|
[1] http://nano.stpi.org.tw/,奈米創新網 [2] http://www.me.tnu.edu.tw/~me022/lab/nanomater.htm [3] 鄭豐吉, 中原大學, 奈米化學講義 [4] Pelagia I. Gouma and Michael J. Mills. Anatase-to-Rutile Transformation in Titania Powders . J. Am. Ceram. Soc., 84 [3] 619–22 (2001) [5] http://twbusiness.nat.gov.tw/asp/industry7.asp,全球台商服務網 [6] Ou H. H. , Shang Lien Lo and Ya Hsuan Liou . Microwave-induced titanate nanotubes and the corresponding behaviour after thermal treatment . Nanotecnology . 18 (2007)175702 [7] Dhage, S. R.; Khollam, Y. B.; Potdar, H. S.; Deshpande, S. B.; Bakare, P. P.; Sainkar, S. R.; Date, S. K. Effect of variation of molar ratio (pH) on the crystallization of iron oxide phases in microwave hydrothermal synthesis. Materials Letters 2002, 57, 457. [8] Khollam, Y. B.; Dhage, S. R.; Potdar, H. S.; Deshpande, S. B.; Bakare, P. P.; Kulkarni, S. D.; Date S., K.. Microwave hydrothermal preparation of submicron-sized spherical magnetite (Fe3O4) powders. Materials Letters 2002, 56, 571. [9] Abothu, I. R.; Liu, S. F.; Komarneni, S.; Li, Q. H. Processing of Pb(Zr0.52Ti0.48)O3 (PZT) ceramics from microwave and conventional hydrothermal powders. Materials Research Bulletin 1999, 34, 1411. [10] Murugan, V.; Samuel, V.; Ravi, V. Synthesis of nanocrystalline anatase TiO2 by microwave hydrothermal method. Mater. Lett. 2006, 60, 479. [11] Diebold. U. The surface science of titanium dioxide. Surf. Sci. Reports 2003, 48, 53. [12] Weirich, T. E.; Winterer, M.; Seifried, S.; Hahn, H.; Fuess, H. Ultramicroscopy, 2000, 81, 263. [13] Powder Diffraction File, Card No. 21–1272, JCPDS-International Centre for Diffraction Data, Swarthmore 1997. [14] Muscat, N. M.; Harrison; Thornton, G. Physical Review B 1999, 59, 2310. [15] Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Formation of titanium oxide nanotube. Langmuir 1998, 14, 3160. [16] Wang, X.; Li, Y. Selected-Control Hydrothermal Synthesis of α- and β-MnO2 single crystal nanowires. J. Am. Chem. Soc. 2002, 124, 2880. [17] Mai, L. Q.; Chen, W.; Xu, Q.; Zhu, Q. Y.; Han, C. H.; Peng, J. F. Cost-saving synthesis of vanadium oxide nanotubes. Solid State Commun. 2003, 126. 541. [18] Yuanzhi Li , Nam-Hee Lee , Eun Gu Lee , Jae Sung Song , Sun-Jae Kim , The characterization and photocatalytic properties of mesoporous rutile TiO2 powder synthesized through self-assembly of nano crystals. Chem. Physics Letters 389 (2004) 124–128 [19] Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Titanua nanotubes prepared by chemical processing. Adv. Mater. 1999, 11, 15. [20] 葉世墉,二氧化鈦的合成與光催化性質的研究,中央大學,2005 [21] Zhang Y. X., Li. G. H., Jin Y. X., Zhang Y., Zhang J., Zhang L.D., Hydrothermal synthesis and photoluminescence of TiO2 nanowires. Solid State Physics. 365 (2002) 300–304 [22] Weng L. Q., Song S. H., Hodgson S., Baker A., Yu J.. Synthesis and characterisation of nanotubular titanates and titania. Journal of the European Ceramic Society 26 (2006) 1405–1409 [23] Yu H., Yu J., Cheng B., Zhou M.. Effects of hydrothermal post-treatment on microstructures and morphology of titanate nanoribbons. Journal of Solid State Chemistry 179 (2006) 349–354 [24] Yu J., Wang G., Cheng B., Zhou M.. Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders. Applied Catalysis B: Environmental 69 (2007) 171–180 [25] Tsai C. C., Nian J. N., Teng H.. Mesoporous nanotube aggregates obtained from hydrothermally treating TiO2 with NaOH. Applied Surface Science 253 (2006) 1898–1902 [26] Hidalgo M. C., Aguilar M., Maicu M., Navı´o J.A., Colo´n G.. Hydrothermal preparation of highly photoactive TiO2 nanoparticles. Catalysis Today 129 (2007) 50–58 [27] Tonejc M., Turkovi’c A., Gotic M., Musi’c S., Vukovi’c M., RTrojko, Tonejc A.. HRTEM, TEM and XRD observation of nanocrystalline phases in TiO2 obtained by the sol-gel method. Materials Letters 31(1997 127-31) [28] Suresh C., Biju V., Mukundan P. and Warrier K. G. K.. Anatase to rutilr transformation in sol-gel titania by modification of precursor. so 277-5387 (98) 00077-1 [29] Journal of Colloid and Interface Science 239, 584–586 (2001) [30] Wang C., Li Q., Wang R. D.. Synthesis and characterization of mesoporous TiO2 with anatase wall. Materials Letters 58 (2004) 1424– 1426 [31] Kucheyev S. O., Baumann T. F., Wang Y. M., Buuren T., Satcher J. H. Jr.. Synthesis and electronic structure of low-density monoliths of nanoporous nanocrystalline anatase TiO2. Journal of Electron Spectroscopy and Related Phenomena 144–147 (2005) 609–612 [32] Yang H., Zhang K., Shi R., Li X., Dong X., Yu Y.. Sol–gel synthesis of TiO2 nanoparticles and photocatalytic degradation of methyl orange in aqueous TiO2 suspensions. Journal of Alloys and Compounds 413 (2006) 302–306 [33] Sahni S., Bhaskar Reddy S., Murty B. S.. Influence of process parameters on the synthesis of nano-titania by sol–gel route. Materials Science and Engineering A 452–453 (2007) 758–762 [34] Komarnenia S., Rajhaa R. K., Katsukib H., Microwave-hydrothermal processing of titanium dioxide. Materials Chemistry and Physics 61 (1999) 50±54 [35] Wu X., Jiang Q. Z., Ma Z. F., Fu M., Shangguan W. F.. Synthesis of titania nanotubes by microwave irradiation. Solid State Communications 136 (2005) 513–517 [36] Murugan A. V., Samuel V., Ravi V.. Synthesis of nanocrystalline anatase TiO2 by microwave hydrothermal method. Materials Letters 60 (2006) 479–480 [37] Ou H. H., Lo1 S. L. and Liou Y. H.. Microwave-induced titanate nanotubes and the corresponding behaviour after thermal treatment. Nanotechnology 18 (2007) 175702 [38] Chung C. C., Chung T. W., and Yang Thomas C. K.. Rapid Synthesis of Titania Nanowires by Microwave-Assisted Hydrothermal Treatments. Ind. Eng. Chem. Res. 2008, 47, 2301-2307 [39] Li J., Zhou Z., Zhu L., Xu K., and Tang H.. Salt Effects on Crystallization of Titanate and the Tailoring of Its Nanostructures. J. Phys. Chem. C 2007, 111, 16768-16773 [40] 游智宏,可見光二氧化鈦奈米管製備、改質及光觸媒性質之研究,中原大學,2003 [41] Hoyer P.. Formation of a Titanium Dioxide Nanotube Array. Langmuir, 12 1996 1411. [42] 徐如人,無機合成與製備化學,臺北市五南,2004 [43] Za’ rate R. A., Fuentes S., Cabrera A.L., Fuenzalida V.M.. Structural characterization of single crystals of sodium titanate nanowires prepared by hydrothermal process. Journal of Crystal Growth 310 (2008) 3630– 3637 [44] Morgado, E., Jr.; de Abreu, M. A. S.; Pravia, O. R. C.; Marinkovic, B. A.; Jardim, P. M.; Rizzo, F. C.; Arau´jo, A. S. A study on the structure and thermal stability of titanate nanotubes as a function of sodium content. Solid State Sci. 2006, 8, 888. [45] Tsai, C. C.; Teng, H.. Structural features of nanotubes synthesized from NaOH treatment on TiO2 with different post-treatments. Chem. Mater. 2006, 18, 367. [46] Yang, J.; Jin, Z.; Wang, X.; Li, W.; Zhang, J.; Zhang, S.; Guo, X.; Zhang, Z.. Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2. J. Chem. Soc., Dalton Tans. 2003, 3898. [47] Yuan, Z. Y.; Su, B. L.. Titanium oxide nanotubes, nanofibers and nanowires. Colloids Surf. A 2004, 241, 173. [48] 鍾錦軍,微波輔助水熱法合成二氧化鈦奈米線及形成機構之探討,中原大學,2008 [49] 邵致凱,碳酸鈣與碳酸鐵在不同基材上之孕核與成長,淡江大學,2002 [50] Prasadarao A.V., Suresh M., Komarneni S.. pH dependent coprecipitated oxalate precursors – a thermal study of barium titanate. Materials Letters 39_1999.359–363 [51] Schwandt C., Fray D. J.. Determination of the kinetic pathway in the electrochemical reduction of titanium dioxide in molten calcium chloride. Electrochimica Acta 51 (2005) 66–76
|