跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/02/26 23:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:紀怡杉
研究生(外文):Yi-Shan Chi
論文名稱:添加鹽類輔助合成二氧化鈦奈米線
論文名稱(外文):Microwave-assisted hydrothermal method using various salts for nanowires synthesis
指導教授:鍾財王鍾財王引用關係
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:93
中文關鍵詞:微波水熱法鹽類二氧化鈦奈米線
外文關鍵詞:saltmicrowavenanowire
相關次數:
  • 被引用被引用:0
  • 點閱點閱:244
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗以商業化的二氧化鈦奈米顆粒作為起始物,藉由添加鹽類的輔助合成技術成功地利用微波水熱法製備出高產率的二氧化鈦奈米線。添加鹽類(一價陽離子:NaCl、KCl、NH4Cl,二價陽離子BaCl2以及CaCl2)的不同操作參數,如鹽類添加與未添加的比較、起始原料與鹽類的比例、添加鹽類在低觸媒濃度(4M)合成的可行性以及鹽類對界達電位的影響在本研究獲得討論,所有合成的產物使用電子顯微鏡(SEM)觀察其表面結構、表面吸附分析儀(BET)量測其比表面積、X光繞射儀(X-Ray)觀察材料的晶相及奈米粒徑及電位量測儀測量其界達電位。
根據實驗結果顯示所有添加的鹽類之中以NH4Cl可獲得最小的奈米線直徑(約50-80 nm)、長度可達數個μm以上,且原先的比表面積(300 m2/g)可大幅提升至372.60 m2/g。此鹽類輔助添加技術不僅可降低觸媒所使用的濃度,亦可提升奈米線合成的產率,因此,比傳統水熱法以及微波輔助合成更適合用於大量生產。此外,由於奈米線的製備方法簡單,並且所合成的奈米線容易藉由離子交換方式可移除鹽類殘餘的陽離子,故不會影響最終產物的幾何形狀及組成,若再經400 ℃鍛燒處理2 h即可轉變成具有anatse晶相的二氧化鈦奈米線。
This experiment was used commercial titanium dioxide as raw material, and different operate parameters (monovalence cation : NaCl, KCl, NH4Cl, Bivalent cation : BaCl2, CaCl2). The difference between with and without adding salts, the ration of raw material and salts, and zeta-potential influence by salts also discussed in this research.
The nanowire products were characterized in several ways: scanning electron microscopy (SEM) to study the surface structure; Brunauer-Emmett-Teller (BET) method to estimate the specific surface area; X-ray diffraction (XRD) to determine the crystal phase; and with a zetasizer to measure zeta potential.
According to the results, the mean nanowires diameter is about 50-80 nm and the length is about several μm. After adding NH4Cl, the specific area can increase to 372.60 m2/g. Adding this salt not only decrease the concentration of NaOH but also increase the yield of nanowires. Hence it’s better using in synthesize a great quantity of nanowires than traditional hydrothermal method. Furthermore the synthesize method was very simple, and the residual cation of products can be removed by ion-exchange. The geometry shape and composition of final products won’t change and after calcined at 400 oC in 2 h the TiO2 nanowires with anatase phase can be produced.
目錄
中文摘要……………………………………………………………...I
Abstract……………………………………………………………...II
圖目錄 ……………………………………………………………….VI
表目錄 …………………………………………………………….….X
第一章 緒論…………………………………………………………...1
1-1 前言 1
1-1-1 奈米科技簡介 1
1-1-2 奈米材料的特性 3
1-1-3 奈米物質的運用 5
1-2 研究目的及內容 7
第二章 基礎理論與文獻回顧 8
2-1 二氧化鈦材料特性 8
2-2 二氧化鈦製備方法 12
2-2-1 自組裝法(Self-assembly) 12
2-2-2 水熱法(Hydrothermal Method) 13
2-2-3 模版合成法(Template Synthesis) 17
2-2-4 溶膠凝膠法(Sol-Gel method) 19
2-3 微波輔助水熱合成原理與技術 22
2-3-1 微波理論 22
2-3-2 微波加熱理論 24
2-4 微波水熱合成二氧化鈦奈米顆粒、奈米管、奈米棍 25
2-5 微波輔助水熱添加鹽類合成二氧化鈦奈米管 28
2-6 二氧化鈦奈米物質相關之應用 29
第三章 實驗流程與方法…………………………………………….30
3-1 實驗儀器設備 30
3-2 儀器原理 31
3-2-1 掃描式電子顯微鏡(Scanning Electron Microscopy,SEM)…………………………………………………………………31
3-2-2 X光繞射儀(X-Ray Diffraction,XRD) 32
3-2-3 奈米粒徑及電位分析儀(Zetasizer3000HS+MPT1) 35
3-2-4 表面吸附儀(Brunauer Emmett Teller,BET) 35
3-3 實驗藥品 37
3-4 實驗流程 38
第四章 結果與討論………………………………………………….45
4-1 原始商業化粉末(ST-01)的物性鑑定 45
4-2 添加與未添加鹽類於製備二氧化鈦奈米線之影響 46
4-3 添加不同價數鹽類的影響 48
4-4 鹽類與起始原料不同比例之影響 54
4-5 低觸媒濃度之影響 56
4-6 不同起始原料之影響 59
4-6-1 產物在不同溫度下鍛燒之影響 63
第五章 結論………………………………………………………….71
第六章 建議………………………………………………………….72
第七章 參考文獻…………………………………………………….73
Appendix A………………………………………………………….79
Appendix B………………………………………………………….83


圖目錄
Figure 2-1. Bulk structures of rutile and anatase. The tetragonal bulk unit cell of rutile has the dimensions, a=b=4.587 Å, c=2.953 Å, and the one of anatase a=b=3.782 Å, c=9.502 Å. 10
Figure 2-2. The procedure of hydrothermal method 14
Figure 2-3. The procedure of template synthesis. 18
Figure 2-4. The scope of wave in electromagnetic spectroscopy[42] 23

Figure 3-1. Schematic diagram of X-ray diffraction beam. [48] 34
Figure 3-2. The flow chart with salts effect. 39
Figure 3-3. The flow chart with different catalyst concentration. 42
Figure 3-4. The flow chart with different raw materials and calcined temperature. 44

Figure 4-1. Higher magnification (30 kx) scanning electron microscopy (SEM) image of titanate raw material. 45
Figure 4-2. (a) SEM (10 kx) images of titanate morphologies synthesized by (a) adding sodium chloride (b) without salt . All samples obtained by the microwave treatment of commercial ST01 powders in 10M NaOH aqueous solution under 350 W of power for 2.5 h. 47
Figure 4-3. SEM (30 kx) images of titanate morphologies synthesized by (a) adding sodium chloride (b) without salt All samples obtained by the microwave treatment of commercial ST-01 powders in 10M NaOH aqueous solution under 350 W of power for 2.5 h. 47
Figure 4- 4. SEM (10 kx) images of titanate morphologies synthesized by adding different salts (a) NaCl,(b) KCl,(c) NH4Cl,(d) CaCl2, (e) BaCl2;(30 k) (f) NaCl,(g) KCl, and (h) NH4Cl. All samples obtained by the microwave treatment of commercial ST-01 powders in 10M NaOH aqueous solution under 350 W of power for 2.5 h. 51
Figure 4- 5. XRD patterns of pure TiO2 with different salt additives. All samples obtained by the microwave treatment of commercial ST-01 powders in 10M NaOH aqueous solution under 350 W of power for 2.5 h. 53
Figure 4- 6. All samples obtained by the microwave treatment with different ratio of sodium chloride(NaCl)and raw material in 10M NaOH aqueous solution under 350 W of power for 2.5 h. (a) without salt, (b) 1:9, (c) 1:3, (d) 1:1, (e) 3:1 and (f) 9:1 . 55
Figure 4- 7. SEM images of TiO2 powers treated by (a) 10M (b) 8M NaOH for 2.5h, (c) 4M NaOH for 4 h. 58
Figure 4-8. SEM images of titanate morphologies synthesized by adding salt and without salt (10 kx) (a) without salt (c) with sodium chloride ;(30 kx) (b) without salt 30 (d)with sodium chloride . All samples obtained by the microwave treatment of commercial ST-01 powders in 4 M NaOH aqueous solution under 350 W of power for 8 h. 58
Figure 4-9. Low magnification SEM images of titanate nanowires synthesized by using different starting materials (a) ST-01 (b) P25 (c) rutile and adding sodium chloride ; Higher magnification SEM images (d) ST-01 (e) P25 (f) rutile , All the samples under 350 W of power at 210 oC for 4 h. 61
Figure 4-10. XRD patterns of the titanate nanowires obtained by useing three different raw materials and add sodium chloride for 2 h . 62
Figure 4-11. SEM images of the sample used the starting material of P25 and adding sodium chloride at different calcinating temperature for 4 h (a) 300 oC, (b) 500 oC and (c) 700 oC . 66
Figure 4-12. SEM images of the sample used the starting material of ST-01 and adding sodium chloride at different calcinating temperature for 4 h (a) 300 oC, (b) 500 oC and (c) 700 oC . 66
Figure 4-13. SEM images of the sample used the starting material of rutile and adding sodium chloride at different calcinating temperature for 4 h (a) 300 oC, (b) 500 oC and (c) 700 oC . 66
Figure 4-14. XRD patterns of the titanate nanowires obtained by useing the starting material of ST-01 and adding sodium chloride at different calcinating temperatures for 4 h. H = Sodium hexatitanate; A = Anatase; R = Rutile. 67
Figure 4-15. XRD patterns of the titanate nanowires obtained by useing the different starting materials and adding sodium chloride at different calcinating temperatures for 4 h. H = Sodium hexatitanate; A = Anatase; R = Rutile. 68
Figure 4-16. SEM images of the sample used the stating material of ST-01 and added (a) potassium chloride , (b) sodium chloride and (c) ammonium chloride for 4 h and calcined at 700 oC for 2 h. 69
Figure 4-17. XRD patterns of the titanate nanowires obtained by useing the starting material (ST-01) and adding different salts at different calcinating temperature for 4 h. 69
Figure 4-18. XRD patterns of different raw materials. 70

Figure 5- 1. The flow chart of filtration 80
Figure 5-2. (a) and (c) SEM images of retentate and permeate particles , respectively from pore size is 90 mm , (b) and (d) SEM images of retentate and permeate particles ,respectively from pore size is 70 mm. 82
Figure 5-3. SEM images of retentate and permeate particles , respectively from pore size is 0.3 μm 82
Figure5- 4 The flow chart with measure of zeta-potential 83


表目錄
Table 1-1.Global nano-technology research:The budge of central goverment[5] 6

Table 2-1. Lattice parameters of anatase rutile and brookite.[1] 10
Table 2-2. Physical and optical properties of three phases of titanium dioxide: rutile, anatase and brookite. 11

Table 4-1. The physical property of commercial titania 45
Table 4- 2. Zeta potential with adding different salts. 52
Table 4- 3. pH value with adding different salts 52
Table 4-4.The BET result of different raw material 62
Table 4- 5. The ratio of anatase phase 67
Table 4-6. The BET result of different salt and raw material 70
[1] http://nano.stpi.org.tw/,奈米創新網
[2] http://www.me.tnu.edu.tw/~me022/lab/nanomater.htm
[3] 鄭豐吉, 中原大學, 奈米化學講義
[4] Pelagia I. Gouma and Michael J. Mills. Anatase-to-Rutile Transformation in
Titania Powders . J. Am. Ceram. Soc., 84 [3] 619–22 (2001)
[5] http://twbusiness.nat.gov.tw/asp/industry7.asp,全球台商服務網
[6] Ou H. H. , Shang Lien Lo and Ya Hsuan Liou . Microwave-induced titanate nanotubes and the corresponding behaviour after thermal treatment . Nanotecnology . 18 (2007)175702
[7] Dhage, S. R.; Khollam, Y. B.; Potdar, H. S.; Deshpande, S. B.; Bakare, P. P.; Sainkar, S. R.; Date, S. K. Effect of variation of molar ratio (pH) on the crystallization of iron oxide phases in microwave hydrothermal synthesis. Materials Letters 2002, 57, 457.
[8] Khollam, Y. B.; Dhage, S. R.; Potdar, H. S.; Deshpande, S. B.; Bakare, P. P.; Kulkarni, S. D.; Date S., K.. Microwave hydrothermal preparation of submicron-sized spherical magnetite (Fe3O4) powders. Materials Letters 2002, 56, 571.
[9] Abothu, I. R.; Liu, S. F.; Komarneni, S.; Li, Q. H. Processing of Pb(Zr0.52Ti0.48)O3 (PZT) ceramics from microwave and conventional hydrothermal powders. Materials Research Bulletin 1999, 34, 1411.
[10] Murugan, V.; Samuel, V.; Ravi, V. Synthesis of nanocrystalline anatase TiO2 by microwave hydrothermal method. Mater. Lett. 2006, 60, 479.
[11] Diebold. U. The surface science of titanium dioxide. Surf. Sci. Reports 2003, 48, 53.
[12] Weirich, T. E.; Winterer, M.; Seifried, S.; Hahn, H.; Fuess, H. Ultramicroscopy, 2000, 81, 263.
[13] Powder Diffraction File, Card No. 21–1272, JCPDS-International Centre for Diffraction Data, Swarthmore 1997.
[14] Muscat, N. M.; Harrison; Thornton, G. Physical Review B 1999, 59, 2310.
[15] Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Formation of titanium oxide nanotube. Langmuir 1998, 14, 3160.
[16] Wang, X.; Li, Y. Selected-Control Hydrothermal Synthesis of α- and β-MnO2 single crystal nanowires. J. Am. Chem. Soc. 2002, 124, 2880.
[17] Mai, L. Q.; Chen, W.; Xu, Q.; Zhu, Q. Y.; Han, C. H.; Peng, J. F. Cost-saving synthesis of vanadium oxide nanotubes. Solid State Commun. 2003, 126. 541.
[18] Yuanzhi Li , Nam-Hee Lee , Eun Gu Lee , Jae Sung Song , Sun-Jae Kim , The characterization and photocatalytic properties of mesoporous rutile TiO2 powder synthesized through self-assembly of nano crystals. Chem. Physics Letters 389 (2004) 124–128
[19] Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Titanua nanotubes prepared by chemical processing. Adv. Mater. 1999, 11, 15.
[20] 葉世墉,二氧化鈦的合成與光催化性質的研究,中央大學,2005
[21] Zhang Y. X., Li. G. H., Jin Y. X., Zhang Y., Zhang J., Zhang L.D., Hydrothermal synthesis and photoluminescence of TiO2 nanowires. Solid State Physics. 365 (2002) 300–304
[22] Weng L. Q., Song S. H., Hodgson S., Baker A., Yu J.. Synthesis and characterisation of nanotubular titanates and titania. Journal of the European Ceramic Society 26 (2006) 1405–1409
[23] Yu H., Yu J., Cheng B., Zhou M.. Effects of hydrothermal post-treatment on microstructures and morphology of titanate nanoribbons. Journal of Solid State Chemistry 179 (2006) 349–354
[24] Yu J., Wang G., Cheng B., Zhou M.. Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders. Applied Catalysis B: Environmental 69 (2007) 171–180
[25] Tsai C. C., Nian J. N., Teng H.. Mesoporous nanotube aggregates obtained from hydrothermally treating TiO2 with NaOH. Applied Surface Science 253 (2006) 1898–1902
[26] Hidalgo M. C., Aguilar M., Maicu M., Navı´o J.A., Colo´n G.. Hydrothermal preparation of highly photoactive TiO2 nanoparticles. Catalysis Today 129 (2007) 50–58
[27] Tonejc M., Turkovi’c A., Gotic M., Musi’c S., Vukovi’c M., RTrojko, Tonejc A.. HRTEM, TEM and XRD observation of nanocrystalline phases in TiO2 obtained by the sol-gel method. Materials Letters 31(1997 127-31)
[28] Suresh C., Biju V., Mukundan P. and Warrier K. G. K.. Anatase to rutilr transformation in sol-gel titania by modification of precursor. so 277-5387 (98) 00077-1
[29] Journal of Colloid and Interface Science 239, 584–586 (2001)
[30] Wang C., Li Q., Wang R. D.. Synthesis and characterization of mesoporous TiO2 with anatase wall. Materials Letters 58 (2004) 1424– 1426
[31] Kucheyev S. O., Baumann T. F., Wang Y. M., Buuren T., Satcher J. H. Jr.. Synthesis and electronic structure of low-density monoliths of nanoporous nanocrystalline anatase TiO2. Journal of Electron Spectroscopy and Related Phenomena 144–147 (2005) 609–612
[32] Yang H., Zhang K., Shi R., Li X., Dong X., Yu Y.. Sol–gel synthesis of TiO2 nanoparticles and photocatalytic degradation of methyl orange in aqueous TiO2 suspensions. Journal of Alloys and Compounds 413 (2006) 302–306
[33] Sahni S., Bhaskar Reddy S., Murty B. S.. Influence of process parameters on the synthesis of nano-titania by sol–gel route. Materials Science and Engineering A 452–453 (2007) 758–762
[34] Komarnenia S., Rajhaa R. K., Katsukib H., Microwave-hydrothermal processing of titanium dioxide. Materials Chemistry and Physics 61 (1999) 50±54
[35] Wu X., Jiang Q. Z., Ma Z. F., Fu M., Shangguan W. F.. Synthesis of titania nanotubes by microwave irradiation. Solid State Communications 136 (2005) 513–517
[36] Murugan A. V., Samuel V., Ravi V.. Synthesis of nanocrystalline anatase TiO2 by microwave hydrothermal method. Materials Letters 60 (2006) 479–480
[37] Ou H. H., Lo1 S. L. and Liou Y. H.. Microwave-induced titanate nanotubes and the corresponding behaviour after thermal treatment. Nanotechnology 18 (2007) 175702
[38] Chung C. C., Chung T. W., and Yang Thomas C. K.. Rapid Synthesis of Titania Nanowires by Microwave-Assisted Hydrothermal Treatments. Ind. Eng. Chem. Res. 2008, 47, 2301-2307
[39] Li J., Zhou Z., Zhu L., Xu K., and Tang H.. Salt Effects on Crystallization of Titanate and the Tailoring of Its Nanostructures. J. Phys. Chem. C 2007, 111, 16768-16773
[40] 游智宏,可見光二氧化鈦奈米管製備、改質及光觸媒性質之研究,中原大學,2003
[41] Hoyer P.. Formation of a Titanium Dioxide Nanotube Array. Langmuir, 12 1996 1411.
[42] 徐如人,無機合成與製備化學,臺北市五南,2004
[43] Za’ rate R. A., Fuentes S., Cabrera A.L., Fuenzalida V.M.. Structural characterization of single crystals of sodium titanate nanowires prepared by hydrothermal process. Journal of Crystal Growth 310 (2008) 3630– 3637
[44] Morgado, E., Jr.; de Abreu, M. A. S.; Pravia, O. R. C.; Marinkovic, B. A.; Jardim, P. M.; Rizzo, F. C.; Arau´jo, A. S. A study on the structure and thermal stability of titanate nanotubes as a function of sodium content. Solid State Sci. 2006, 8, 888.
[45] Tsai, C. C.; Teng, H.. Structural features of nanotubes synthesized from NaOH treatment on TiO2 with different post-treatments. Chem. Mater. 2006, 18, 367.
[46] Yang, J.; Jin, Z.; Wang, X.; Li, W.; Zhang, J.; Zhang, S.; Guo, X.; Zhang, Z.. Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2. J. Chem. Soc., Dalton Tans. 2003, 3898.
[47] Yuan, Z. Y.; Su, B. L.. Titanium oxide nanotubes, nanofibers and nanowires. Colloids Surf. A 2004, 241, 173.
[48] 鍾錦軍,微波輔助水熱法合成二氧化鈦奈米線及形成機構之探討,中原大學,2008
[49] 邵致凱,碳酸鈣與碳酸鐵在不同基材上之孕核與成長,淡江大學,2002
[50] Prasadarao A.V., Suresh M., Komarneni S.. pH dependent coprecipitated oxalate precursors – a thermal study of barium titanate. Materials Letters 39_1999.359–363
[51] Schwandt C., Fray D. J.. Determination of the kinetic pathway in the electrochemical reduction of titanium dioxide in molten calcium chloride. Electrochimica Acta 51 (2005) 66–76
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top