(44.192.70.216) 您好!臺灣時間:2021/05/09 18:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:朱婉菱
研究生(外文):Wan-Ling Chu
論文名稱:以表面電漿共振技術研究自組裝聚氧化乙烯三團聯共聚物之堆疊構形控制及探討其與人體血漿蛋白之吸附行為
論文名稱(外文):A systematic SPR study of human plasma protein adsorption behavior on the controlled surface packing of self-assembled poly(ethylene oxide) triblock copolymer surfaces
指導教授:張雍張雍引用關係
指導教授(外文):Yung Chang
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:113
中文關鍵詞:表面電將共振儀三團聯共聚物抗生物沾黏表面生物相容性
外文關鍵詞:biocompatibilitynonfouling surfacetriblock copolymersPEO-PPO-PEOsurface plasmon resonance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:152
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
控制具有生物相容性之抗沾黏表面對於醫療需求是重要的環節。於本研究中,我們利用物理吸附方式將具有疏水-親水的三團聯共聚物聚氧乙烯-聚氧丙烯-聚氧乙烯(PEO-PPO-PEO),吸附於自組裝單層膜的表面CH3-SAM上。研究系統以兩種不同系列的PEO-PPO-PEO來改變基材表面的親疏水特性。第一個系統為具有相同的PPO分子量(~2 k),但不同的PEO/PPO的比例(~20/80, 40/60以及80/20, w/w);第二個系統為具有不同的總分子量(~9, 11和 15 k),但具有相同的PEO/PPO比例(80/20, w/w)。以表面電漿共振儀來即時量測共聚物於疏水表面CH3-SAM的吸附量及蛋白質吸附於共聚物表面的吸附量。本研究將系統地探討PEO-PPO-PEO分子量、PEO/PPO比例與不同的鹽離子強度對於單一蛋白(Fibrinogen和BSA)和混合蛋白吸附行為的影響。實驗發現經由PluronicTM F108所處理的表面於最佳條件下(分子量~15 k和PEO/PPO比例為80/20)具有高度的抗非特定蛋白吸附的能力。本研究中發現經由PEO-PPO-PEO共聚物所改質的表面,可以藉由控制共聚物於的表面堆疊密度來達到超低生物沾黏的表面,如透過控制共聚物之分子量、親疏水的比例和親水基團的覆蓋程度。
A well-controlled biocompatible nonfouling surface is significant for biomedical requirements, especially for the improvement of biocompatibility. We demonstrate the low or nonfouling surface by coating hydrophobic-hydrophilic triblock copolymer of poly(ethylene oxide)-poly(propylene oxide)- poly(ethylene oxide) (PEO-PPO-PEO) on the CH3-terminated self-assembled monolayer (SAM). Two types of copolymers are used to modify the surface, one with different PEO/PPO ratio (~20/80, 40/60, and 80/20, w/w) but the same ppo molecular weight (~2 k), the other with different copolymer MWs (~9, 11, and 15 k) but the same PEO/PPO ratio (80/20, w/w). In situ surface plasmon resonance (SPR) sensor is used to evaluate polymer adsorption on the SAMs and subsequent protein adsorption on the copolymer-treated surface. The effect of PEO-PPO-PEO molecular weight, PPO-to-PEO ratio, and ionic strength on protein adsorption from single protein solution of Fibrinogen, BSA, and complex mixed proteins are systematically investigated. A PluronicTM F108 treated surface is highly resistant to non-specific protein adsorption under the optimized conditions (MW of 15 k and PEO/PPO ratio of 80/20). This work demonstrates that the PEO-PPO-PEO polymer is able to achieve ultra low fouling surface modification by controlling surface packing density of polymers (molecular weight, hydrophobic/hydrophilic ratio, and hydrophilic group coverage).
目錄
中文摘要 I
英文摘要 II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 XI
第一章 緒論 1
1.1 研究背景 1
1.2 聚乙烯乙二醇之簡介與發展 4
1.3 研究動機與目的 6
第二章 文獻回顧 8
2.1 生物材料發展背景 8
2.1.1 生物材料的分類及基本性質 11
2.1.2 生物材料的使用性能 16
2.1.3 生物材料的未來發展 20
2.2 生物分子與材料表面之交互作用 23
2.2.1 血液之組成 23
2.2.2 血液組成與表面的交互作用 24
2.2.3 水與表面的交互作用 24
2.2.4 蛋白質與表面的交互作用 25
2.2.5 細胞與表面的交互作用 27
2.2.6 血栓的形成 28
2.3 三團聯共聚物PluronicTM介紹 30
2.3.1 PluronicTM命名方式 34
2.3.2 臨界微胞濃度(Critical Micelle Concentration ) 36
2.4 表面電漿共振(Surface Plasmon Resonance, SPR) 39
2.4.1 表面電漿共振原理 39
2.4.2 表面電漿共振感測類型 42
2.4.3 表面電漿共振的應用 43
第三章 實驗藥品、設備及實驗方法 53
3.1 實驗藥品 53
3.2 實驗設備 57
3.3 實驗方法 58
3.3.1 緩衝溶液的製備 58
3.3.2 蛋白質溶液的製備 59
3.3.3 血漿溶液的分離與稀釋 59
3.3.4 金表面改質 60
3.3.5 表面電漿共振感測儀之實驗 62
3.3.6 晶片表面親疏水性量測:液相接觸角 63
第四章 結果與討論 64
4.1 自組裝三團聯共聚物PEO-PPO-PEO表面 66
4.2 PEO-PPO-PEO表面之親疏水性量測:液相接觸角 71
4.3 蛋白質吸附測試 74
4.3.1 單一蛋白質於PEO-PPO-PEO表面之吸附測試 75
4.3.2 表面PEO鏈段分佈密度與蛋白吸附之關聯性 80
4.4 PEO-PPO-PEO表面之血液相容性 83
4.5 最適化表面堆疊密度之PEO-PPO-PEO表面其抗蛋白質吸附特性的探討 87
4.5.1蛋白質三重複吸附測試 87
4.5.2溶液離子強度對於抗蛋白質吸附的影響 88
第五章 結論 93
參考文獻 94
附錄 102


圖目錄
第二章
圖 2- 1 人工關節替換手術中各種失敗因素與植入時間的關係。表示因感染所致失敗的作用逐漸減弱,其他因素作用日益增強。 20
圖 2- 2 血栓形成過程示意圖。 29
圖 2- 3 由乙烯、丙烯所衍生的界面活性劑及其原料之合成途徑。 30
圖 2- 4 三團聯共聚物合成示意圖。 31
圖 2- 5 三團聯共聚物PEO-PPO-PEO圖表“ pluronic grid ”。縱線上的共聚物具有相同的PPO/PEO比例,橫線上具有相同的PPO分子量。 35
圖 2- 6 界面活性劑分子在水溶液中安定化之方向。 36
圖 2- 7 表面張力─濃度曲線與界面活性劑之溶解狀態。 37
圖 2- 8 表面電漿波示意圖。 40
圖 2- 9 色散關係曲線圖。SP:系統之表面電漿波色散曲線。 41
圖 2- 10 (a)Otto組態示意圖;(b)Kretshmann組態示意圖。 42
圖 2- 11 抗原決定部位定位研究。 46
圖 2- 12 蛋白質在自組裝單分子膜層上的吸附。 48
圖 2- 13 不同蛋白質在血漿中於聚苯乙烯表面的吸附。用相應的抗體檢測浸泡在0.1%的血漿溶液中的聚苯乙烯表面上吸附的血清白蛋白、免疫球蛋白G和纖維蛋白原的量隨浸泡時間的變化。 49
圖 2- 14 血清白蛋白在不同改值聚苯乙烯表面上的吸附。 51
圖 2- 15 親和素在PLA-PEG聚合和經過生物素修飾PLA-PEG-biotin 52

第三章
圖 3- 1 自組裝之表面電漿共振感測儀。(1)蠕動幫浦,(2)白光光源,(3)偏極裝置,(4)晶片載具裝置組(含flow cell、夾具、耦合稜鏡),(5)訊號偵測裝置,(6)訊號處理器,(7)溫控裝置。 62
第四章
圖 4- 1 圖示說明實驗流程步驟。PEO-PPO-PEO先吸附於生物晶片上,然後再通入血漿蛋白進行吸附測試。 64
圖 4- 2 基本的表面電漿共振儀(SPR)的訊號圖。PluronicTM F108先吸附於表面上,接著直接通入人體纖維蛋白進行吸附測試。於SPR上蛋白質的吸附量,約等於共振訊號波長偏移1nm,轉換為15ng/cm2蛋白質的吸附量。 65
圖 4- 3 利用表面電漿共振儀(SPR)量測五個不同的三團聯共聚物(PluronicTM L62, L64, F68, F88 和F108)於CH3-SAM表面在不同濃度下之吸附量。於SPR上三團聯共聚物的吸附量,可藉由共振訊號波長偏移1nm,轉換約等於22ng/cm2三團聯共聚物的吸附量。 69
圖 4- 4 圖示說明靜態液相接觸角實驗的操作步驟。 71
圖 4- 5 不同Pluronic溶液於四個不同濃度下的表面親疏水性測試,於液相操作的接觸角數據。 73
圖 4- 6 利用SPR於23℃下進行人類纖維蛋白原(Fibrinogen)吸附於三團聯共聚物 PEO-b-PPO-b-PEO(L62 , L64 , F68 , F88和F108)於不同濃度CPEO-PPO-PEO下所形成表面。 77
圖 4- 7 利用SPR於23℃下進行牛血清蛋白(BSA)吸附於三團聯共聚物 PEO-b-PPO-b-PEO(L62 , L64 , F68 , F88和F108)於不同濃度CPEO-PPO-PEO下所形成表面。 78
圖 4- 8 圖示說明高分子不同的堆疊程度所造成的蛋白質吸附於疏水表面(CH3-SAM)上。 79
圖 4- 9 利用SPR於23℃下,牛血清蛋白(BSA)和纖維蛋白原(Fibrinogen)吸附於三團聯共聚物F68 , F88和F108對應表面PEO鏈堆疊密度(個PEO鏈/100 nm2單位面積上)。 81
圖 4- 10 血漿蛋白吸附於CH3-SAM、OEG-SAM、F108-L和F108-H表面於37oC下進行吸附測試。於SPR上共振訊號波長偏移1nm,約等於15ng/cm2蛋白的吸附量。 85
圖 4- 11 於23oC,人類纖維蛋白原(Fibrinogen) 1.0mg/mL三循環的吸附於三團聯共聚物F108表面。 88
圖 4- 12 於23oC下以SPR進行三種不同鹽類和濃度變化下,Fibrinogen 三重複不可逆之吸附測試於F108-H表面,以三種不同顏色分別代表三種不同的鹽類。 90
圖 4- 13 (A)溶質優先從蛋白質鄰近鍵結水區域排出,(B)具有優先排出性的溶質,其表面能夠抵抗蛋白質吸附。 92


表目錄
第二章
表2- 1生物材料的應用 8
表2- 2金屬材料、有機高分子、無機非金屬材料的性能比較。 13
表2- 3生物陶瓷材料的臨床應用範圍。 15
表2- 4生物材料在器官中的應用。 17
表2- 5應用於人體系統的生物材料。 17
表2- 6各種生物材料優缺點比較。 18
表2- 7血液組成比例。 23
表2- 8 HLB値與用途的對應關係與水溶性的關係。 32
表2- 9 三團聯共聚物PluronicTM(PEO-PPO-PPO)的特性。 33
第三章
表3- 1 實驗設備列表 57
第四章
表4- 1 三團聯共聚物PluronicTM PEO-PPO-PEO分子量組成表a。 67
1.nolayers. Langmuir, 2004. 20(20): p. 8931-8938. Knowles, N.G., et al., A model for studying epithelial attachment and morphology at the interface between skin and percutaneous devices. Journal of Biomedical Materials Research - Part A, 2005. 74(3): p. 482-488.
2.Basch, H. and M.R. Ratner, Molecular binding at gold transport interfaces. IV. Thiol chemisorption. Journal of Chemical Physics, 2004. 120(12): p. 5771-5780.
3.Niemeyer, C.M., Functional Hybrid Devices of Proteins and Inorganic Nanoparticles. Angew. Chem. Int. Ed., 2003. 42: p. 5796-5800.
4.Sigal, G.B., M. Mrksich, and G.M. Whitesides, Effect of Surface Wettability on the Adsorption of Proteins and Detergents. J. Am. Chem. Soc., 1998. 120: p. 3464-3473.
5.Senaratne, W., L. Andruzzi, and C.K. Ober, Self-assembled monolayers and polymer brushes in biotechnology: Current applications and future perspectives. Biomacromolecules, 2005. 6(5): p. 2427-2448.
6.Kwak, D., Y.G. Wu, and T.A. Horbett, Fibrinogen and von Willebrand's factor adsorption are both required for platelet adhesion from sheared suspensions to polyethylene preadsorbed with blood plasma. Journal of Biomedical Materials Research Part A, 2005. 74A(1): p. 69-83.
7.Harris, J.M., poly(ethylene glycol) Chemistry: Biotechinical and Biomedical Applications. 1992, New York: Plenum Press.
8.Dolan, A.K. and S.F. Edwards, The effect of excluded volume on polymer dispersant action. Proc. R. Soc. Lond, 1975. 343: p. 427-442.
9.Hermans, J., Excluded-volume theory of polymer-protein interactions based on polymer chain statistics. J Chem Phys 1982. 77: p. 2193-2203.
10.Queriroz, J.A., F.A.P. Garcia, and J.M.S. Cabral, Hydrophobic interaction chromatography of Chromobacterium viscosum lipase on polyethylene glycol immobilized on Sepharose. Journal of Chromatography A, 1996. 734: p. 213-219.
11.Fee, C.J. and J.M. Van Alstine, PEG-proteins:Reaction engineering and separation issues. Chemical Engineering Science, 2006. 61: p. 924-939.
12.Nie, F.Q., et al., Acrylonitrile-based copolymer membranes containing reactive groups:effects of surface-immobilized poly(ethylene glycol)s on anti-fouling properties and blood compatibility. Polymer 2004. 45: p. 399-407.
13.Fan, X.W., L.J. Lin, and P.B. Messersmith, Cell Fouling Resistance of Polymer Brushes Grafted from Ti Substrates by Surface-Initiated Polymerization:Effect of Ethylene Glycol Side Chain Length. Biomacromolecules, 2006. 7: p. 2443-2448.
14.Li, L., et al., Protein adsorption on oligo(ethylene glycol)-terminated alkanethiolate self-assembled monolayers: The molecular basis for nonfouling behavior. J Phys Chem B, 2005. 109: p. 2934-2941.
15.Zheng, J., et al., Molecular Simulation Study of Water Interactions with Oligo (Ethylene Glycol)-Terminated Alkanethiol Self-Assembled Mo
16.Capannelli, G., et al., Protein Fouling Behavior of Ultrafiltration Membranes Prepared with Varying Degrees of Hydrophilicity. Process Biochemistry, 1990. 25(6): p. 221-224.
17.阮建明,鄒倫鵬,黃伯云, 生物材料學. 2004, 北京: 科學出版社.
18.王國建,劉琳, 特種與功能高分子材料. 2004, 北京: 中國石化出版社.
19.國家自然科學基金委員會工程與材料科學部, 有機高分子材料科學. 2006, 北京: 科學出版社.
20.Gill, A., Cold plasma in materials fabrication: From fundamentals to applications. Institute of electrical and electronics engineers. 1994, USA.
21.Hanson, S.R., Blood coagulation and blood-materials interactions. 2004, San Diego: Biomaterials Science, Elsevier, Academic Press.
22.Il Kim, H. and S.S. Kim, Plasma treatment of polypropylene and polysulfone supports for thin film composite reverse osmosis membrane. . Journal of Membrane Science, 2006. 286(1-2): p. 193-201.
23.Singh, N., et al., Modification of regenerated cellulose ultrafiltration membranes by surface-initiated atom transfer radical polymerization. . Journal of Membrane Science, 2008. 311(1-2): p. 225-234.
24.Quddos, A., et al., The effect of crosslinking agents on the synthesis and swelling of the polymer networks. Journal of the Chemical Society of Pakistan, 2003. 25(4): p. 299-304.
25.Park, S.J., S.Y. Jin, and S. Kaang, Influence of thermal treatment of nano-scaled silica on interfacial adhesion properties of the silica/rubber compounding. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2005. 398(1-2): p. 137-141.
26.Mkhatresh, O.A. and F. Heatley, Thermal oxidative and photo-oxidative degradation of polytetrahydrofuran studied using H-1 NMR, C-13 NMR and GPC. Polymer International, 2004. 53(7): p. 959-971.
27.Ulbricht, M., et al., Photo-induced graft polymerization surface modifications for the preparation of hydrophilic and low-protein-adsorbing ultrafiltration membranes. Journal of Membrane Science, 1996. 115(1): p. 31-47.
28.Wei, J., et al., Relationship between interfacial polymerization monomer structure and separation properties of PPESK based composite membranes. . Acta Polymerica Sinica, 2006. 2: p. 298-302.
29.Caliceti, P., Controlled Release of Proteins and Peptides from Hydrogels Synthesized by Gamma-Ray-Induced Polymerization. Farmaco, 1992. 47(3): p. 275-286.
30.刈米孝夫, 界面活性劑的原理與應用. 1986, 日本: 高立圖書有限公司.
31.Alexandridis, P. and T.A. Hatton, Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer surfactants in aqueous solution and at interfaces: thermodynamics, structure, dynamics, and modeling. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 1995. 96: p. 1-46.
32.歐靜枝, 乳化溶化技術實務. 1990, 台灣: 復漢出版社.
33.莊晟榜, Tween系列界面活性劑對微生物降解碳氫化合物之影響,化學工程學系. 2002, 私立中原大學.
34.Alexandridis, P., J.F. Holzwarth, and T.A. Hatton, Micellization of Poly(ethylene oxide)-Poly(propyleneoxide)-Poly(ethylene oxide) Triblock Copolymers in Aqueous Solutions: Thermodynamics of Copolymer Association. Macromolecules, 1994. 27: p. 2414-2425.
35.Wanka, G., H. Hoffmann, and W. Ulbricht, Phase diagrams and aggregation behavior of poly (oxyethylene)-poly (oxypropylene)-poly (oxyethylene) triblock coplymers in aqueous solutions. Macromolecules, 1990. 27: p. 4115-4159.
36.Jorgenson, E.B., et al., Effects of salts on micellization and gelation of triblock copolymer studied by rheology and light scattering. Macromolecules, 1997. 30: p. 2355-2364.
37.Schick, M.J., Nonionic surfactants: Physical chemistry. 1987, New York: Marcel Dekker.
38.Wanka, G., H. Hoffmann, and W. Ulbricht, The aggregation of poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide)-block-copolymers in aqueous solution. Colloid Polym. Sci., 1990. 268: p. 101-117.
39.Allen, C., D. Maysinger, and A. Eisenberg, Nano-engineering block copolymer aggregates for drug delivery. Colloids and Surfaces B-Biointerfaces, 1999. 16: p. 3-27.
40.Morgan, H. and D.M. Taylor, A surface plasmon resonance immunosensor based on the streptavidin-biotin complex. Biosensor and Bioelectronics, 1992. 7: p. 405-410.
41.Boozer, C., et al., DNA-directed protein immobilization for simultaneous detection of multiple analytes by surface plasmon resonance biosensor. Analytical Chemistry, 2006. 78(5): p. 1515-1519.
42.Ladd J., C.B., Q. M. Yu, S. F. Chen, J. Homola, S. Jiang, DNA-directed protein immobilization on mixed self-assembled monolayers via a Streptavidin bridge. Langmuir, 2004. 20(19): p. 8090-8095.
43.Myszka, D.G., Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors. Biotechnology, 1997. 8(1): p. 50-57.
44.Myszka, D.G., M.D. Jonsen, and B.J. Graves, Equilibrium analysis of high affinity interactions using BIACORE. Analytical Biochemistry, 1998. 265(2): p. 326-330.
45.許志銘, 表面電漿共振感測儀用於抗體與抗原結合之動力學分析,生醫工程與環境科學系. 2006, 國立清華大學.
46.Ritchie, R.H., Plasma losses by fast electrons in thin films. Physical Review, 1957. 106: p. 874.
47.Otto, A., Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Physik, 1968: p. 216.
48.Kretschmann, E. and H. Raether, Radiative decay of non-radiative surface plasmons excited by light. Z. Naturforsch, 1968. 23A: p. 2135-2136.
49.Liedburg, B., C. Nyland, and I. Lundstrom, Sensors Actuator. 1983.
50. [cited; Available from: http://www.biacore.com/lifesciences/index.html.
51.Liedberg, B., I. Lundström, and E. Stenberg, Principles of biosensing with an extended coupling matrix and surface plasmon resonance. Sensors and Actuators B: Chemical, 1993. 11(1-3): p. 63-72.
52.Morgan, H., D.M. Taylor, and C. D'Silva, Surface plasmon resonance studies of chemisorbed biotin-streptavidin multilayers Thin Solid Films, 1992. 209(1): p. 122-126.
53.Altschuh, D., et al., Determination of kinetic constants for the interaction between a monoclonal antibody and peptides using surface plasmon resonance. Biochemistry, 1992. 31(27): p. 6298-6304.
54.Dubs, M.C., D. Altschuh, and M.H.V. Van Regenmortel, Interaction between viruses and monoclonal antibodies studied by surface plasmon resonance Immunology Letters, 1992. 31(1): p. 59-64.
55.Polymenis, M. and S.D. Stollar, Domain interactions and antigen binding of recombinant anti-Z-DNA antibody variable domains. The role of heavy and light chains measured by surface plasmon resonance. J Immunol., 1995. 154: p. 2198-2208.
56.Bondeson, K., et al., Lactose Repressor-Operator DNA Interactions: Kinetic Analysis by a Surface Plasmon Resonance Biosensor. Analytical Biochemistry, 1993. 214(1): p. 245-251.
57.Ward, L.D., et al., Use of a Biosensor with Surface Plasmon Resonance Detection for the Determination of Binding Constants: Measurement of Interleukin-6 Binding to the Soluble Interleukin-6 Receptor. Biochemistry, 1995. 34(9): p. 2901-2907.
58.Fisher, R.J., et al., Real-time DNA binding measurements of the ETSl recombinant oncoproteins reveal significant kinetic differences between the p42 and p51 isoforms. Protein Sci., 1994. 3(2): p. 257-266.
59.Berit, J., G. Margaretha, and H. Kari, Epitope mapping and binding kinetics of monoclonal antibodies studied by real time biospecific interaction analysis using surface plasmon resonance. Journal of Immunological Methods, 1993. 160(2): p. 191-198.
60.Plant, A.L., et al., Phospholipid/Alkanethiol Bilayers for Cell-Surface Receptor Studies by Surface Plasmon Resonance. Analytical Biochemistry 1995. 226(2): p. 342-348.
61.Striebel, C., A. Brecht, and G. Gauglitz, Characterization of biomembranes by spectral ellipsometry, surface plasmon resonance and interferometry with regard to biosensor application. Biosensors and Bioelectronics, 1994. 9(2): p. 139-146.
62.Silin, V., H. Weetall, and D.J. Vanderah, SPR Studies of the Nonspecific Adsorption Kinetics of Human IgG and BSA on Gold Surfaces Modified by Self-Assembled Monolayers (SAMs). Journal of Colloid and Interface Science 1997. 185(1): p. 94-103.
63.Zenhausern, F., M. Adrian, and P. Descouts, Solution Structure and Direct Imaging of Fibronectin Adsorption to Solid Surfaces by Scanning Force Microscopy and Cryo-electron Microscopy. J Electron Microsc., 1993. 42: p. 378-388.
64.Caruso, F., D. Neil Furlong, and P. Kingshott, Characterization of Ferritin Adsorption onto Gold. Journal of Colloid and Interface Science, 1997. 186(1): p. 129-140.
65.Milan Mrksich, G.B.S., George M. Whitesides, Surface Plasmon Resonance Permits in Situ Measurement of Protein Adsorption on Self-Assembled Monolayers of Alkanethiolates on Gold. Langmuir, 1995. 11(11): p. 4383-4385.
66.Sigal, G.B., et al., A Self-Assembled Monolayer for the Binding and Study of Histidine-Tagged Proteins by Surface Plasmon Resonance. Analytical Chemistry, 1996. 68(3): p. 490-497.
67.Louise M. Williams, S.D.E., Thomas M. Flynn, Andrew Marsh, Peter F. Knowles, Richard J. Bushby, and Neville Boden, Kinetics of the Unrolling of Small Unilamellar Phospholipid Vesicles onto Self-Assembled Monolayers. Langmuir, 1997. 13(4): p. 751-757.
68.Jordan, C.E. and R.M. Corn, Surface Plasmon Resonance Imaging Measurements of Electrostatic Biopolymer Adsorption onto Chemically Modified Gold Surfaces. Analytical Chemistry, 1997. 69(7): p. 1449-1456.
69.Green, R.J., et al., Surface plasmon resonance for real time in situ analysis of protein adsorption to polymer surfaces. Biomaterials, 1997. 18(5): p. 405-413.
70.Green, R.J., et al., Competitive protein adsorption as observed by surface plasmon resonance. Biomaterials, 1999. 20: p. 385-391.
71.Simon L. McGurk, R.J.G., Giles H. W. Sanders, Martyn C. Davies, Clive J. Roberts, Saul J. B. Tendler, and Philip M. Williams, Molecular Interactions of Biomolecules with Surface-Engineered Interfaces Using Atomic Force Microscopy and Surface Plasmon Resonance. Langmuir, 1999. 15: p. 5136-5140.
72.Pavey, K.D. and C.J. Olliff, SPR analysis of the total reduction of protein adsorption to surfaces coated with mixtures of long- and short-chain polyethylene oxide block copolymers. Biomaterials, 1999. 20: p. 885-890.
73.Frazier, R.A., et al., Characterization of protein-resistant dextran monolayers. Biomaterials, 2000. 21: p. 957-966.
74.Green, R.J., et al., A surface plasmon resonance study of albumin adsorption to PEO-PPO-PEO triblock copolymers. Biomedical Materials Research, 1998. 42(2): p. 165-171.
75.Cannizzaro, S.M., et al., A Novel Biotinylated Degradable Polymer for Cell-Interactive Applications. Biotechnology and Bioengineering, 1998. 58(5): p. 529-535.
76.Black, F.E., et al., Surface Engineering and Surface Analysis of a Biodegradable Polymer with Biotinylated End Groups. Langmuir, 1999. 15: p. 3157-3161.
77.Fujii, K., et al., Prevention of biofilm formation with a coating of 2-methacryloyloxyethyl phosphorylcholine polymer. Journal of Veterinary Medical Science, 2008. 70(2): p. 167-173.
78.Qiqiang Wang, L.L., and Sanping Jiang, Effects of a PPO-PEO-PPO Triblock Copolymer on Micellization and Gelation of a PEO-PPO-PEO Triblock Copolymer in Aqueous Solution. Langmuir, 2005. 21(20): p. 9068-9075.
79.Lee, S., et al., Influence of Molecular Architecture on the Adsorption of Poly(ethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide) on PDMS Surfaces and Implications for Aqueous Lubrication. Macromolecules, 2004. 37: p. 8349-8356.
80.R. J. Green, S.T., J. Davies, M. C. Davies, C. J. Roberts, and S. J. B. Tendler, Adsorption of PEO-PPO-PEO Triblock Copolymers at the Solid/Liquid Interface: A Surface Plasmon Resonance Study. Langmuir, 1997. 13(24): p. 6510-6515.
81.Nederberg, F., et al., Biocompatible and biodegradable phosphorylcholine ionomers with reduced protein adsorption and cell adhesion. Journal of Biomaterials Science-Polymer Edition, 2006. 17(6): p. 605-614.
82.Sibarani, J., M. Takai, and K. Ishihara, Surface modification on microfluidic devices with 2-methacryloyloxyethyl phosphorylcholine polymers for reducing unfavorable protein adsorption. Colloids and Surfaces B-Biointerfaces, 2007. 54(1): p. 88-93.
83.Kros, A., et al., Biocompatible polystyrenes containing pendant tetra(ethylene glycol) and phosphorylcholine groups. Journal of Polymer Science Part a-Polymer Chemistry, 2001. 39(4): p. 468-474.
84.Zhu, A.P., et al., Cell adhesion behavior of chitosan surface modified by bonding 2-methacryloyloxyethyl phosphorylcholine. Journal of Biomaterials Science-Polymer Edition, 2002. 13(5): p. 501-510.
85.Chang, Y., et al., Highly stable nonbiofouling surface with well-packed grafted zwitterionic polysulfobetaine for-plasma protein repulsion. Langmuir, 2008. 24: p. 5453-5458.
86.Lazos D, F.S., Ulbricht M., Size-selective protein adsorption to polystyrene surfaces by self-assembled grafted poly(ethylene glycols) with varied chain lengths. Langmuir, 2005. 21: p. 8774-8784.
87.Yung Chang, S.C., Zheng Zhang, and Shaoyi Jiang, Highly Protein-Resistant Coatings from Well-Defined Diblock Copolymers Containing Sulfobetaines. Langmuir, 2006. 22: p. 2222-2226.
88.Jung LS, C.C., Chinowsky TM, Mar MN, Yee SS., Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films. Langmuir, 1998. 14: p. 5636-5648.
89.Chen, S.F., et al., Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: Insights into nonfouling properties of zwitterionic materials. Journal of the American Chemical Society, 2005. 127(41): p. 14473-14478.
90.Higuchi, A., et al., Serum protein adsorption and platelet adhesion on pluronic (TM)-adsorbed polysulfone membranes. Biomaterials, 2003. 24: p. 3235-3245.
91.Ratner, B.D., The catastrophe revisited: Blood compatibility in the 21st century. Biomaterials, 2007. 28: p. 5144-5147.
92.Shen MC, W.M., Castner DG, Ratner BD, Horbett TA., Multivariate surface analysis of plasma-deposited tetraglyme for reduction of protein adsorption and monocyte adhesion. Langmuir, 2003. 19: p. 1692-1699.
93.Holmlin, R.E., et al., Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir, 2001. 17(9): p. 2841-2850.
94.Chen, H., Y.C. Nho, and A.S. Hoffman, Grafting copolymerization of 2-methacryloyloxyethyl phosphorylcholine (MPC) onto pre-irradiated cellulose films. Journal of Biomaterials Science-Polymer Edition, 2004. 15(7): p. 841-849.
95.Ma, H.W., et al., Non-fouling" oligo(ethylene glycol)-functionalized polymer brushes synthesized by surface-initiated atom transfer radical polymerization. Advanced Materials, 2004. 16: p. 338-341.
96.Green, R.J., et al., A surface plasmon resonance study of albumin adsorption to PEO-PPO-PEO triblock copolymers. J Biomed Mater Res, 1998. 42: p. 165-171.
97.Zhang, Z., S.F. Chen, and S.Y. Jiang, Dual-functional biomimetic materials: Nonfouling poly(carboxybetaine) with active functional groups for protein immobilization. Biomacromolecules, 2006. 7(12): p. 3311-3315.
98.Munro, M., et al., Alkyl substituted polymers with enhanced albumin affinity. . Transactions - American Society for Artificial Internal Organs, 1987. 21: p. 499-503.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
1. 以表面誘導聚合技術製備含甲基丙烯酸聚乙二醇酯之聚氟化乙二烯薄膜與其低生物結垢性之探討
2. 製備含甲基苯烯酸聚乙二醇酯之低生物結垢性高分子薄膜於抗人體血漿蛋白吸附與血小板貼附之研究
3. 藉表面電漿共振儀分析蛋白質吸附於不同親疏水性質之磺酸根癸烷硫醇混合自組裝單分子層
4. 混合電荷類雙離子性感溫型水凝膠之製備及其生物相容性質研究
5. 陰電性聚氟化乙二烯薄膜之表面親和性控制及其於特定蛋白質辨識與分離效能之研究
6. 幾丁聚醣奈米纖維結構對細胞貼附與增生之研究
7. 使用表面電漿共振儀研究藍色鏈黴菌末端蛋白和粒連結蛋白的交互作用
8. 製備含雙離子性硫代甜菜鹼結構體之感溫型聚丙基丙烯醯胺水凝膠系統與其生物相容性質之探討
9. 利用奈米圖案化及表面電漿共振技術製作pH敏感性光學感測器
10. 雙離子遮蔽效應對於基因轉殖效率和人體血液相容性質的影響
11. 智能型pH感應性之雙離子水膠薄膜製備及其生物相容性質探討
12. 以表面電漿共振技術探討DNA與小分子化合物交互作用之研究
13. 以電漿表面改質聚乳酸-聚甘醇酸共聚物以及聚甲基丙烯酸甲酯之研究
14. 調控金奈米週期性結構之表面電漿共振效應以增強聚三己基噻吩與聚甲基丙烯酸甲酯混摻材料光學性質之研究
15. 表面改質對PHEMA/PVDF滲透蒸發膜分離乙酸乙酯水溶液效能之影響
 
系統版面圖檔 系統版面圖檔