(3.236.118.225) 您好!臺灣時間:2021/05/16 12:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:曾敏琪
研究生(外文):Min-Chi Tseng
論文名稱:低介電聚氧代氮代苯并環己烷奈米複合材料合成及其性質研究
論文名稱(外文):Preparation and Properties of Low-Dielectric Polybenzoxazine Nanocomposites
指導教授:劉英麟
指導教授(外文):Ying-Ling Liu
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:133
中文關鍵詞:低介電聚氧代氮代苯并環己烷
外文關鍵詞:Low-DielectricPolybenzoxazine
相關次數:
  • 被引用被引用:0
  • 點閱點閱:158
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究首先以formaldehyde、furfurylamine分別與phenol或bisphenol-A反應,分別形成含呋喃具有單官能基之氧代氮代苯并環己烷單體(Ph-FBz)以及含呋喃具有雙官能基之氧代氮代苯并環己烷單體(BPA-FBz),更進一步的以BPA-FBz與雙(4-馬來醯亞胺基苯)甲烷(DDM-BMI)為單體,利用Diels-Alder Reaction製備出主鏈含有氧代氮代苯并環己烷的可交聯線性高分子(BPA-BMI)。
其後,以共聚合的方式將Ph-FBz、BPA-FBz、BPA-BMI分別與Methacryl POSS (MMA-POSS)硬化形成高分子聚合物,silica的存在可以阻絕熱而避免焦炭進一步氧化,達到難燃的效果;因此將silica導入benzoxazine結構中,可以藉由官能基具有阻燃的特性,以提升polybenzoxazine的熱性質,並以熱重損失分析儀(TGA)探討之。
一般而言,benzoxazine有硬而脆的性質,將POSS中較為柔軟的Si-O-Si導入benzoxazine結構中,也可以增加聚合物的韌性,以改善其硬而脆的性質,此部分可由萬能強力測試機(Instron)測試。
由於POSS本身為非極性分子且含有均一奈米孔洞,而空氣的介電常數值為1,將POSS導入benzoxazine結構中,可以增加自由體積,有效的降低材料的介電常數。
In this study , two novel benzoxazine monomers containing furan groups:one
monomer is monofunctional benzoxazine(Ph-FBz) , the other is bifunctional benzoxazine(BPA-FBz) , they have been synthesized from phenol or bisphenol-A with furfurylamine and formaldehyde. Furthermore , a high molecular weight polymer (BPA-BMI) possessing reactive benzoxazine groups in the mainchain was prepared through the Diels-Alder reaction using BPA-FBz and a bismale-imide (BMI) as monomers.
The chemical structures of these novel benzoxazine were confirmed by FT-IR. And then blending benzoxazine monomers (Ph-FBz、BPA-FBz and BPA-BMI) with Methacryl POSS in various weight ratios , respectively.
As we know , the existence of silica can resist heat and avoid further oxidation of char to effect of flame retardant. SO blending silica into benzoxazine can enhance thermal stability and comfirmed by Thermal Gravimetric Analysis.
In general, to improve benzoxazine hard and brittle nature ,introduction of Si-O-Si soft bond in POSS into benzoxazine structure can also increase the toughness of polymers and can comfirmed by Instron.
POSS itself as a result of non-polar molecule and contains uniform nano-holes, and the air dielectric constant value of 1, the structure of POSS into benzoxazine, free volume can be increased, reduce the effective dielectric constant materials.
摘 要 I
Abstract II
致謝 III
圖目錄 VIII
表目錄 XIV
第一章 緒論 1
1.1奈米複合材料 1
1.2 高分子低介電材料簡介 2
1.3多面體矽氧烷寡聚體簡介 3
1.4 Benzoxazine高分子簡介 5
1.5 Diels-Alder Reaction 6
1.6 研究目的 7
第二章 文獻回顧 9
2.1以DA反應合成高分子 9
2.2 polybenzoxazine的改質 16
2.2-1提升交聯密度以提升熱穩定性質 16
2.2-2 具低介電常數之benzoxazine高分子 37
2.3低介電 POSS/高分子奈米複合材料 41
2.3-1具低介電常數之POSS奈米複合材料 41
2.3-2 POSS在奈米複合材料中的自組裝行為 49
第三章 藥品與實驗步驟 59
3.1藥品 59
3.2儀器設備 60
3.3實驗步驟 62
3.3-1合成3-Furfuryl-3,4-dihydro-3-phenyl-2H-1,3-benzoxazine(Ph-FBz) 62
3.3-2合成Bis(3-Furfuryl-3,4-dihydro-3-phenyl-2H-1,3-Benzoxazinyl)isopropane 63
(BPA-FBz) 63
3.3-3 Polybenzoxazine之製備 64
3.3-4 POSS與Polybenzoxazine共聚合製備 64
3.3-5合成2-呋喃-氧代氮代苯并環己烷-亞甲基雙馬來醯亞胺聚合(BPA-BMI) 64
3.3-6 MMA-POSS與BPA-BMI共聚合製備 65
3.4 實驗流程圖 66
第四章 結果與討論 67
4.1單邊含呋喃氧代氮代苯並環己烷單體(Ph-FBz)之POSS奈米複合材料 67
4.1-1單體鑑定 67
4.1-2 Ph-FBz和Methacryl-POSS(MMA-POSS)以交聯方式製備高分子 68
4.1-3 Ph-FBz和 MMA-POSS 交聯反應 68
4.1-4 Ph-FBz和MMA-POSS 聚合物之分析 70
4.1-5 Ph-FBz與MMA-POSS應變與應力之分析 74
4.1-6 Ph-FBz和MMA-POSS聚合物之SEM型態分析 75
4.1-7 Ph-FBz與MMA-POSS聚合物介電常數之分析 80
4.1-8 Ph-FBz與MMA-POSS聚合物之TEM型態分析 81
4.2 雙邊含呋喃氧代氮代苯並環己烷單體(BPA-FBz)之POSS奈米複合材料 83
4.2-1單體鑑定 83
4.2-2 BPA-FBz和MMA-POSS 交聯反應 84
4.2-3 BPA-FBz和MMA-POSS聚合物之分析 85
4.2-4 BPA-FBz和MMA-POSS之聚合物熱性質分析 86
4.2-5 BPA-FBz與MMA-POSS應變與應力之分析 90
4.2-6 BPA-FBz和MMA-POSS聚合物之SEM型態分析 91
4.2-7 BPA-FBz與MMA-POSS聚合物介電常數之分析 93
4.2-8 BPA-FBz與MMA-POSS聚合物之TEM型態分析 95
4.3 BPA-FBz與DDM-BMI以Diels-Alder Reaction形成高分子量聚合物(BPA-BMI)之POSS奈米複合材料 97
4.3-1 BPA-BMI之製備與性質 97
4.3-2單體鑑定 98
4.3-3 BPA-BMI和MMA-POSS以交聯方式製備高分子 99
4.3-4 BPA-BMI和MMA-POSS聚合物之分析 99
4.3-5 BPA-BMI和MMA-POSS之聚合物熱性質分析 100
4.3-6 BPA-BMI和MMA-POSS之SEM型態分析 102
4.3-7 BPA-BMI與MMA-POSS聚合物介電常數之分析 104
4.3-8 BPA-BMI和MMA-POSS之TEM型態分析 104
第五章 結論 107
第六章 參考文獻 108



圖目錄
第一章
圖1.1 POSS立體結構示意圖 (R:為任何有機取代基) .......................3
圖1.2 Benzoxazine 結構示意圖.............................................................6
圖1.3 Diels-Alder reaction 示意圖.........................................................7
圖1.4 實驗使用之化合物的化學結構示意圖。....................................8
第二章
圖2.1 Furan和maleimide間Diels-Alder Reaction之可逆性[39]。...........9
圖2.2 Poly(ST-co-FM)的retro DA反應[40]。.........................................10
圖2.3 PEA2F 分別與 2M、3M 行Diels-Alder Reaction[41]。...........11
圖2.4 2M 之DA/ r-DA循環[41]。..........................................................11
圖2.5 3M之DA/ r-DA循環[41]。............................................................12
圖2.6 熱可逆性polyaimides之反應示意圖[42]。.................................13
圖2.7 帶有maleimide基之SiO2 與末端為呋喃基之PEG進行
Diels-Alder..............................................................................................14
圖2.8 15Wt%的SiO2-DA-PEG 膜於120℃,24hr處理前(a)及後(b)之
型態[43]。................................................................................................14
圖2.9 PA-MI/PA-F行DA與retro-DA反應示意圖[44]。.........................15
圖2.10 PA-MI/PA-F膜經熱處理形成自我修補情況SEM圖,(A)破損之
PA-MI/PA-F膜 (B)經120℃3h、50℃5d熱處理產生自我修補[44]。.15
圖2.11 B-a與DGEBA結構示意圖[45]。................................................16
圖2.12 B-a結構示意圖[47]。..................................................................18
圖2.13 PU prepolymer 結構示意圖[48]。.............................................18
圖2.14 PU prepolymer與Polybenzoxazine反應示意圖[48]。................19
圖2. 15 具有馬來醯亞胺官能基的benzoxazine單體(HPM-Ba)合成示
意圖[49]。................................................................................................20
圖2.16 HPM-Ba經兩階段熱聚合而成P-HPM-Ba-I與P-HPM-Ba-II示
意圖[49]。................................................................................................21
圖2.17 P-ABz與MI-COOH結構示意圖[50]。.......................................22
圖2.18 Ph-Bz與F-Bz與BATMS-Bz之結構式[51]。............................23
圖2.19 PBz-a 反應示意圖[52]。.........................................................23
圖2. 20 PBz-a經熱交聯得PBz-allyl[52]。..............................................24
圖2.21 B-ala反應示意圖[53]。...............................................................25
圖2.22 PBTMDS反應示意圖[53]。........................................................25
圖2.23 熱交聯後PBTMDS膜之韌性[53]。............................................25
圖2.24 PEE的合成示意圖[54]。.............................................................26
圖2.25 PEE-BA與PEE-BT反應示意圖[54]。........................................26
圖2.26 高分子膜之韌性(a)PEE-BA (b) PEE-BT [54]。.........................27
圖2.27 PBa與PDMS反應示意圖[55]。..................................................28
圖2.28 PBa與不同比例的PDMS膜之韌性..........................................28
圖2.29 B-a與 PB-a與 P-a與BMI結構示意圖[56]。.............................29
圖2.30 B-ala合成反應示意圖[57]。.......................................................30
圖2.31 ADS與PDS結構示意圖[57]。.....................................................31
圖2. 32 BPA-FBZ與BMI進行DA反應[58]。.........................................32
圖2.33 經Retro-DA交聯後高分子PBz-R[58]。.....................................32
圖2.34 交聯高分子膜之韌性 (a) PBz (b) PBz-R (c) PBz-BR[58]。...33
圖2.35 Ba與Ep結構示意圖[59]。...........................................................34
圖2.36 Ba 與Ep反應示意圖[59]。......................................................34
圖2.37 BZCN合成示意圖[60]。.............................................................35
圖2.38 BZCN交聯後結構示意圖[60]。.................................................35
圖2.39 Bz-BAMPO合成示意圖[61]。....................................................36
圖2.40 F-1 benzoxazine 合成示意圖[62]。...........................................37
圖2.41 B-a 與F-1benzoxazine 共聚合反應圖[62]。............................37
圖2.42 呋喃官能基的benzoxazine單體,BPA-FBz 、P-FBz反應示意
圖[63]。.....................................................................................................38
圖2.43 polybenzoxazine反應示意圖[64]。...........................................39
圖2.44 VP-a與MBZ-POSS 合成示意圖[65]。......................................40
圖2.45 MBZ-POSS與Ba交聯網狀結構圖[65]。....................................41
圖2.46 PI-POSS的交聯反應示意圖[67]。.............................................42
圖2.47 PI-PMA-POSS 奈米複合材料之反應示意圖[68]。.................43
圖2.48 OFG反應示意圖[69]。................................................................44
圖2.49 OFG經熱亞醯胺化成為一網狀結構之PI/OFG[69]。...............44
圖2.50 maleimide基的polyamide與帶有amino基團的POSS利用
Michael addition反應形成PA-MI-POSS[70]。.......................................45
圖2.51 OF 與 epoxy 結構示意圖[71]。...............................................46
圖2.52 PMDA-ODA PI/POSS-OH 反應示意圖[72]。..........................47
圖2.53 MMA-POSS與TF之結構示意圖[73]。......................................48
圖2.54 MMA-POSS/TF形成層狀排列之TEM示意圖[73]。................48
圖2.55 PE-co-POSS合成示意圖[74]。...................................................49
圖2.56 PE-co-POSS排列示意圖[74]。...................................................49
圖2.57 帶有amine基的POSS與末端帶有親水基之poly(amic acid)反
應形成帶有孔洞之POSS/polyimide奈米複合材料[75]。.....................50
圖2.58 POSS/polyimide之TEM截面圖,(a)平行刮膜方向(b)垂直刮膜
方向[75]。................................................................................................50
圖2.59 polybutadiene(PBD)與POSS反應示意圖[76]。.........................51
圖2.60 有機高分子PBD限制住POSS結晶的生長而形成二維排列
[76]。.........................................................................................................51
圖2.61 PBD/POSS之TEM圖於低濃度POSS(A),高濃度POSS(B);排
列示意圖低濃度POSS(C),高動度POSS(D) [76]。.............................52
圖2.62 POSS與PI反應示意圖[77]。.......................................................53
圖2.63 奈米複合材料中POSS分散型態之TEM圖[77]。......................53
圖2.64 (a-d) SEM中 PI/OFG之POSS分散型態 (a)PI-3%-POSS ....54
圖2.65 POSS與poilurethane在Acetone與水互換系統中反應示意圖
[78]。.........................................................................................................55
圖2.66 AFM 中POSS均勻的分散[78]。................................................56
圖2.67 粒徑分析顯示均勻分散可保持六個月以上[78]。...................56
圖2.68 OAPS結構示意圖[79]。..............................................................57
圖2.69 OAPS/PAA與OAPS/PSS排列示意圖[79]。...............................57
圖2.70 MMA-POSS結構示意圖[80]。...................................................58
圖2.71 POSS高分子奈米複合材料之TEM圖[80]。..............................58
第四章
圖4.1 Ph-FBz合成步驟示意圖。..........................................................67
圖4.2 Ph-FBz 之FTIR 光譜圖。.........................................................67
圖4.3 MMA-POSS 結構式。...............................................................68
圖4.4 Ph-FBz與MMA-POSS反應示意圖。.........................................69
圖4.5 Ph-FBz以不同比例掺混MMA-POSS外觀示意圖
(a)MMA-POSS/Ph-FBz-0/100 (b)MMA-POSS/Ph-FBz-10/90
(c)MMA-POSS/Ph-FBz-30/70 (d)MMA-POSS/Ph-FBz-50/50
(e)MMA-POSS/Ph-FBz-70/30。...........................................................70
圖4.6 氮氣環境下Ph-FBz以不同比例掺混MMA-POSS之TGA圖。72
圖4.7 空氣環境下Ph-FBz以不同比例掺混MMA-POSS之TGA圖。73
圖4.8 Ph-FBz/MMA-POSS不同比例共聚合之Instron圖。................74
圖4. 9 表面SEM型態 (a) Ph-FBz /MMA-POSS -100/0 之3 萬倍(b)
Ph-FBz /MMA-POSS -100/0 之10 萬倍 (c) Ph-FBz /MMA-POSS
-90/10 之3 萬倍(d) Ph-FBz /MMA-POSS -90/10 之10 萬倍 (e) Ph-FBz
/MMA-POSS -70/30 之3 萬倍 (f) Ph-FBz /MMA-POSS -70/30 之10
萬倍 (g)Ph-FBz/MMA-POSS-50/50 之3 萬倍 (h)Ph-FBz
/MMA-POSS-50/50 之10 萬(i)Ph-FBz/MMA-POSS-30/70 之3 萬倍 (j)
Ph-FBz /MMA-POSS-30/70 之10 萬倍。............................................77
圖4. 10 截面SEM型態 (a) Ph-FBz /MMA-POSS -100/0 之5 萬倍 (b)
Ph-FBz /MMA-POSS -100/0 之10 萬倍 (c) Ph-FBz /MMA-POSS
-90/10 之5 萬倍 (d) Ph-FBz /MMA-POSS -90/10 之10 萬倍
(e)Ph-FBz/MMA-POSS–70/30 之5 萬倍 (f) Ph-FBz
/MMA-POSS-70/30 之10 萬 (g)Ph-FBz/MMA-POSS –50/50 之5 萬倍
(h) Ph-FBz /MMA-POSS-50/50 之10 萬倍
(i)Ph-FBz/MMA-POSS-30/70 之1 萬倍 (j) Ph-FBz /MMA-POSS-30/70
之3 萬倍。.............................................................................................79
圖4.11 TEM型態圖 (a) Ph-FBz/POSS-50/50 之3 萬倍
(b)Ph-FBz/POSS-50/50 之5 萬倍 (c) Ph-FBz/POSS-DA-50/50 之3 萬
倍 (d)Ph-FBz/POSS-DA-50/50 之5 萬倍 (e)Ph-FBz/POSS-DA-30/70
之3 萬倍 (f) Ph-FBz/POSS-DA-30/70 之5 萬倍。............................82
圖4.12 BPA-FBz合成步驟示意圖。.....................................................83
圖4.13 BPA-FBz 之FTIR光譜圖。......................................................83
圖4.14 BPA-FBz/MMA-POSS反應示意圖。.......................................84
圖4.15 BPA-FBz以不同比例掺混MMA-POSS外觀示意圖
(a)BPA-FBz/ MMA-POSS -100/0 (b) BPA-FBz /MMA-POSS -90/10 (c)
BPA-FBz /MMA-POSS-70/30 (d) BPA-FBz /MMA-POSS -50/50
(e)BPA-FBz /MMA-POSS -30/70。......................................................85
圖4.16 氮氣環境下BPA-FBz以不同比例掺混MMA-POSS之TGA圖。
.................................................................................................................87
圖4.17 空氣環境下MMA-POSS以不同比例掺混BPA-FBz之TGA圖。...87
圖4.18 BPA-FBz/MMA-POSS以不同比列共聚合之Instron圖。.......89
圖4.19 截面SEM型態 (a) BPA-FBz/MMA-POSS -100/0 之3 萬倍 (b)
BPA-FBz/MMA-POSS -100/0 之10 萬倍 (c) BPA-FBz /MMA-POSS
-90/10 之3 萬倍 (d) BPA-FBz /MMA-POSS -90/10 之10 萬倍 (e)
BPA-FBz/MMA-POSS -70/30 之3 萬倍 (f) BPA-FBz /MMA-POSS
-70/30 之10 萬倍 (g) BPA-FBz /MMA-POSS–50/50 之3 萬倍 (h)
BPA-FBz /MMA-POSS-50/50 之10 萬倍 (i) BPA-FBz
/MMA-POSS –30/70 之3 萬倍 (j) BPA-FBz /MMA-POSS-30/70 之10
萬倍。.....................................................................................................92
圖4.20 BPA-FBz/MMA-POSS之TEM圖
(a)BPA-FBz/MMA-POSS-50/50 之1 萬倍
(b)BPA-FBz/MMA-POSS-50/50 之5 萬倍
(c)BPA-FBz/MMA-POSS-50/50 之10 萬倍
(d)BPA-FBz/MMA-POSS-DA-50/50 之1 萬倍
(e)BPA-FBz/MMA-POSS-DA-50/50 之5 萬倍
(f)BPA-FBz/MMA-POSS-DA-50/50 之10 萬倍
(g)BPA-FBz/MMA-POSS-DA-30/70 之1 萬倍
(h)BPA-FBz/MMA-POSS-DA-30/70 之5 萬倍
(i)BPA-FBz/MMA-POSS-DA-50/50 之10 萬倍。...............................95
圖4.21 以Diels-Alder Reaction形成BPA-BMI反應示意圖。............96
圖4. 22 BPA-FBz、DDM-BMI、BPA-BMI之IR圖譜。.....................97
圖4.23 BPA-BMI/POSS在氮氣環境下,各比例之TGA曲線圖。.....99
圖4.24 BPA-BMI/POSS在空氣環境下,各比例之TGA曲線圖。.. 100
圖4.25 BPA-BMI與各比例POSS之SEM截面5 萬倍圖
(a)BPA-BMI/POSS-100/0 (b) BPA-BMI/POSS-95/5 (c)
BPA-BMI/POSS-90/10 (d) BPA-BMI/POSS-85/15 (e)
BPA-BMI/POSS-80/20 (f) BPA-BMI/POSS-70/30 (g)
BPA-BMI/POSS-50/50。.................................................................... 102
圖4.26 各比例BPA-BMI/POSS之1 萬倍TEM圖,
(A)BPA-BMI/POSS-100/0 (B) BPA-BMI/POSS-95/5 (C)
BPA-BMI/POSS-90/10 (D)BPA-BMI/POSS-85/15 (E)
BPA-BMI/POSS-80/20 (F) BPA-BMI/POSS-70/30
(G)BPA-BMI/POSS-50/50。............................................................... 105


表目錄
表4.1 Ph-FBz與MMA-POSS不同比例掺混之密度。.........................71
表4.2 氮氣環境下Ph-FBz以不同比例掺混MMA-POSS之TGA分析
表。.........................................................................................................72
表4.3 空氣環境下Ph-FBz以不同比例掺混MMA-POSS之TGA分析
表。.........................................................................................................73
表4.4 Ph-FBz/MMA-POSS不同比例共聚合之應變、應力與楊氏係數
之分析表。.............................................................................................75
表4.5 不同比例之Ph-FBz/MMA-POSS與
Ph-FBz/MMA-POSS-DA-50/50 介電常數。........................................80
表4.6 BPA-FBz/MMA-POSS以不同比例共聚合之密度。................86
表4.7 氮氣環境下BPA-FBz/MMA-POSS以不同比例共聚合之TGA分
析表。.....................................................................................................88
表4.8 空氣環境下 BPA-FBz以不同比例掺混MMA- POSS之TGA分
析表。.....................................................................................................88
表4.9 BPA-FBz/MMA-POSS以不同比列共聚合之應變、應力與楊氏
係數之分析表。.....................................................................................90
表4.10 BPA-FBz/MMA-POSS-DA-50/50 與不同比例
BPA-FBz/MMA-POSS之.......................................................................93
表4.11 各比例BPA-BMI/POSS 密度整理表。..................................98
表4.12 各比例之BPA-BMI/POSS在氮氣環境下,整理分析表。. 100
表4.13 各比例之BPA-BMI/POSS在氮氣環境下,整理分析表。. 101
表4.14 不同比例BPA-BMI/POSS之DK分析表。........................... 103
1.Kojima, Y.; Usuki, A.; Kawasumi, M.; Okada, A.; Kurauchi, T.; Kamigaito,
O., Synthesis Of Nylon 6-Clay Hybrid By Montmorillonite Intercalated With
-Caprolactam. Journal of Polymer Science Part A: Polymer Chemistry 1993,
31, 983-986.

2.Ishida, H., Polymer Layered Silicate Nanocomposites. Advanced Materials
1996, 8, 29-35.

3.Ishida, H., Polyhedral Oligomeric Silsesquioxane(POSS)-based Polymers.
Applied Organometallic Chemistry 1998, 12, 707-713.

4.Sellinger, A.; Weiss, P. M.; Nguyen, A.; Lu, Y.; Assink, R. A.; Gong, W.;
Brinker, C. J., Continuous Self-assembly Of Organic-Inorganic
Nanocomposite Coatings That Mimic Nacre. Nature 1998, 394, 256-259.

5.http://www.ndl.org.tw/cht/cindex.htm

6.Maexa, K.; Baklanov, M. R.; Shamiryan, D.; Iacopi, F.; Brongersma, S. H.;
Yanovitskaya, Z. S., Low Dielectric Constant Materials for Microelectronics.
Journal of Applied Physics 2003, 93, 8793-8841.

7.Pai, R. A.; Humayun, R.; Schulberg, M. T.; Sengupta, A.; Sun, J. N.;
Watkins, J. J., Mesoporous Silicates Prepared Using Preorganized Templates
in Supercritical Fluids. Science 2004, 303, 507-510.

8.Zhang, Y. F.; Yang, G. H.; Kang, E. T.; Kang, K. G., Deposition of
Fluoropolymer Films on Si(100) Surfaces by Rf Magnetron Sputtering of
Poly(tetrafluoroethylene). Langmuir 2002, 18, 6373-6380.

9.Wang, W. C.; Vora, R. H.; Kang, E. T.; Neoh, K. G.; Ong, C. K.; Chen, L. F.,
Nanoporous Ultra-Low- Films Prepared from Fluorinated Polyimide with
Grafted Poly(acrylic acid) Side Chains. Advanced Materials 2004, 16,
54-57.

10.Fu, G. D.; Zhang, Y.; Kang, E. T.; Neoh, K. G., Nanoporous Ultra-Low-
Fluoropolymer Composite Films via Plasma Polymerization of
Allylpentafluorobenzene and Magnetron Sputtering of
Poly(tetrafluoroethylene). Advanced Materials 2004, 16, 839-842.

11.Zheng, L.; Waddon, A. J.; Farris, R. J.; Coughlin, E. B., X-ray
Characterizations of Polyethylene Polyhedral Oligomeric Silsesquioxane
Copolymers. Macromolecules 2002, 35, 2375-2379.

12.Lichtenhan, J. D.; Otonari, Y. A.; Carr, M. J., Linear Hybrid Polymer
Building Blocks: Methacrylate-Functionalized Polyhedral Oligomeric
Silsesquioxane Monomers and Polymers. Macromolecules 1995, 28,
8435-8437.

13.Li, G. Z.; Wang, L.; Toghiani, H.; Daulton, T. L.; Koyama, K.; Pittman, C.
U., Viscoelastic and Mechanical Properties of Epoxy/Multifunctional
Polyhedral Oligomeric Silsesquioxane Nanocomposites and
Epoxy/Ladderlike Polyphenylsilsesquioxane Blends. Macromolecules 2001,
34, 8686-8693.

14.Zheng, L.; Farris, R. J.; Coughlin, E. B., Novel Polyolefin Nanocomposites:
Synthesis and Characterizations of Metallocene-Catalyzed Polyolefin
Polyhedral Oligomeric Silsesquioxane Copolymers. Macromolecules 2001,
34, 8034-8039.

15.Pyun, J.; Matyjaszewski, K., The Synthesis of Hybrid Polymers Using Atom
Transfer Radical Polymerization: Homopolymers and Block Copolymers
from Polyhedral Oligomeric Silsesquioxane Monomers. Macromolecules
2000, 33, 217-220.

16.Costa, R. O. R.; Vasconcelos, W. L., Organic/Inorganic Nanocomposite Star
Polymers via Atom Transfer Radical Polymerization of Methyl Methacrylate
Using Octafunctional Silsesquioxane Cores. Macromolecules 2001, 34,
5398-5407.

17.Lichtenhan, J. D.; Vu, N. Q.; Carter, J. A.; Gilman, J. W.; Feher, F. J.,
Silsesquioxane-siloxane Copolymers From Polyhedral Silsesquioxanes.
Macromolecules 1993, 26, 2141-2142.

18.Haddad, T. S.; Lichtenhan, J. D., Hybrid Organic-Inorganic Thermoplastics:
Styryl-Based Polyhedral Oligomeric Silsesquioxane Polymers.
Macromolecules 1996, 29, 7302-7304.

19.Romo-uribe, A.; Mather, P. T.; Haddad, T. S.; Lichtenhan, J. D., Viscoelastic
and Morphological Behavior of Hybrid Styryl-Based Polyhedral Oligomeric
Silsesquioxane (POSS) Copolymers. Journal of Polymer Science: Part B:
Polymer Physics 1998, 36, 1857-1872.

20.Bharadwaja, R. K.; Berryb, R. J.; Farmerb, B. L., Molecular Dynamics
Simulation Study Of Norbornene–POSS Polymers. Polymer 2000, 41,
7209-7221.

21.Lichtenhan, J. D.; Otonari, Y. A.; Carr, M. J., Linear Hybrid Polymer
Building Blocks: Methacrylate-Functionalized Polyhedral Oligomeric
Silsesquioxane Monomers and Polymers. Macromolecules 1995, 28,
8435-8437.

22.Mather, P. T.; Jeon, H. G.; Romo-Uribe, A., Mechanical Relaxation and
Microstructure of Poly(norbornyl-POSS) Copolymers. Macromolecules 1999,
32, 1197-1203.

23.Fu, B. X.; Hsiao, B. S.; Pagola, S.; Stephens, P.; White, H.; Rafailovich, M.;
Sokolov, J.; Mathe, P. T.; Jeon, H. G.; Phillips, S.; Lichtenhan, J.; Schwab, J.,
Structural Development During Deformation of Polyurethane Containing
Polyhedral Oligomeric Silsesquioxanes (POSS) Molecules. Polymer 2001,
42, 599-611.

24.Jackson, W. M.; Conley, R. T., High Temperature Oxidative Degradation of
Phenol-Formaldehyde Polycondensates. Journal of Applied Polymer Science
2003, 89, 2163-2193.

25.Ishida, H.; Rodriguez, Y., Curing kinetics of a new benzoxazine-based
phenolic resin by differential scanning calorimetry. Polymer 1995, 36,
3151-3158.

26.Imai, Y.; Itoh, H.; Naka, K.; Chujo, Y., Thermally Reversible IPN
Organic-Inorganic Polymer Hybrids Utilizing the Diels-Alder Reaction.
Macromolecules 2000, 33, 4343-4346.

27.Chujo, Y.; Sada, K.; Saegusa, T., Reversible Gelation Of Polyoxazoline By
Means Of Diels-Alder Reaction. Macromolecular Chemistry and Physics
1990, 23, 2636-2641.

28.Goiti, E.; Huglin, M. B.; Rego, J. M., Some Observations on the
Copolymerization of Styrene with Furfuryl Methacrylate. Polymer 2001, 42,
10187-10193.

29.Lu, S. Y.; Quayle, P.; Heatley, F.; Booth, C., Aqueous Ring-Opening
Metathesis Polymerization Ofexo,exo-2,3-Bis(methoxymethyl)-
7-oxanorbornenCea Talyzed By Ruthenium Trichloride. Macromolecules
1992, 25, 2692-2697.

30.Feasta, W. J.; Harrisona, D. B., Aqueous Ring-Opening Metathesis
Polymerizations Of Heteropolycyclic Carboxylic Acids With
Transition-Metal Chlorides. Polymer 1991, 32, 558-563.

31.Gandini, A.; Belgacem, M. N., Furans In Polymer Chemistry. Progress in
Polymer Science 1997, 22, 1203-1379.

32.Laita, H.; Boufi, S.; Gandini, A., The Application Of The Diels-Alder
Reaction To Polymers Bearing Furan Moieties.1.Reactions With
Maleimides. European Polymer Journal 1997, 33, 1203-1211.

33.Gandini, A.; Hodge, P.; Gousse, C. c., Application of the Diels-Alder
Reaction to Polymers Bearing Furan Moieties.2. Diels-Alder and
Retro-Diels-Alder Reactions Involving Furan Rings in Some Styrene
Copolymers. Macromolecules 1998, 31, 314-321.

34.Gheneim, R.; Berumen, C. P.; Gandini, A., Diels-Alder Reactions with Novel
Polymeric Dienes and Dienophiles: Synthesis of Reversibly Cross-Linked
Elastomers. Macromolecules 2002, 35, 7246-7253.

35.Chen, X.; A., D. M.; Kanji, O.; Ajit, M.; Hongbin, S.; R., N. S.; Kevin, S.;
Fred, W., A Thermally Re-mendable Cross-Linked Polymeric Material.
Science 2002, 295, 1698-1703.

36.Chen, X.; Wudl, F.; Mal, A. K.; Shen, H.; Nutt, S. R., New Thermally
Remendable Highly Cross-Linked Polymeric Materials. Macromolecules
2003, 36, 1802-1807.

37.Jones, J. R.; Liotta, C. L.; Collard, D. M.; Schiraldi, D. A., Cross-Linking
and Modification Of Poly(ethyleneterephthalate-co-2,6-anthracene-
dicarboxylate) By Diels-Alder Reactions With Maleimides. Macromolecules
1999, 32, 5786-5792.

38.Goiti, E.; Huglin, M. B.; Rego, J. M., Some Properties of Networks Produced
by the Diels–Alder Reaction between Poly(styrene-co-furfuryl methacrylate)
and Bismaleimide. European Polymer Journal 2004, 40, 219-226.

39.Chen, X.; Dam, M. A.; Ono, K.; Mal, A.; Shen, H.; Nutt, S. R.; Sheran, K.;
Wudl, F., A Thermally Re-mendable Cross-Linked Polymeric Material.
Science 2002, 295, 1698-1702.

40.Goiti, E.; Huglin, M. B.; Rego, J. M., Thermal Breakdown by the Retro
Diels–Alder Reaction of Crosslinking in Poly[styrene-co-(furfuryl
methacrylate)]. Macromolecular Rapid Communications 2003, 24, 692-696.

41.Watanabe, M.; Yoshie, N., Synthesis and Properties of Readily Recyclable
Polymers From Bisfuranic Terminated Poly(ethylene adipate) and
Multi-Maleimide Linkers. Polymer 2006, 47.4946-4952.

42.Liu, Y. L.; Hsieh, C. Y.; Chen, Y.W., Thermally Reversible Cross-Linked
Polyamides and Thermo-Responsive Gels by Means of Diels–Alder Reaction.
Polymer 2006, 47, 2581-2586.

43.Costanzo, P. J.; Beyer, F. L., Thermoresponsive, Optically Active Films
Based On Diels–Alder Chemistry. Chemsity of Material 2007, 19, 6168-6173.

44.Liu, Y. L.; Chen, Y. W., Thermally Reversible Cross-Linked Polyamides with
High Toughness and Self-Repairing Ability from Maleimideand
Furan-Functionalized Aromatic Polyamides. Macromolecular Chemistry and
Physis 2007, 208, 224-232.

45.Ishida, H.; Allennd, D. J., Mechanical characterization of copolymers based
on benzoxazine and epoxy. Polymer 1996, 37, 4487-4495.

46.Kim, H. J.; Brunovska, Z.; Ishida, H., Synthesis and Thermal
Characterization Of Polybenzoxazines Based On Acetylene-functional
Monomers. Polymer 1999, 40, 6565-6573.

47.Wang, Y. X.; Ishida, H., Cationic Ring-Opening Polymerization of
Benzoxazines. Polymer 1999, 40, 4563-4570.

48.Takeichi, T.; Guo, Y.; Agag, T., Synthesis and Characterization of
Poly(urethanebenzoxazine) Films as Novel Type of Polyurethane/Phenolic
Resin Composites. Journal of Polymer Science: Part A: Polymer Chemistry
2000, 38, 4165-4176.

49.Liu, Y. L.; Yu, J. M.; Chou, C. I., Preparation and Properties of Novel
Benzoxazine and Polybenzoxazine with Maleimide Groups. Journal of
Polymer Science: Part A: Polymer Chemistry 2004, 42, 5954-5963.

50.Liu, Y.L.; Yu, J.M.,Cocuring Behaviors of Benzoxazine and Maleimide
Derivatives and the Thermal Properties of the Cured Products. Journal of
Polymer Science: Part A: Polymer Chemistry 2006, 44, 1890-1899.

51.Liu, Y. L.; Hsu, C. W.; Chou, C. I., Silicon-Containing Benzoxazines and
Their Polymers:Copolymerization and Copolymer Properties. Journal of
Polymer Science: Part A: Polymer Chemistry 2007, 45, 1007-1015.

52.Kumar, K. S. S.; Nair, C. P. R.; Radhakrishnan, T. S.; Ninan, K. N., Bis Allyl
Benzoxazine: Synthesis, Polymerisation and Polymer Properties. European
Polymer Journal 2007, 43, 2504-2514.

53.Kiskan, B.; Aydogan, B.; Yagci, Y., Synthesis, Characterization, and
Thermally Activated Curing of Oligosiloxanes Containing Benzoxazine
Moieties in the Main Chain. Journal of Polymer Science: Part A: Polymer
Chemistry 2009, 47, 804-811.

54.Kiskkan, B.; Yagci, Y.; Ishida, H., Synthesis, Characterization, and Properties
of New Thermally Curable Polyetheresters Containing Benzoxazine Moieties
in the Main Chain. Journal of Polymer Science: Part A: Polymer Chemistry
2008, 46, 414-420.

55.Ardhyananta, H.; Wahid, M. H.; Ismail, H.; Takeichi, T., Performance
Enhancement of Polybenzoxazine by Hybridization with Polysiloxane.
Polymer 2008, 49, 4585-4591.

56.Takeichi, T.; Saito, Y.; Agag, T.; Muto, H.; Kawauchi, T., High-Performance
Polymer Alloys of Polybenzoxazine and Bismaleimide. Polymer 2008, 49,
1173-1179.

57.Agag, T.; Takeichi, T., Preparation and Cure Behavior of Organoclay-
Modified Allyl-Functional Benzoxazine Resin and the Properties
of Their Nanocomposites. Polymer Composites 2008, 29, 750-757.

58.Liu, Y. L.; Chou, C. I., High Performance Thermosets from a Curable
Diels–Alder Polymer Possessing Benzoxazine Groups in the Main Chain.
Journal of Polymer Science: Part A: Polymer Chemistry 2008, 46,
6509-6517.

59.Kimura, H.; Matsumoto, A.; Ohtsuka, K., Studies on New Type of Phenolic
Resin-Curing Reaction of Bisphenol-A-Based Benzoxazine with Epoxy Resin
Using Latent Curing Agent and the Properties of the Cured Resin. Journal of
Applied Polymer Science 2008, 109, 1248-1256.

60.Cao, G. P.; Chen, W. J.; Liu, X. B., Synthesis and thermal properties of the
thermosetting resin based on cyano functionalized benzoxazine. Polymer
Degradation and Stability 2006, 93, 739-744.

61.Sponton, M.; Ronda, J. C.; Galia, M.; diz, V. C., Studies on Thermal and
Flame Retardant Behaviour of Mixtures of Bis(m-aminophenyl)methy-
lphosphine Oxide Based Benzoxazine and Glycidylether or Benzoxazine of
Bisphenol A. Polymer Degradation and Stability 2008, 93, 2158-2165.

62.Su, Y. C.; Chang, F. C., Synthesis and Characterization of Fluorinated
Polybenzoxazine Material with Low Dielectric Constant. Polymer 2003, 44,
7989-7996.

63.Liu, Y. L.; Chou, C. I., High Performance Benzoxazine Monomers and
Polymers Containing Furan Groups. Journal of Polymer Science: Part A:
Polymer Chemistry 2005, 43, 5267-5282.

64.Su, Y. C.; Chen, W. C.; Ou, K. l.; Chang, F.-C., Study of the Morphologies
and Dielectric Constants of Nanoporous Materials Derived from
Benzoxazine-terminated Poly(ε-caprolactone)/Polybenzoxazine Co-polymers.
Polymer 2005, 46, 3758-3766.

65.Lee, Y. J.; Kuo, S. W.; Huang, C. F.; Chang, F. C., Synthesis and
Characterization of Polybenzoxazine Networks Nanocomposites Containing
Multifunctional Polyhedral Oligomeric Silsesquioxane (POSS). Polymer
2006, 47, 4378-4386.

66.Lee, Y. J.; Huang, J. M.; Kuo, S. W.; Lu, J. S.; Changa, F. C., Polyimide
and Polyhedral Oligomeric Silsesquioxane Nanocomposites for
Low-Dielectric Applications. Polymer 2005, 46, 173-181.

67.Chen, Y.; Chen, L.; Nie, H.; Kang, E. T., Low- Nanocomposite Films Based
on Polyimides with Grafted Polyhedral Oligomeric Silsesquioxane. Journal
of Applied Polymer Science 2006, 99, 2226-2232.

68.Ye, Y. S.; Chen, W. Y.; Wang, Y. Z., Synthesis and Properties of
Low-Dielectric-Constant Polyimides with Introduced Reactive Fluorine
Polyhedral Oligomeric Silsesquioxanes. Journal of Polymer Science: Part
A:Polymer Chemistry 2006, 44, 5391-5402.

69.Liu, Y. L.; Lee, H. C., Preparation and Properties of Polyhedral
Oligosilsequioxane Tethered Aromatic Polyamide Nanocomposites through
Michael Addition between Maleimide-Containing Polyamides and an
Amino-Functionalized Polyhedral Oligosilsequioxane. Journal of Polymer
Science: Part A: Polymer Chemistry 2006, 44, 4632-4643.

70.Wang, Y. Z.; Yang, C. C.; Lin, C. L.; Chang, F. C., Novel Epoxy
Nanocomposite of Low Dk Introduced Fluorine-Containing POSS Structure.
Journal of Polymer Science: Part B: Polymer Physics 2007, 45, 502-510.

71.Wahab, M. A.; Mya, K. Y.; He, C., Synthesis, Morphology, and Properties of
Hydroxyl Terminated-POSS/Polyimide Low-k Nanocomposite Films.
Journal of Polymer Science: Part A: Polymer Chemistry 2008, 46,
5887-5896.

72.Liu, Y. L.; Fangchiang, M. H., Polyhedral Oligomeric Silsesquioxane
Nanocomposites Exhibiting Ultra-Low Dielectric Constants Through POSS
Orientation into Lamellar Structures. Journal of Materials Chemistry 2009,
19, 3643-3647.

73.Zheng, L.; Waddon, A. J.; Farris, R. J.; Coughlin, E. B., X-ray
Characterizations of Polyethylene Polyhedral Oligomeric Silsesquioxane
Copolymers. Macromolecules 2002, 35, 2375-2379.

74.Leu, C. M.; Reddy, G. M.; Wei, K. H.; Shu, C. F., Synthesis and Dielectric
Properties of Polyimide-Chain-End Tethered Polyhedral Oligomeric
Silsesquioxane Nanocomposites. Chemistry Material 2003, 15, 2261-2265.

75.Zheng, L.; Hong, S.; Cardoen, G. g.; Burgaz, E.; Gido, S. P.; Coughlin, E. B.,
Polymer Nanocomposites through Controlled Self-Assembly of Cubic
Silsesquioxane Scaffolds. Macromolecules 2004, 37, 8606-8611.

76.Huang, J.; He, C.; Liu, X.; Xu, J.; Christine, S.T.; Chow, S. Y.,
Organic–Inorganic Nanocomposites from Cubic Silsesquioxane Epoxides:
Direct Characterization of Interphase, and Thermomechanical Properties.
Polymer 2005, 46.7018-7027

77.Nanda, A. K.; Wicks, D. A.; Madbouly, S. A.; Otaigbe, J. U., Nanostructured
Polyurethane/POSS Hybrid Aqueous Dispersions Prepared by
Homogeneous Solution Polymerization. Macromolecules 2006, 39,
7037-7043.

78.Wu, G.; Su, Z., Polyhedral Oligomeric Silsesquioxane Nanocomposite Thin
Films via Layer-by-layer Electrostatic Self-Assembly. Chemistry Material
2006, 18, 3726-3732.

79.Liu, Y. L.; Tseng, M. C.; FangChiang, M. H., Polymerization and
Nanocomposites Properties of Multifunctional Methylmethacrylate POSS.
Journal of Polymer Science: Part A: Polymer Chemistry 2008, 46,
5157-5166.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top