(3.236.214.19) 您好!臺灣時間:2021/05/10 08:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鍾立涵
研究生(外文):Li-Han Chung
論文名稱:聚醯胺/聚丙烯腈複合中空纖維膜製備及其滲透蒸發效能之研究
論文名稱(外文):The Study on the preparation and pervaporation performance of PA/PAN composite hollow fiber membranes
指導教授:賴君義賴君義引用關係蔡惠安
指導教授(外文):Juin-Yih LaiHui-An Tsai
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:97
中文關鍵詞:滲透蒸發界面聚合中空纖維
外文關鍵詞:pervaporationinterfacial polymerizationHollow fiber
相關次數:
  • 被引用被引用:2
  • 點閱點閱:143
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要目的是以聚丙烯腈(Polyacrylonitrile, PAN)中空纖維膜為基材,並在其上以Triethylenetetramine(TETA)以及Trimesoyl chloride(TMC)為單體進行界面聚合反應,以製備聚醯胺(Polyamide, PA)/PAN複合中空纖維薄膜,並應用於滲透蒸發操作程序,分離醇類水溶液,期望製備出具高透過量,同時擁有高選擇性之滲透蒸發用中空纖維模組。研究中探討PAN中空纖維基材膜之紡絲條件(例如鑄膜液擠出壓力、芯液流速以及芯液組成)、氫氧化鈉水溶液的水解條件以及界面聚合條件等,對所製備之PAN中空纖維膜以及PA/PAN複合中空纖維膜之結構型態與滲透蒸發分離效能之影響。
  研究結果顯示,於紡製PAN中空纖維膜時,當改變芯液流速,則只對成膜後之中空纖維厚度有影響,而厚度的不同則會造成滲透蒸發通量之不同。中空纖維紡製時芯液組成對中空纖維膜內表面結構型態有顯著的影響,由SEM分析顯示,使用芯液組成為DMF/water、比例為9:1時,其PAN中空纖維膜之截面結構型態為由外表面貫穿到內表面之巨型孔洞,而內表面則是由較大的孔洞以及雙連續結構組成。當芯液中DMF/water比例為8:2時,截面之巨型孔洞結構則沒有貫穿到內表面,而內表面則是由雙連續結構組成。當比例為7:3時,內表面結構則趨於緻密化。為提升PAN中空纖維膜之親水特性以利於界面聚合反應,研究中將所紡製之PAN中空纖維膜於50℃下以2M NaOH水溶液進行水解30分鐘。由水解實驗結果發現,經過水解後之聚丙烯腈中空纖維膜之表面物理及化學性質均會改變。由ATR-FTIR分析可以知道,經過水解後之聚丙烯腈中空纖維膜其表面CN官能基鍵結轉變為CONH2或COOH鍵結。由接觸角實驗可以得到聚丙烯腈中空纖維膜經過30 min水解後其對水接觸角值大幅下降,若持續增加水解時間,則接觸角值將無明顯變化。將以界面聚合方式所製備之PA/PAN複合中空纖維膜進行進行醇類水溶液之滲透蒸發分離效能測試,由實驗結果發現,界面聚合前基材之含水量會影響所製備複合中空纖維膜的滲透蒸發分離效能。由25℃時進行90wt%乙醇水溶液之滲透蒸發分離實驗可以得知,本研究製備之PA/PAN 複合中空纖維膜其最佳界面聚合條件為:基材乾燥時間20min、TETA水相單體濃度1wt%、單體浸泡時間2min、水相單體溶液浸泡後纖維的垂流時間5min、TMC油相單體濃度0.5wt%、單體浸泡反應時間0.5min。其透過量與透過水濃度分別為570 g/m2h 以及 96wt%。研究中同時改變滲透蒸發操作時進料醇類水溶液之種類,分別為異丙醇與第三丁醇。由實驗可以得知,本研究所製備之PA/PAN複合中空纖維膜進行異丙醇與第三丁醇水溶液之分離時同樣具有良好之分離效能。
In this study, Polyamide (PA)/Polyacrylonitrile (PAN) composite hollow fiber membranes were fabricated from Triethylenetetramine (TETA) and Trimesoyl chloride (TMC) through interfacial polymerization onto the surface of PAN hollow fiber membranes for preparation the high permeation rate and selectivity pervaporation hollow fiber modules for aqueous alcohol solution. The effects of spinning process (such as dope extrusion rate, bore liquid flow rate and composition), NaOH aqueous solution hydrolysis condition as well as interfacial polymerization conditions on the morphology and pervaporation performances of PAN hollow fiber membrane and PA/PAN composite hollow fiber membrane were investigated.
The results show that the thickness of PAN hollow fiber membrane can be affected by changing bore liquid flow rate resulted in the difference of permeation rate. As for the bore liquid composition, the macrovoids were passed through the entire cross section and large pore with bicontinueous morphology was found in the inner surface of PAN hollow fiber membrane by using 9/1 of DMF/water as the bore liquid composition. The macrovoids was found can not pass through the entire cross section while bicontinueous morphology can be found in the inner surface as using 8/2 of DMF/water as the bore liquid. Moreover, the inner surface was become denser in the case of 7/3 of DMF/water as the bore liquid.
To enhance the hydrophilic property of PAN hollow fiber membrane for interfacial polymerization, PAN hollow fiber membranes were hydrolyzed with 2M NaOH at 50℃ for 30 mins. The results show that the physic and chemical properties were affected by hydrolysis. From the analysis of ATR-FTIR, the –CN group in the surface of PAN hollow fiber membranes were converted to CONH2 or COOH groups. The water contact angle was drastically decreased after hydrolyzed for 30 mins.
The interfacial polymerized PA/PAN composite hollow fiber membrane was used to investigate the pervaporation performances of aqueous alcohol solution. The data reveal that the pervaporation performances can be affect by water content of PAN substrate hollow fiber membrane before polymerization. In this study, the best interfacial polymerization conditions for the pervaporation of 90 wt% aqueous ethanol solution through PA/PAN composite hollow fiber membranes at 25 ℃ were shown below: the dry time for PAN substrate hollow fiber membrane was 20 min. the concentration and immersion time of TETA solution were 1 wt% and 2 min, respectively. The hang time of TETA immersed PAN hollow fiber membrane was 5 min. The concentration of TMC and reaction time were 0.5 wt% and 0.5min, respectively. The permeation rate and water concentration in permeate of PA/PAN composite hollow fiber membranes were 570 g/m2h and 96 wt%, respectively. Moreover, the pervaporation performances of aqueous isopropanol solution and aqueous tert-butanol solution through PA/PAN composite hollow fiber membranes were also investigated. It also shows good separation performances as aqueous isopropanol solution one.
目錄
中文摘要 I
Abstract III
圖索引 IX
表索引 XI
第一章 緒論 1
1-1 薄膜分離技術概論 1
1-2 薄膜製備方式 4
(1) 熱誘導式相轉換法 (Thermal induced phase separation;TIPS) 4
(2) 乾式相轉換法 ( Precipitation by solvent evaporation ) 5
(3) 控制揮發相轉換法 ( Precipitation by controlled evaporation ) 5
(4) 非溶劑誘導式相分離法 ( Nonsolvent induced phase separation; NIPS) 5
(5) 水氣誘導式相分離法 ( Vapor induced phase separation;VIPS ) 6
1-3中空纖維之發展與優勢 6
1-4中空纖維膜之製備方法 7
(1) 熔融纺絲法 7
(2) 乾式纺絲法 8
(3) 溼式纺絲法 8
(4) 乾/溼式纺絲法 8
1-5薄膜之改質方法 9
(1) 掺合(Blending) 9
(2) 接枝(Grafting) 9
(3) 電漿改質 10
(4) 熱穩定化改質 11
(5) 塗佈(Coating) 11
(6) 界面聚合 12
1-6 滲透蒸發分離程序 12
1-7 聚醯胺高分子之特性 13
1-8 文獻回顧 15
1-9 研究動機 19
第二章 實驗 21
2-1 實驗藥品 21
2-2 實驗儀器 22
2-3 實驗方法 23
2-3-1紡絲液配置 23
2-3-2 PAN中空纖維基材膜之製備 23
2-3-3界面聚合於PAN中空纖維基材膜之內表面 24
2-3-4界面聚合於PAN中空纖維基材膜之外表面 26
2-4 分析與鑑定 27
2-4-1傅立葉轉換紅外線光譜儀 27
2-4-2 接觸角量測 28
2-4-3 EDX元素分析 29
2-4-4 掃描式電子顯微鏡 29
2-4-5 原子力顯微鏡 30
2-4-6 滲透蒸發測試 32
第三章 結果與討論 35
3-1 具有連通巨型孔洞之聚丙烯腈中空纖維基材膜製備 35
3-2 聚丙烯腈中空纖維膜之水解行為 41
3-3 聚丙烯腈中空纖維膜之滲透蒸發測試 48
3-4界面聚合於聚丙烯腈中空纖維膜內表面 49
3-5界面聚合於聚丙烯腈中空纖維膜外表面 51
3-5-1 基材膜乾燥時間對聚合後中空纖維滲透蒸發效能之影響 51
3-5-2 基材自水相溶液中取出後垂流時間對滲透蒸發效能之影響 55
3-5-3 水相單體溶液浸泡時間對滲透蒸發效能之影響 58
3-5-4 油相單體溶液反應時間對滲透蒸發效能之影響 59
3-5-5 水相單體濃度對滲透蒸發效能之影響 62
3-5-6 油相單體濃度對滲透蒸發效能之影響 64
3-5-7 PA/PAN TFC HFMs 分離不同醇類之效能 67
第四章 結論 74
第五章 參考文獻 76


圖索引
第一章 緒論
Fig.1-1 Schematic representation of a two-phase system separated by a 3
Fig.1-2 Schematic diagrams of the principal types of membranes.[3] 4
Fig.1-3 The principle of pervaporation. 13
Fig.1-4 Diagrams of polymer film growth at liquid interfaces.[12] 15
第二章 實驗
Fig.2-1 Hollow fiber spinning apparatus. 24
Fig.2-2 Tubular type hollow fiber pervaporation test modules 25
Fig.2-3 Schematic diagram of chemical structure for synthesized polyamide from interfacial polymerization of TETA and TMC onto the surface of mPAN substrate. 27
Fig.2-4 The schematic diagram of SEM 30
Fig.2-5 The schematic diagram of AFM 31
Fig.2-6 Schematic diagram of pervaporation apparatus. 33
第三章 結果與討論
Fig.3-1 Cross-section morphology of PAN hollow fiber membranes(HFMs) prepared from wet spinning and used water as bore liquid(B.L.). 36
Fig.3-2 Cross-section morphology of PAN HFMs prepared from different dope extrusion pressure(B.L. composition: 9/1 DMF/H2O;B.L. flow rate: 1ml/min) . 37
Fig.3-3 Outer surface morphology of PAN HFMs prepared from different dope extrusion pressure(B.L. composition: 9/1 DMF/H2O;B.L. flow rate: 1ml/min) . 38
Fig.3-4 Cross-section morphology of PAN HFMs prepared from different bore liquid flow rate.(B.L. composition: 9/1 DMF/H2O;Dope extrusion pressure: 2.5 atm) . 38
Fig.3-5 Inner surface morphology of PAN HFMs prepared from different bore liquid flow rate.(B.L. composition: 9/1 DMF/H2O;Dope extrusion pressure: 2.5 atm) . 39
Fig.3-6 Cross-section morphology of PAN HFMs prepared from different bore liquid composition.(B.L. flow rate:1ml/min ;Dope extrusion pressure: 2.5 atm) . 40
Fig.3-7 Inner surface morphology of PAN HFMs prepared from different bore liquid composition.(B.L. flow rate:1ml/min ;Dope extrusion pressure: 2.5 atm) . 41
Fig.3-8 Outer surface morphology of PAN HFMs with different hydrolyzed time(2M NaOH 50℃) . 42
Fig.3-9 ATR-FTIR analysis of PAN HFMs with different hydrolyzed time(2M NaOH 50℃) .(A)Pristine PAN (B) PAN hydrolyzed 30min (C) PAN hydrolyzed 60min (D) PAN hydrolyzed 90min (E) PAN hydrolyzed 120min 43
Fig.3-10 Reaction mechanism of PAN with NaOH[5] 44
Fig.3-11 AFM analysis of PAN HFMs with different hydrolyzed time(2M NaOH 46
Fig.3-12 Effect of hydrolysis time on pervaporation performance of PAN 48
Fig.3-13 SEM observation of inner surface of interfacial polymerized PAN TFC HFMs 50
Fig.3-14 SEM image of PA/PAN TFC HFMs prepared by using full dried 52
Fig.3-15 ATR-FTIR analysis of PA/PAN HFMs prepared from wet or fully dried PAN substrate(2M NaOH 50℃ for 30min).(A) Pristine PAN (B) Prepared from fully dried PAN substrate (C) Prepared from wet PAN substrate 53
Fig.3-16 Effect of Drying time of PAN substrate on pervaporation performance(Feed : 90wt% EtOH at 25 ℃ Drying condition:30 ℃/70%RH) 53
Fig.3-17 TETA contact angle of different drying time of PAN membrane 54
Fig.3-18 Effect of drain time of PAN substrate on pervaporation performance(Feed : 57
Fig.3-19 SEM observation of the thickness of active layer of PA/PAN composite HFMs prepared from different drain time. 57
Fig.3-20 Effect of immersion time of aqueous phase solution on PV 59
Fig.3-21 Effect of reaction time with organic phase solution on pervaperation 60
Fig.3-22 SEM observation of the thickness of active layer of PA/PAN composite HFMs prepared from different reaction time with organic solution. 61
Fig.3-23 Effect of TETA concentration on pervaporation performance 63
Fig.3-24 SEM observation of the thickness of active layer of PA/PAN composite HFMs prepared from different TETA concentration. 64
Fig.3-25 Effect of TMC concentration on pervaporation performance 65
Fig.3-26 SEM observation of the thickness of active layer of PA/PAN composite HFMs prepared from different TMC concentration. 66
Fig.3-27 SEM observation of the surface morphlogy of PA/PAN composite HFMs 67
Fig.3-28 Effect of operation temperation on pervaporation performance using 90 wt% EtOh aq. solution as the feed 68
Fig.3-29 Effect of operation temperation on pervaporation performance using 90 wt% IPA aq. solution as the feed. 69
Fig.3-30 Effect of operation temperation on pervaporation performance using 90 wt% t-BuOH aq. solution as the feed. 69



表索引
第一章 緒論
Table 1-1 Driving forces and the two-phase systems separated by membranes for different membrane processes.[2] 2

第二章 實驗
Table 2-1 Spinning parameters and conditions 24
Table 2-2 Interfacial polymerization parameters and conditions 25
Table 2-3 Interfacial polymerization parameters and conditions 26

第三章 結果與討論
Table 3-1 Atomic compositions(%) of the PAN membranes as a function 44
Table 3-2 AFM analysis of the PAN membranes as a function of the reaction time in the modification reaction with 2M NaOH at 50℃ 47
Table 3-3 Conctact angle measurement of the PAN membranes as a function of the reaction time in the modification reaction with 2M NaOH at 50℃ 47
Table 3-4 Interfacial polymerization parameters and conditions onto the inner surface of PAN HFMs 49
Table 3-5 Pervaporation data of PA/PAN TFC HFMs with Intefacial polymerized onto the inner surface. 50
Table 3-6 Interfacial polymerization parameters and conditions onto the outer surface of PAN HFMs 51
Table 3-7 Interfacial polymerization parameters and conditions onto the outer surface of PAN HFMs 56
Table 3-8 Interfacial polymerization parameters and conditions onto the outer surface of PAN HFMs 58
Table 3-9 Interfacial polymerization parameters and conditions onto the outer surface of PAN HFMs 60
Table 3-10 Interfacial polymerization parameters and conditions onto the outer surface of PAN HFMs 62
Table 3-11 Interfacial polymerization parameters and conditions onto the outer surface of PAN HFMs 64
Table 3-12 The best preparation condition of PA/PAN TFC HFMs 66
Table 3-13 Comparison with literature performance of PA/PAN TFC HFMs used Ethanol as the feed. 71
Table 3-14 Comparison with literature performance of PA/PAN TFC HFMs used isopropanol as the feed. 72
Table 3- 15 Comparison with literature performance of PA/PAN TFC HFMs used tert-butanol as the feed. 73
1.S. Loeb, S. Sourirajan, Sea water demineralization by means of an osmotic membrane, Adv. Chem. Ser. 37 (1962) 117-132.
2.M. H. V. Mulder: Basic principles of membrane technology. The Netherlands: Kluwer Academic Publishers; 1997.
3.R. W. Baker: Membrane Technology and Applications. United State of America: McGraw-Hill Companies; 1976.
4.H. I. Mahon: Permeability separatory apparatus, permeability separatory membrane element, method of making the same and process utilizing the same. In Dow Chemical, vol. 3228876. US; 1966.
5.方珮珊, CF4/C2H2 電漿披覆於非對稱聚碸膜對滲透蒸發膜之影響, 中原大學化學工程系碩士論文 (2003).
6.邱永勝, 熱處理對聚丙烯腈中空纖維膜滲透蒸發分離效能之影響, 中原大學化學工程系碩士論文 (2004).
7.施証耀, 以乙缺/氮氣電漿改質高分子氣體分離膜之研究, 中原大學化學工程系碩士論文(1996).
8.P. M. Bungay, H. K. Lonsdale, M. N. d. Ponho: Synthetic Membrane Science, Engineering and Applications. The Netherlands: D. Reidel Pub. Co.; 1986.
9.H. A. Tsai, S. C. Chen, W. L. Chou, K. R. Lee, M. C. Yang, J. Y. Lai, Pervaporation of water/alcohol mixtures through chitosan/cellulose acetate composite hollow fiber membranes, J. Appl. Polym. Sci. 94 (2004) 1532-1568.
10.B. J. Chang, Y. H. Chang, D. K. Kim, J. H. Kim, S. B. Lee, New copolyimide membranes for the pervaporation of trichloroethylene from water, J. Membr. Sci. 248 (2005) 99-107.
11.Y. C. Wang, C. L. Li, J. Huang, C. Lin, K. R. Lee, D. J. Liaw, Pervaporation of benzene/cyclohexane mixtures through aromatic polyamide membranes, J. Membr. Sci. 185 (2001) 193-200.
12.P. W. Morgan: Condensation Polymers: By Interfacial and Solution Methods. NY: nterscience Publishers; 1965.
13.L. T. Rozelle, J. E. Cadotte, K. E. Cobian, C. V. K. Jr., Nonpolysaccharide membranes for reverse osmosis: NS-100 membranes, in S. Sourirajan (Ed.), Reverse Osmosis and Synthetic Membranes, National Research Council Canada, Ottawa (1977).
14.N. W. Oh, J. Jegal, K. H. Lee, Preparation and characterization of nanofiltration composite membranes using polyacrylonitrile (PAN). II. preparation and characterization of polyamide composite membranes, J. Appl. Polym. Sci. 80 (2001) 2729-2736.
15.J. WeI, X. Jian, C. Wu, S. Zhang, C. Yan, Influence of polymer structure on thermal stability of composite membranes, J. Membr. Sci. 256 (2005) 116-121.
16.C. K. Kim, J. H. Kim, I. J. Roh, J. J. Kim, The changes of membrane performance with polyamide molecular structure in the reverse osmosis process, J. Membr. Sci. 165 (2000) 189-199.
17.B. B. Tang, Z. B. Huo, P. Y. Wu, Study on a novel polyester composite nanofiltration membrane by interfacial polymerization of triethanolamine (TEOA) and trimesoyl chloride (TMC) I. Preparation, characterization and nanofiltration properties test of membran, J. Membr. Sci. 320 (2008) 198-205.
18.L. C. Li, B. G. Wang, H. M. Tan, T. L. Chen, J. P. Xu, A novel nanofiltration membrane prepared with PAMAM and TMC by in situ interfacial polymerization on PEK-C ultrafiltration membrane, J. Membr. Sci. 269 (2006) 84-93.
19.L. Li, S. B. Zhang, X. S. Zhang, G. D. Zheng, Polyamide thin film composite membranes prepared from 3,4 ,5-biphenyl triacyl chloride, 3,3 ,5,5 -biphenyl tetraacyl chloride and m-phenylenediamine, J. Membr. Sci. 289 (2007) 258-267.
20.J. Jegal, S. G. Min, K. H. Lee, Factors affecting the interfacial polymerization of polyamide active layers for the formation of polyamide composite membranes, J. Appl. Polym. Sci. 86 (2002) 2781-2787.
21.A. P. Rao, S. V. Joshi, J. J. Trivedi, C. V. Devmurari, V. J. Shah, Structure–performance correlation of polyamide thin film composite membranes: effect of coating conditions on film formation, J. Membr. Sci. 211 (2003) 13-24.
22.G. D. Kang, M. Liu, B. Lin, Y. M. Cao, Q. Yuan, A novel method of surface modification on thin-film composite reverse osmosis membrane by grafting poly(ethylene glycol), Polymer 48 (2007) 1165-1170.
23.S. H. Kim, S. Y. Kwak, B. H. Sohn, T. H. Park, Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem, J. Membr. Sci. 211 (2003) 157-165.
24.S. Y. Lee, H. J. Kim, R. Patel, S. J. Im, J. H. Kim, B. R. Min, Silver nanoparticles immobilized on thin film composite polyamide membrane: characterization, nanofiltration,antifouling properties, Polym. Adv. Technol. 18 (2007) 562-568.
25.J. H. Kim, K. H. Lee, S. Y. Kim, Pervaporation separation of water from ethanol through polyimide composite membranes, J. Membr. Sci. 169 (2000) 81-93.
26.S. H. Huang, C. L. Li, C. C. Hu, H. A. Tsai, K. R. Lee, J. Y. Lai, Polyamide thin-film composite membranes prepared by interfacial polymerization for pervaporation separation, Desalination 200 (2006) 387-389.
27.黃書賢, 界面聚合聚醯胺複合膜應用於滲透蒸發分離程序之研究, 中原大學化學工程系博士學位論文 (2008).
28.R. W. Baker, R. P. Barss, Reverse osmosis composite hollow fiber membrane, GB Patent 2,075,416(1981).
29.A. P. Korikov, P. B. Kosaraju, K. K. Sirkar, Interfacially polymerized hydrophilic microporous thin film composite membranes on porous polypropylene hollow fibers and flat films, J. Membr. Sci. 279 (2006) 588-600.
30.P. B. Kosaraju, K. K. Sirkar, Interfacially polymerized thin film composite membranes on microporous polypropylene supports for solvent-resistant nanofiltration, J. Membr. Sci. 321 (2008) 155-161.
31.S. Ver´ıssimo, K.-V. Peinemann, J. Bordado, Thin-film composite hollow fiber membranes: An optimized manufacturing method, J. Membr. Sci. 264 (2005) 48-55.
32.F. Yang, S. Zhang, D. Yang, X. Jian, Preparation and characterization of polypiperazine amide/PPESK hollow fiber composite nanofiltration membrane, J. Membr. Sci. 301 (2007) 85-92.
33.J. Q. Liu, Z. L. Xu, X. H. Li, Y. Zhang, Y. Zhou, Z. X. Wang, X. J. Wang, An improved process to prepare high separation performance PA/PVDF hollow fiber composite nanofiltration membranes, Sep. Purif. Technol. 58 (2007) 53-60.
34.Y. Wang, S. H. Goh, T. S. Chung, P. Na, Polyamide-imide/polyetherimide dual-layer hollow fiber membranes for pervaporation dehydration of C1–C4 alcohols, J. Membr. Sci. 326 (2009) 222–233.
35.M. H. Liu, S. C Yu, Y. Zhou, C. j. Gao, Study on the thin-film composite nanofiltration membrane for the removal of sulfate from concentrated salt aqueous: Preparation and performance, J. Membr. Sci. 310 (2007) 289–295.
36.T. S. Chung, S. K. Teoh, W. W. Y. Lau, M. P. Srinivasan, Effect of Shear Stress within the Spinneret on Hollow Fiber Membrane Morphology and Separation Performance, Ind. Eng. Chem. Res. 37 (1998) 3930-3938.
37.W. L. Chou, M. C. Yang, Effect of coagulant temperature and composition on surface morphology and mass transfer properties of cellulose acetate hollow fiber membranes, Polym. Adv. Technol. 16 (2005) 524–532.
38.S. H. Huang, C. J. Hsu, D. J. Liaw, C. C. Hu, K. R. Lee, J. Y. Lai, Effect of chemical structures of amines on physicochemical properties of active layers and dehydration of isopropanol through interfacially polymerized thin-film composite membranes, J. Membr. Sci. 307 (2008) 73-81.
39.H. A. Tsai, W. H. Chen, C. Y. Kuo, K. R. Lee, J. Y. Lai, Study on the pervaporation performance and long-term stabilityof aqueous iso-propanol solution through chitosan /polyacrylonitrile hollow fiber membrane, J. Membr. Sci. 309 (2008) 146-155.
40.H. A. Tasi, M. J. Huang, Y. C. Wang, C. L. Li, K. R. Lee, J. Y. Lai, Effect of DGDE additive on the morphology and pervaporation performances of asymmetric PSf hollow fiber membranes, J. Membr. Sci. 208 (2002) 233-245.
41.H. A. Tsai, S. C. Chen, W. L. Chou, K. R. Lee, M. C. Yang, J. Y. Lai, Pervaporation of water/alcohol mixtures through chitosan/cellulose acetate composite hollow fiber membranes, J. Appl. Polym. Sci. 94 (2004) 1562-1568.
42.Z. K. Xu, Q. W. Dai, Z. M. Liu, R. Q. Kou, Y. Y. Xu, Microporous polypropylene hollow fiber membranes PartⅡ . Pervaporation separation of water/ethanol mixtures by the poly(acrylic acid) grafted membranes, J. Membr. Sci. 214 (2003) 71-81.
43.H. A. Tsai, Y. S. Ciou, C. C. Hu, K. R. Lee, D. G. Yu, J. Y. Lai, Heat-treatment effect on the morphology and pervaporation performances of asymmetric PAN hollow fiber membranes, J. Membr. Sci. 255 (2005) 33-47.
44.T. S. Chung, S. K. Teoh, X. Hu, Formation of ultrathin high performance polyethersulfone hollow-fiber membranes, J. Membr. Sci. 133 (1997) 161-175.
45.S. Takegami, H. Yamada, S. Tsujii, Dehydration ofwater ethanol mixtures by pervaporation using modified poly(vinyl alcohol) membrane, polym. J. 24 (1992) 1239-1250.
46.X. Qiao, T. S. Chung, K. P. Pramoda, Fabrication and characterization of BTDATDI/MDI (P84) co-polyimide membranes for the pervaporation dehydration of isopropanol, J. Membr. Sci. 264 (2005) 176-189.
47.X. Qiao, T. S. Chung, Diamine modification of P84 polyimide membranes for pervaporation dehydration of isopropanol, AIChE J. 52 (2006) 3462-3472.
48.Y. Wang, S. H. Goh, T. S. Chung, P. Na, Polyamide- imide/polyetherimide dual-layer hollow fiber membranes for pervaporation dehydration of C1–C4 alcohols, J. Membr. Sci. 326 (2009) 222–233.
49.S. Sridhar, B. Smitha, A. A. Reddy, Separation of 2-butanol-water mixtures by pervaporation through PVA-NYL 66 blend membranes, Colloid. Surf. A, Colloid. Surf. A 280 (2006) 95-102.
50.T. S. Chung, X. Hu, The effect of air-gap distance on the morphology and thermal properties of polyethersulfone hollowfibers, J. Appl. Polym. Sci. 66 (1997) 1067-1077.
51.W. F. Guo, T. S. Chung, Study and characterization of the hysteresis behavior of polyimide membranes in the thermal cycle process of pervaporation separation, J. Membr. Sci. 253 (2005) 13-22.
52.T. Gallego-Lizon, E. Edwards, G. Lobiundo, L. F. d. Santos, Dehydration of water/t-butanol mixtures by pervaporation: comparative study of commercially available polymeric, microporous silica and zeolite membranes, J. Membr. Sci. 197 (2002) 309-319.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔