|
1.nolayers. Langmuir, 2004. 20(20): p. 8931-8938. Knowles, N.G., et al., A model for studying epithelial attachment and morphology at the interface between skin and percutaneous devices. Journal of Biomedical Materials Research - Part A, 2005. 74(3): p. 482-488. 2.Basch, H. and M.R. Ratner, Molecular binding at gold transport interfaces. IV. Thiol chemisorption. Journal of Chemical Physics, 2004. 120(12): p. 5771-5780. 3.Niemeyer, C.M., Functional Hybrid Devices of Proteins and Inorganic Nanoparticles. Angew. Chem. Int. Ed., 2003. 42: p. 5796-5800. 4.Sigal, G.B., M. Mrksich, and G.M. Whitesides, Effect of Surface Wettability on the Adsorption of Proteins and Detergents. J. Am. Chem. Soc., 1998. 120: p. 3464-3473. 5.Senaratne, W., L. Andruzzi, and C.K. Ober, Self-assembled monolayers and polymer brushes in biotechnology: Current applications and future perspectives. Biomacromolecules, 2005. 6(5): p. 2427-2448. 6.Kwak, D., Y.G. Wu, and T.A. Horbett, Fibrinogen and von Willebrand's factor adsorption are both required for platelet adhesion from sheared suspensions to polyethylene preadsorbed with blood plasma. Journal of Biomedical Materials Research Part A, 2005. 74A(1): p. 69-83. 7.Harris, J.M., poly(ethylene glycol) Chemistry: Biotechinical and Biomedical Applications. 1992, New York: Plenum Press. 8.Dolan, A.K. and S.F. Edwards, The effect of excluded volume on polymer dispersant action. Proc. R. Soc. Lond, 1975. 343: p. 427-442. 9.Hermans, J., Excluded-volume theory of polymer-protein interactions based on polymer chain statistics. J Chem Phys 1982. 77: p. 2193-2203. 10.Queriroz, J.A., F.A.P. Garcia, and J.M.S. Cabral, Hydrophobic interaction chromatography of Chromobacterium viscosum lipase on polyethylene glycol immobilized on Sepharose. Journal of Chromatography A, 1996. 734: p. 213-219. 11.Fee, C.J. and J.M. Van Alstine, PEG-proteins:Reaction engineering and separation issues. Chemical Engineering Science, 2006. 61: p. 924-939. 12.Nie, F.Q., et al., Acrylonitrile-based copolymer membranes containing reactive groups:effects of surface-immobilized poly(ethylene glycol)s on anti-fouling properties and blood compatibility. Polymer 2004. 45: p. 399-407. 13.Fan, X.W., L.J. Lin, and P.B. Messersmith, Cell Fouling Resistance of Polymer Brushes Grafted from Ti Substrates by Surface-Initiated Polymerization:Effect of Ethylene Glycol Side Chain Length. Biomacromolecules, 2006. 7: p. 2443-2448. 14.Li, L., et al., Protein adsorption on oligo(ethylene glycol)-terminated alkanethiolate self-assembled monolayers: The molecular basis for nonfouling behavior. J Phys Chem B, 2005. 109: p. 2934-2941. 15.Zheng, J., et al., Molecular Simulation Study of Water Interactions with Oligo (Ethylene Glycol)-Terminated Alkanethiol Self-Assembled Mo 16.Capannelli, G., et al., Protein Fouling Behavior of Ultrafiltration Membranes Prepared with Varying Degrees of Hydrophilicity. Process Biochemistry, 1990. 25(6): p. 221-224. 17.阮建明,鄒倫鵬,黃伯云, 生物材料學. 2004, 北京: 科學出版社. 18.王國建,劉琳, 特種與功能高分子材料. 2004, 北京: 中國石化出版社. 19.國家自然科學基金委員會工程與材料科學部, 有機高分子材料科學. 2006, 北京: 科學出版社. 20.Gill, A., Cold plasma in materials fabrication: From fundamentals to applications. Institute of electrical and electronics engineers. 1994, USA. 21.Hanson, S.R., Blood coagulation and blood-materials interactions. 2004, San Diego: Biomaterials Science, Elsevier, Academic Press. 22.Il Kim, H. and S.S. Kim, Plasma treatment of polypropylene and polysulfone supports for thin film composite reverse osmosis membrane. . Journal of Membrane Science, 2006. 286(1-2): p. 193-201. 23.Singh, N., et al., Modification of regenerated cellulose ultrafiltration membranes by surface-initiated atom transfer radical polymerization. . Journal of Membrane Science, 2008. 311(1-2): p. 225-234. 24.Quddos, A., et al., The effect of crosslinking agents on the synthesis and swelling of the polymer networks. Journal of the Chemical Society of Pakistan, 2003. 25(4): p. 299-304. 25.Park, S.J., S.Y. Jin, and S. Kaang, Influence of thermal treatment of nano-scaled silica on interfacial adhesion properties of the silica/rubber compounding. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2005. 398(1-2): p. 137-141. 26.Mkhatresh, O.A. and F. Heatley, Thermal oxidative and photo-oxidative degradation of polytetrahydrofuran studied using H-1 NMR, C-13 NMR and GPC. Polymer International, 2004. 53(7): p. 959-971. 27.Ulbricht, M., et al., Photo-induced graft polymerization surface modifications for the preparation of hydrophilic and low-protein-adsorbing ultrafiltration membranes. Journal of Membrane Science, 1996. 115(1): p. 31-47. 28.Wei, J., et al., Relationship between interfacial polymerization monomer structure and separation properties of PPESK based composite membranes. . Acta Polymerica Sinica, 2006. 2: p. 298-302. 29.Caliceti, P., Controlled Release of Proteins and Peptides from Hydrogels Synthesized by Gamma-Ray-Induced Polymerization. Farmaco, 1992. 47(3): p. 275-286. 30.刈米孝夫, 界面活性劑的原理與應用. 1986, 日本: 高立圖書有限公司. 31.Alexandridis, P. and T.A. Hatton, Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer surfactants in aqueous solution and at interfaces: thermodynamics, structure, dynamics, and modeling. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 1995. 96: p. 1-46. 32.歐靜枝, 乳化溶化技術實務. 1990, 台灣: 復漢出版社. 33.莊晟榜, Tween系列界面活性劑對微生物降解碳氫化合物之影響,化學工程學系. 2002, 私立中原大學. 34.Alexandridis, P., J.F. Holzwarth, and T.A. Hatton, Micellization of Poly(ethylene oxide)-Poly(propyleneoxide)-Poly(ethylene oxide) Triblock Copolymers in Aqueous Solutions: Thermodynamics of Copolymer Association. Macromolecules, 1994. 27: p. 2414-2425. 35.Wanka, G., H. Hoffmann, and W. Ulbricht, Phase diagrams and aggregation behavior of poly (oxyethylene)-poly (oxypropylene)-poly (oxyethylene) triblock coplymers in aqueous solutions. Macromolecules, 1990. 27: p. 4115-4159. 36.Jorgenson, E.B., et al., Effects of salts on micellization and gelation of triblock copolymer studied by rheology and light scattering. Macromolecules, 1997. 30: p. 2355-2364. 37.Schick, M.J., Nonionic surfactants: Physical chemistry. 1987, New York: Marcel Dekker. 38.Wanka, G., H. Hoffmann, and W. Ulbricht, The aggregation of poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide)-block-copolymers in aqueous solution. Colloid Polym. Sci., 1990. 268: p. 101-117. 39.Allen, C., D. Maysinger, and A. Eisenberg, Nano-engineering block copolymer aggregates for drug delivery. Colloids and Surfaces B-Biointerfaces, 1999. 16: p. 3-27. 40.Morgan, H. and D.M. Taylor, A surface plasmon resonance immunosensor based on the streptavidin-biotin complex. Biosensor and Bioelectronics, 1992. 7: p. 405-410. 41.Boozer, C., et al., DNA-directed protein immobilization for simultaneous detection of multiple analytes by surface plasmon resonance biosensor. Analytical Chemistry, 2006. 78(5): p. 1515-1519. 42.Ladd J., C.B., Q. M. Yu, S. F. Chen, J. Homola, S. Jiang, DNA-directed protein immobilization on mixed self-assembled monolayers via a Streptavidin bridge. Langmuir, 2004. 20(19): p. 8090-8095. 43.Myszka, D.G., Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors. Biotechnology, 1997. 8(1): p. 50-57. 44.Myszka, D.G., M.D. Jonsen, and B.J. Graves, Equilibrium analysis of high affinity interactions using BIACORE. Analytical Biochemistry, 1998. 265(2): p. 326-330. 45.許志銘, 表面電漿共振感測儀用於抗體與抗原結合之動力學分析,生醫工程與環境科學系. 2006, 國立清華大學. 46.Ritchie, R.H., Plasma losses by fast electrons in thin films. Physical Review, 1957. 106: p. 874. 47.Otto, A., Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Physik, 1968: p. 216. 48.Kretschmann, E. and H. Raether, Radiative decay of non-radiative surface plasmons excited by light. Z. Naturforsch, 1968. 23A: p. 2135-2136. 49.Liedburg, B., C. Nyland, and I. Lundstrom, Sensors Actuator. 1983. 50. [cited; Available from: http://www.biacore.com/lifesciences/index.html. 51.Liedberg, B., I. Lundström, and E. Stenberg, Principles of biosensing with an extended coupling matrix and surface plasmon resonance. Sensors and Actuators B: Chemical, 1993. 11(1-3): p. 63-72. 52.Morgan, H., D.M. Taylor, and C. D'Silva, Surface plasmon resonance studies of chemisorbed biotin-streptavidin multilayers Thin Solid Films, 1992. 209(1): p. 122-126. 53.Altschuh, D., et al., Determination of kinetic constants for the interaction between a monoclonal antibody and peptides using surface plasmon resonance. Biochemistry, 1992. 31(27): p. 6298-6304. 54.Dubs, M.C., D. Altschuh, and M.H.V. Van Regenmortel, Interaction between viruses and monoclonal antibodies studied by surface plasmon resonance Immunology Letters, 1992. 31(1): p. 59-64. 55.Polymenis, M. and S.D. Stollar, Domain interactions and antigen binding of recombinant anti-Z-DNA antibody variable domains. The role of heavy and light chains measured by surface plasmon resonance. J Immunol., 1995. 154: p. 2198-2208. 56.Bondeson, K., et al., Lactose Repressor-Operator DNA Interactions: Kinetic Analysis by a Surface Plasmon Resonance Biosensor. Analytical Biochemistry, 1993. 214(1): p. 245-251. 57.Ward, L.D., et al., Use of a Biosensor with Surface Plasmon Resonance Detection for the Determination of Binding Constants: Measurement of Interleukin-6 Binding to the Soluble Interleukin-6 Receptor. Biochemistry, 1995. 34(9): p. 2901-2907. 58.Fisher, R.J., et al., Real-time DNA binding measurements of the ETSl recombinant oncoproteins reveal significant kinetic differences between the p42 and p51 isoforms. Protein Sci., 1994. 3(2): p. 257-266. 59.Berit, J., G. Margaretha, and H. Kari, Epitope mapping and binding kinetics of monoclonal antibodies studied by real time biospecific interaction analysis using surface plasmon resonance. Journal of Immunological Methods, 1993. 160(2): p. 191-198. 60.Plant, A.L., et al., Phospholipid/Alkanethiol Bilayers for Cell-Surface Receptor Studies by Surface Plasmon Resonance. Analytical Biochemistry 1995. 226(2): p. 342-348. 61.Striebel, C., A. Brecht, and G. Gauglitz, Characterization of biomembranes by spectral ellipsometry, surface plasmon resonance and interferometry with regard to biosensor application. Biosensors and Bioelectronics, 1994. 9(2): p. 139-146. 62.Silin, V., H. Weetall, and D.J. Vanderah, SPR Studies of the Nonspecific Adsorption Kinetics of Human IgG and BSA on Gold Surfaces Modified by Self-Assembled Monolayers (SAMs). Journal of Colloid and Interface Science 1997. 185(1): p. 94-103. 63.Zenhausern, F., M. Adrian, and P. Descouts, Solution Structure and Direct Imaging of Fibronectin Adsorption to Solid Surfaces by Scanning Force Microscopy and Cryo-electron Microscopy. J Electron Microsc., 1993. 42: p. 378-388. 64.Caruso, F., D. Neil Furlong, and P. Kingshott, Characterization of Ferritin Adsorption onto Gold. Journal of Colloid and Interface Science, 1997. 186(1): p. 129-140. 65.Milan Mrksich, G.B.S., George M. Whitesides, Surface Plasmon Resonance Permits in Situ Measurement of Protein Adsorption on Self-Assembled Monolayers of Alkanethiolates on Gold. Langmuir, 1995. 11(11): p. 4383-4385. 66.Sigal, G.B., et al., A Self-Assembled Monolayer for the Binding and Study of Histidine-Tagged Proteins by Surface Plasmon Resonance. Analytical Chemistry, 1996. 68(3): p. 490-497. 67.Louise M. Williams, S.D.E., Thomas M. Flynn, Andrew Marsh, Peter F. Knowles, Richard J. Bushby, and Neville Boden, Kinetics of the Unrolling of Small Unilamellar Phospholipid Vesicles onto Self-Assembled Monolayers. Langmuir, 1997. 13(4): p. 751-757. 68.Jordan, C.E. and R.M. Corn, Surface Plasmon Resonance Imaging Measurements of Electrostatic Biopolymer Adsorption onto Chemically Modified Gold Surfaces. Analytical Chemistry, 1997. 69(7): p. 1449-1456. 69.Green, R.J., et al., Surface plasmon resonance for real time in situ analysis of protein adsorption to polymer surfaces. Biomaterials, 1997. 18(5): p. 405-413. 70.Green, R.J., et al., Competitive protein adsorption as observed by surface plasmon resonance. Biomaterials, 1999. 20: p. 385-391. 71.Simon L. McGurk, R.J.G., Giles H. W. Sanders, Martyn C. Davies, Clive J. Roberts, Saul J. B. Tendler, and Philip M. Williams, Molecular Interactions of Biomolecules with Surface-Engineered Interfaces Using Atomic Force Microscopy and Surface Plasmon Resonance. Langmuir, 1999. 15: p. 5136-5140. 72.Pavey, K.D. and C.J. Olliff, SPR analysis of the total reduction of protein adsorption to surfaces coated with mixtures of long- and short-chain polyethylene oxide block copolymers. Biomaterials, 1999. 20: p. 885-890. 73.Frazier, R.A., et al., Characterization of protein-resistant dextran monolayers. Biomaterials, 2000. 21: p. 957-966. 74.Green, R.J., et al., A surface plasmon resonance study of albumin adsorption to PEO-PPO-PEO triblock copolymers. Biomedical Materials Research, 1998. 42(2): p. 165-171. 75.Cannizzaro, S.M., et al., A Novel Biotinylated Degradable Polymer for Cell-Interactive Applications. Biotechnology and Bioengineering, 1998. 58(5): p. 529-535. 76.Black, F.E., et al., Surface Engineering and Surface Analysis of a Biodegradable Polymer with Biotinylated End Groups. Langmuir, 1999. 15: p. 3157-3161. 77.Fujii, K., et al., Prevention of biofilm formation with a coating of 2-methacryloyloxyethyl phosphorylcholine polymer. Journal of Veterinary Medical Science, 2008. 70(2): p. 167-173. 78.Qiqiang Wang, L.L., and Sanping Jiang, Effects of a PPO-PEO-PPO Triblock Copolymer on Micellization and Gelation of a PEO-PPO-PEO Triblock Copolymer in Aqueous Solution. Langmuir, 2005. 21(20): p. 9068-9075. 79.Lee, S., et al., Influence of Molecular Architecture on the Adsorption of Poly(ethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide) on PDMS Surfaces and Implications for Aqueous Lubrication. Macromolecules, 2004. 37: p. 8349-8356. 80.R. J. Green, S.T., J. Davies, M. C. Davies, C. J. Roberts, and S. J. B. Tendler, Adsorption of PEO-PPO-PEO Triblock Copolymers at the Solid/Liquid Interface: A Surface Plasmon Resonance Study. Langmuir, 1997. 13(24): p. 6510-6515. 81.Nederberg, F., et al., Biocompatible and biodegradable phosphorylcholine ionomers with reduced protein adsorption and cell adhesion. Journal of Biomaterials Science-Polymer Edition, 2006. 17(6): p. 605-614. 82.Sibarani, J., M. Takai, and K. Ishihara, Surface modification on microfluidic devices with 2-methacryloyloxyethyl phosphorylcholine polymers for reducing unfavorable protein adsorption. Colloids and Surfaces B-Biointerfaces, 2007. 54(1): p. 88-93. 83.Kros, A., et al., Biocompatible polystyrenes containing pendant tetra(ethylene glycol) and phosphorylcholine groups. Journal of Polymer Science Part a-Polymer Chemistry, 2001. 39(4): p. 468-474. 84.Zhu, A.P., et al., Cell adhesion behavior of chitosan surface modified by bonding 2-methacryloyloxyethyl phosphorylcholine. Journal of Biomaterials Science-Polymer Edition, 2002. 13(5): p. 501-510. 85.Chang, Y., et al., Highly stable nonbiofouling surface with well-packed grafted zwitterionic polysulfobetaine for-plasma protein repulsion. Langmuir, 2008. 24: p. 5453-5458. 86.Lazos D, F.S., Ulbricht M., Size-selective protein adsorption to polystyrene surfaces by self-assembled grafted poly(ethylene glycols) with varied chain lengths. Langmuir, 2005. 21: p. 8774-8784. 87.Yung Chang, S.C., Zheng Zhang, and Shaoyi Jiang, Highly Protein-Resistant Coatings from Well-Defined Diblock Copolymers Containing Sulfobetaines. Langmuir, 2006. 22: p. 2222-2226. 88.Jung LS, C.C., Chinowsky TM, Mar MN, Yee SS., Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films. Langmuir, 1998. 14: p. 5636-5648. 89.Chen, S.F., et al., Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: Insights into nonfouling properties of zwitterionic materials. Journal of the American Chemical Society, 2005. 127(41): p. 14473-14478. 90.Higuchi, A., et al., Serum protein adsorption and platelet adhesion on pluronic (TM)-adsorbed polysulfone membranes. Biomaterials, 2003. 24: p. 3235-3245. 91.Ratner, B.D., The catastrophe revisited: Blood compatibility in the 21st century. Biomaterials, 2007. 28: p. 5144-5147. 92.Shen MC, W.M., Castner DG, Ratner BD, Horbett TA., Multivariate surface analysis of plasma-deposited tetraglyme for reduction of protein adsorption and monocyte adhesion. Langmuir, 2003. 19: p. 1692-1699. 93.Holmlin, R.E., et al., Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir, 2001. 17(9): p. 2841-2850. 94.Chen, H., Y.C. Nho, and A.S. Hoffman, Grafting copolymerization of 2-methacryloyloxyethyl phosphorylcholine (MPC) onto pre-irradiated cellulose films. Journal of Biomaterials Science-Polymer Edition, 2004. 15(7): p. 841-849. 95.Ma, H.W., et al., Non-fouling" oligo(ethylene glycol)-functionalized polymer brushes synthesized by surface-initiated atom transfer radical polymerization. Advanced Materials, 2004. 16: p. 338-341. 96.Green, R.J., et al., A surface plasmon resonance study of albumin adsorption to PEO-PPO-PEO triblock copolymers. J Biomed Mater Res, 1998. 42: p. 165-171. 97.Zhang, Z., S.F. Chen, and S.Y. Jiang, Dual-functional biomimetic materials: Nonfouling poly(carboxybetaine) with active functional groups for protein immobilization. Biomacromolecules, 2006. 7(12): p. 3311-3315. 98.Munro, M., et al., Alkyl substituted polymers with enhanced albumin affinity. . Transactions - American Society for Artificial Internal Organs, 1987. 21: p. 499-503.
|