1), 49-55.
MacBeth, G.; Thompson, A. R. Densities and Refractive Indexes for Propylene Glycol-Water Solutions. Anal. Chem. 1951, 23 (4), 618-619.
Ma’mum, S.; Svendsen, H. F. Solubility of N2O in Aqueous Monoethanolamine and 2–(2–Aminoethyl–amino)ethanol Solutions from 298 to 343K. Energy Procedia 2009, 1, 837–843.
Mandal, B. P.; Kundu, M.; Bandyopadhyay, S. S. Physical Solubility and Diffusivity of N2O and CO2 into Aqueous Solutions of (2-Amino-2-methyl-1-propanol + Monoethanolamine) and (N-Methyldiethanolamine + Monoethanolamine). J. Chem. Eng. Data 2005, 50, 352-358.
Mandal, B. P.; Biswas, A. K.; Bandyopadhyay, S. S. Absorption of carbon dioxide into aqueous blends of 2-amino-2-methyl-1-propanol and diethanolamine. Chem. Eng. Sci. 2003, 58, 4137–4144.
Nitta, T.; Tatsuishi, A.; Katayama, T. Solubilities of Nitrogen in Mixed Solvents: Cycolhexane-iso-Octane and n-Propanol-iso-Octane Mixtures. J. Chem. Eng. Jpn. 1973, 6, 475-480.
Oyevaar, M. H.; Morssinkhof, R. W. J.; Westerterp, K. R. Density, Viscosity, Solubility, and Diffusivity of COP and N2O in Solutions of Diethanolamine in Aqueous Ethylene Glycol at 298 K. J. Chem. Eng. Data 1989, 34, 77-82.
Pawlak, H. K.; Zarzycki, R. Solubility of Carbon Dioxide and Nitrous Oxide in Water +Methyldiethanolamine and Ethanol + Methyldiethanolamine Solutions. J. Chem. Eng. Data 2002, 47, 1506-1509.
Saha, A. K.; Biswas, A. K.; Bandyopadhyay, S. S. Solubility and Diffusivity of N2O and CO2 in Aqueous Solutions of 2-Amino-2-mehtyl-1-propanol. J. Chem. Eng. Data 1993, 38, 78-82.
Samanta, A.; Roy, S.; Bandyopadhyay, S. S. Physical Solubility and Diffusivity of N2O and CO2 in Aqueous Solutions of Piperazine and (N-Methyldiethanolamine + Piperazine). J. Chem. Eng. Data 2007, 52, 1381-1385.
Sartori, G.; Savage, D. W. Sterically Hindered Amines for Carbon Dioxide Removal from Gases. Ind. Eng. Chem. Fund. 1983, 22, 239-249.
Song, J. H.; Park, S. B.; Yoon, J. H.; Lee, H. Solubility of Carbon Dioxide in Monoethanolamine + Ethylene Glycol + Water and Monoethanolamine + Poly(ethylene glycol) + Water at 333.2 K. J. Chem. Eng. Data 1997, 42, 143-144.
Teng, T. T.; Mather, A. E. Solubility of CO2 in an AMP Solution. J. Chem. Eng. Data 1990, 35, 411-414.
Tounsi, K. N. H.; Barreau, A.; Corre, E. L. ; Mougin, P. ; Neau, E. Measurement of Carbon Dioxide Solubility in a Solution of Diethanolamine Mixed with Methanol. Ind. Eng. Chem. Res. 2005, 44, 9239-9243.
Tsai, T. C.; Ko, J. J.; Wang, H. M.; Lin, C. Y.; Li, M. H. Solubility of Nitrous Oxide in Alkanolamine Aqueous Solutions. J. Chem. Eng. Data 2000, 45, 341-347.
Vaikya, P. D.; Mahajani, V. V. Kinetics of the Reaction of CO2 with Aqueous Formulated Solution Containing Monoethanolamine, N-Methyl-2-pyrrolidone, and Diethylene Glycol. Ind. Eng. Chem. Res. 2005, 44, 1868-1873.
Versteeg, G. F.; van Swaaij, W. P. M. Solubility and Diffusivity of Acid Gases (CO2, N2O) in Aqueous Alkanolamine Solutions. J. Chem. Eng. Data 1988, 33, 29-34.
Wang, Y. W.; Xu, S.; Otto, F. D.; Mather, A. E. Solubility of N2O in Alkanolamines and in Mixed Solvents. Chem. Eng. J. 1992, 48, 31-40.
Xu, H. J.; Zhang, C. F. ; Zheng, Z. S. Solubility of Hydrogen Sulfide and Carbon Dioxide in a Solution of Methyldiethanolamine Mixed with Ethylene Glycol. Ind. Eng. Chem. Res. 2002, 41, 6175-6180.
Xu, S.; Otto, F. D.; Mather, A. E. Physical Properties of Aqueous AMP Solutions. J. Chem. Eng. Data 1991, 36, 71-75.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top