(3.235.139.152) 您好!臺灣時間:2021/05/11 06:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:姜凱仁
研究生(外文):Kai-Ren Jiang
論文名稱:利用微陣列基因探針進行預雜交以增強DNA雜交效率
論文名稱(外文):Efficiency Enhancement of DNA Hybridization by Pre-Hybridization on Microarrayed Gene Probes
指導教授:吳瑞璋
指導教授(外文):Jui-Chuang Wu
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:129
中文關鍵詞:DNA微陣列分子立體障礙雜交效率基因晶片DNA預雜交
外文關鍵詞:hybridization efficiencyDNA microarraymolecular steric hindranceDNA pre-hybridizationgene chips
相關次數:
  • 被引用被引用:0
  • 點閱點閱:117
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用兩種形態微陣列探針(Probe)與多樣的探針濃度,進行去氧核醣核苷酸(DNA)標的物(Target)預雜交反應(Pre-hybridization),以探討第二標的物樣品的雜交效率。使用三組經微陣列點樣之DNA探針和與其自身序列互補的標的物,每組包含一對DNA探針和一對與其自身序列互補並標定兩種易區分的螢光染色分子,經過特別設計的每個探針序列使標的物能分別互補於探針兩相鄰區域,分子空間效應對於雜交效率也透過比較單一及兩個標的物之間螢光訊號強度來探討。結果顯示在低探針濃度時有較好的雜交效率,且利用短序列DNA標的物進行第一次雜交反應可改善第二標的物鍵結至相同探針的雜交效率。然而第一標的物也發現因為第二標的物的鍵結而犧牲其自身訊號強度。
The effect of pre-hybridizing genetic DNA target on the hybridization efficiency of the second target samples is studied on two probe configurations and various probe concentrations. Three sets of microarrayed DNA probes and their complementary samples are utilized. Each set contains a pair of DNA probes and a pair of their complementary samples labeled with two distinct fluorescent dyes. The sequence of each probe is especially designed so that two targets are simultaneously complementary to two adjacent sections of the probe. The molecular steric effect on the hybridization efficiency is investigated by comparing the dye signals between configurations of one-target and two-target hybridization scenarios. The results show that a low probe concentration gives better hybridization efficiency and the first-hybridization conducted by a shorter-size DNA target improves the hybridization efficiency of the second target coupling onto the same probe. The first DNA target is also found to sacrifice signal intensity for the second one.
中文摘要…………….……………………………………………………… I
英文摘要…………….……………………………………………………... II
誌謝辭………………………...…………………………………………… III
總目錄……………………………………………………………………… V
圖目錄……………………………………………………………………… X
表目錄……………………….…………………………………………... XIII
第一章 緒論
1-1 生物晶片的發展背景………………………………………………….. 1
1-2 生物晶片的類型……………………………………………………….. 2
1-2.1 微陣列晶片(Microarray-chip)………………………………… 2
1-2.2 微流體晶片(Microfluidic-chip)………………………………… 3
1-3 晶片的應用…………………………………………………………….. 4
1-4 表面改質……………………………………………………………….. 5
1-5 晶片點陣固定方式…………………………………………………….. 7
1-5.1 光引導原位合成法(Light-directed synthesis, Photolithography)… 7
1-5.2 接觸式點樣法(Pin-touch, Mechanical micro-spotting)……… 8
1-5.3 噴墨法(Inkjet printer, Ink jetting)………………………………. 9
1-6 聚合酵素鏈鎖反應(Polymerase Chain Reaction)………………….. 11
1-7 DNA熔解溫度(Tm值)……………………………………………… 12
1-7.1 Wallace公式……………………………………………………… 12
1-7.2 Marmur公式…………………………………………………….. 12
1-7.3 Howley公式…………………………………………………….. 13
1-7.4 Nearest-neighbor公式…………………………………………... 13
1-8 膠體電泳(Gel electrophoresis)………………………………………… 14
1-8.1 電泳的演進背景…………………………………………………… 14
1-8.2 影響電泳速度的外界因素………………………………………… 15
1-9 標的物基因背景…………………………………………………….... 16
1-10 訊號標記螢光………………………………………………………… 17
1-11 探針(Probe)與雜交(Hybridization)的名詞解釋…….......18
1-12 晶片掃瞄儀器………………………………………………………… 18
1-13 影響生物晶片偵測效率的因素……………………………………... 19
1-14 實驗動機……………………………………………………………... 21
第二章 實驗原理
2-1 預雜交(Pre-hybridization)…………………………………………… 23
2-2 晶片表面化學塗佈改質……………………………………………… 27
2-3 DNA微陣列…………………………………………………………... 28
2-4 PCR原理…………………………………………………………… 30
2-5 膠體電泳原理……………………………………………………… 31
2-6 雜交溫度設定………………………………………………………… 33
2-7 吸光度量測…………………………………………………………… 34
2-8 DNA雜交原理………………………………………………………... 36
2-9 螢光顯色……………………………………………………………… 39
第三章 實驗步驟
3-1 實驗材料……………………………………………………………… 41
3-1.1 螢光標的物(Targets)…………………………………………….. 41
3-1.2 探針(Probes)…………………………………………………….. 43
3-1.3 正控點(Immobilization Control or Positive control )………… 45
3-1.4 化學詴劑………………………………………………………... 46
3-2 實驗儀器……………………………………………………………… 48
3-3 微陣列晶片製作……………………………………………………… 55
3-3.1 核酸矩陣晶片點樣機打點前準備……………………………... 55
3-3.2 基因點陣和固定化……………………………………………... 60
3-3.3 固定化後清洗…………………………………………………... 62
3-4 晶片雜交程序………………………………………………………… 63
3-4.1 標的物配製……………………………………………………... 63
3-4.2 專一性測詴 …………………………………………………. 65
3-4.3 60mer標的物單獨雜交測詴…………………………...…... 67
3-4.4 17mer標的物單獨雜交測詴………………………………... 67
3-4.5 先17mer標的物後60mer標的物堆疊雜交測詴………………. 68
3-4.6 先60mer標的物後17mer標的物堆疊雜交測詴………………. 69
3-5 清洗步驟……………………………………………………………… 69
3-6 螢光掃瞄訊號………………………………………………………… 70
3-7 數據整理……………………………………………………………… 71
第四章 結果與討論
4-1 專一性測詴………………………………………………….………… 72
4-2 標定Cy3之60mer標的物單獨雜交測詴……………….……... 73
4-3 標定Cy5之17mer標的物單獨雜交測詴….…….…………..… 76
4-4 先pda06175-Cy5後ATP5O-Cy3堆疊雜交測詴………………….. 78
4-5 先ATP5O-Cy3後pda06175-Cy5堆疊雜交測詴………………….. 80
4-6 先pda06122-Cy5後PSMA5-Cy3堆疊雜交測詴…………...………. 82
4-7 先PSMA5-Cy3後pda06122-Cy5堆疊雜交測詴……..…….………. 84
4-8 先pda13015-Cy5後CANX-Cy3堆疊雜交測詴……..……………. 86
4-9 先CANX-Cy3後pda13015-Cy5堆疊雜交測詴……..……………. 88
第五章 結論………………………………………………………………. 92
第六章 參考文獻 ……………………………………………………. 93
第七章 附錄
7-1 來源基因全序列……………………………………………………… 100
7-1.1 阿拉伯芥基因全序列……………………………………………. 100
7-1.2 人類基因全序列………………………………………………… 103
7-2 晶片掃描原始分析數據…………………………………………….... 108



圖目錄
圖1-1: 微陣列技術………………………………………………………... 10
圖2-1:DNA探針與互補標的物實驗設計圖…………………………….. 26
圖2-2:酸酐改質與DNA固定化…………………………………………. 27
圖2-3:接觸角偵測圖……………………………….…………………… 28
圖2-4:晶片製作程序示意圖……………………………………………... 29
圖2-5:PCR複製機制示意圖……………………………………………… 31
圖2-6:吸光度量測示意圖………………………………………………... 36
圖2-7:DNA鹼基配對…………………………………………………… 38
圖2-8:晶片雜交測詴示意圖…………………………………………….. 39
圖2-9:螢光分子結構式…………………………………………………... 40
圖3-1:低速離心機(Centrifuge CN-6000, Hsiangtai Machinery, Taiwan)…………………………………………………………………… 49
圖3-2:核酸矩陣晶片點樣機(Cartesian PixSys7500, Genomic Solutions, Michigan, USA)…………………………………………………………… 50
圖3-3 :紫外光可見光分光光譜儀(DU® 800 UV/Visible Spectrophotometer, Beckman Coulter, California, USA …………………………… 51
圖3-4:迴轉式震盪機(S101D, Firstek Scientific, Taipei, Taiwan)……………………………………………………………………. 53
圖3-5:共軛焦距螢光掃瞄儀(4000B, Molecular Devices, California, USA)………………………………………………………………………. 54
圖3-6:核酸矩陣晶片點樣機打點前準備圖示…………………………... 56
圖3-7:DNA微陣列晶片配置圖………………………………………….. 61
圖3-8:PCR反應所用藥品……………………………………………… 64
圖3-9:晶片雜交程序示意圖……………………………………………... 66
圖3-10:基因標的物各雜交區域位置圖………………………………… 68
圖3-11:晶片雜交後清洗程序示意圖……………………………………. 70
圖4-1:螢光標的物於3對探針進行專一性測詴………………………… 72
圖4-2:標定Cy3螢光標的物於兩探針進行單獨雜交……………………..75
圖4-3:標定Cy5螢光標的物於兩探針進行單獨雜交………..………….. 77
圖4-4:螢光標的物—先pda06175-Cy5 後ATP5O-Cy3進行堆疊式雜交…………………………………………………………….……………... 79
圖4-5:螢光標的物—先ATP5O-Cy3後pda06175-Cy5進行堆疊式雜交…………………………………………………………….……………... 81
圖4-6:螢光標的物—先pda06122-Cy5 後PSMA5-Cy3進行堆疊式雜交…………………………………………………………….……………... 83
圖4-7:螢光標的物—先PSMA5-Cy3 後pda06122-Cy5進行堆疊式雜交…………………………………………………………….……………... 85
圖4-8:螢光標的物—先pda13015-Cy5 後CANX-Cy3進行堆疊式雜交…………………………………………………………….……………... 87
圖4-9:螢光標的物—先CANX-Cy3後pda13015-Cy5進行堆疊式雜交…………………………………………………………….……………... 89



表目錄
表2-1:本研究所使用DNA標的物資訊………………………………25
表2-6:各基因片段熔解溫度………………………………………………34
表3-1:點樣機參數設定…………………………………………………... 57
表7-1:60 mer-Cy3標的物單獨雜交測詴晶片原始分析數據…………108
表7-2:17 mer-Cy5標的物單獨雜交測詴晶片原始分析數據…………109
表7-3:各組基因堆疊雜交測詴晶片分析數據(先17 mer-Cy5 後 60 mer-Cy3)………………………………………………………………..111
表7-4:各組基因堆疊雜交測詴晶片分析數據(先60 mer-Cy3 後 17 mer-Cy5)………………………………………………………………..114
【1】Schaack, B., Reboud, J., Combe, S., Fouque, B., Berger, F., Boccard, S., Filhol-Cochet, O., Chatelain, F., "DropChip" cell array for DNA and siRNA transfection combined with drug screening,” NanoBiotechnology, Volume 1, Issue 2, Pages 183-189 (2005).
【2】Wang, S. and Cheng, Q. “Microarray analysis in drug discovery and clinical applications,” Methods in Molecular Biology, Volume 316, Pages 49-65 (2005).
【3】Douglas, C. and Ehlting, J. “Arabidopsis thaliana full genome longmer microarrays: A powerful gene discovery tool for agriculture and forestry,” Transgenic Research, Volume 14, Issue 5, Pages 551-561 (2005).
【4】Debouck C. and Goodfellow PN. “DNA microarrays in drug discovery and development,” Nature genetics, Volume 21, iSuppl 1., Pages 48-50 (1999).
【5】DJ Duggan, M Bittner, Y Chen, P Meltzer, JM Trent “Expression profiling using cDNA microarrays,” Nature Genetics, Volume 21, Issue 1, Pages 10-14 (1999).
【6】Elisabeth Verpoorte. “Expression profiling using cDNA microarrays,” Electrophoresis, Volume 23, Issue 5, Pages 677-721 (2002).
【7】Cromer A, Carles A, Millon R, Ganguli G, Chalmel F, Lemaire F, Young J, Dembélé D, Thibault C, Muller D, Poch O, Abecassis J, Wasylyk B. “Identification of genes associated with tumorigenesis and metastatic potential of hypopharyngeal cancer by microarray analysis,” Oncogene, Volume 23, Issue 14, Pages 2484-2498 (2004).
【8】Manz A., Harrison D. J., Verpoorte E. M. J., Fettinger J. C., Paulus A., Ludi H., Widmer H. M. “Planar chips technology for miniaturization and integration of separation techniques into monitoring systems : capillary electrophoresis on a chip,” Journal of chromatography, Volume 593, Issue 1-2, Pages 253-258 (1992).
【9】Divne AM and Allen M. “A DNA microarray system for forensic SNP analysis,” Forensic science international, Volume 154, Issue 2-3, Pages 111 – 121 (2005).
【10】Jennifer T. Kemp, Ronald W. Davis, Robert L. White, Shan X. Wang , Chris D. Webb, “A novel method for STR-based DNA profiling using microarrays,” Journal of Forensic Sciences, Volume 50, Issue 5, Pages 1109-1113 (2005).
【11】Pongrac J., Middleton F.A., Lewis D.A., Levitt P., Mirnics K., “Gene Expression Profiling with DNA Microarrays: Advancing Our Understanding of Psychiatric Disorders,” Neurochemical Research, Volume 27, Issue 10 , Pages 1049-1063 (2005).
【12】Gerhild Fabjani, Gernot Kriegshaeuser, Andreas Schuetz, Lothar Prix, Robert Zeillinger, “Biochip for K-ras Mutation Screening in Ovarian Cancer,” Clinical chemistry, Volume 51, Issue 4 , Pages 784-787 (2005).
【13】Tadashi Okamoto, Tomohiro Suzuki, Nobuko Yamamoto, “Microarray fabrication with covalent attachment of DNA using bubble jet technology,” Nature Biotechnology, Volume 18, Issue 4 , Pages 438-441 (2000).
【14】M. Bras, V. Dugas, F. Bessueille, J. P. Cloarec, J. R. Martin, M. Cabrera, J. P. Chauvet, E. Souteyrand, M. Garrigues, “Optimisation of a silicon/silicon dioxide substrate for a fluorescence DNA microarray,” Biosensors and Bioelectronics, Volume 20, Issue 4 , Pages 797-806 (2004).
【15】Shu Taira, Kenji Yokoyama, “Immobilization of single-stranded DNA by self-assembled polymer on gold substrate for a DNA chip,” Biotechnology and Bioengineering, Volume 89, Issue 7 , Pages 835-838 (2004).
【16】Søren Richard Rasmussen, Mette Ravn Larsen, Svend Erik Rasmussen, “Covalent immobilization of DNA onto polystyrene microwells: The molecules are only bound at the 5′ end,” Analytical Biochemistry, Volume 198, Issue 1 , Pages 138-142 (1991).
【17】Yunchao Li, Zhen Wang, Lily M. L. Ou, and Hua-Zhong Yu “DNA Detection on Plastic: Surface Activation Protocol To Convert Polycarbonate Substrates to Biochip Platforms,” Anal. Chem., 79, 426-433 (2007).
【18】Kenneth Castelino, Balaji Kannan, and Arun Majumdar, “Characterization of Grafting Density and Binding Efficiency of DNA and Proteins on Gold Surfaces,” Langmuir, 21, 1956-1961 (2005).
【19】C.A. Koch, P.C.H. Li, R.S. Utkhede, “Evaluation of thin Wlms of agarose on glass for hybridization of DNA to identify plant pathogens with microarray technology,” Analytical Biochemistry, 342, 93–102 (2005)
【20】Qinghua Wu, Wenli Ma, Lina Zhu, Qiuye Guo, Bao Zhang, Shivappa M. Kulageri, Wenling Zheng, “Oligo-Microarray Based on Oligonucleotide Immobilization on Glass Surface Modified With Activated Acrylic Acid-co-Acrylamide Copolymer,” Appl Biomater 87B: 67–72 (2008)
【21】Seung Pil Pack, Nagendra Kumar Kamisetty, Mitsuru Nonogawa, Kamakshaiah Charyulu Devarayapalli, Kairi Ohtani, Kazunari Yamada, Yasuko Yoshida, Tsutomu Kodaki, Keisuke Makino, “Direct immobilization of DNA oligomers onto the amine-functionalized glass surface for DNA microarray fabrication through the activation-free reaction of oxanine,” Nucleic Acids Research, Volume 35, Issue 17, e110 (2007).
【22】Dora Peelen, Lloyd M Smith, “Immobilization of amine-modified oligonucleotides on aldehyde-terminated alkanethiol monolayers on gold,” Langmuir, Volume 21, Issue 1 , Pages 266-271 (2005).
【23】Dalip Sethi, A. Kumar, K. C. Gupta, and P. Kumar, “A Facile Method for the Construction of Oligonucleotide Microarrays,” Bioconjugate Chemistry 19, 2136–2143 (2008)
【24】Schena M, Heller RA, Theriault TP, Konrad K, Lachenmeier E, Davis RW, “Microarrays: biotechnology's discovery platform for functional genomics,” Trends Biotechnol, Volume 16, Issue 7, Pages 301-306 (1998).
【25】張建裕, 張建國, “基礎PCR,” 藝軒圖書出版社, ISBN 957-616-776-0 (2004)
【26】Saiki, R.K, Scharf, S, Faloona, F, Mullis, K.B, Horn, G.T, Erlich, H.A. and Arnheim, N.,”Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia,” Science 230, 1350-1354 (1985)
【27】Saiki, R.K, Gelfand, D.H, Stoffel, S, Scharf, S, Higuchi, R, Horn, G.T., Mullis, K.B. and Erlich, H.A., “Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase,” Science 239, 487-491 (1988)
【28】李建武, 蕭能, 余瑞元, 袁明秀, 陳麗蓉, 陳雅蕙, 陳來同, “生物化學實驗原理和方法,” 藝軒圖書出版社, ISBN 957-616-420-6 (1999)
【29】The Arabidopsis Genome Initiative, “Analysis of the genome sequence of the flowering plant Arabidopsis thaliana,” Nature 408, 796-815 (2000)
【30】Svetlana Dubiley, Eugene Kirillov, Yuri Lysov1, Andrei Mirzabekov, “Fractionation, phosphorylation and ligation onoligonucleotide microchips to enhance sequencing by hybridization,” Nucleic Acids Research, Volume 25, Issue 12, Pages 2259-2265 (1997)
【31】Fixe, F., Branz, H., Louro, N., Chua, V., Prazeres, D., Condea, J. “Immobilization and hybridization by single sub-millisecond electric field pulses, for pixel-addressed DNA microarrays,” Biosensors and Bioelectronics, Volume 19, Issue 12, Pages 1591-1597 (2004).
【32】Tao, S., Gao, H., Cao, F., Ma, X., Cheng, J., “Blocking oligo-a novel approach for improving chip-based DNA hybridization efficiency,” Molecular and Cellular Probes, Volume 17, Issue 4, Pages 197-202 (2003).
【33】Hong, B., Sunkara, V., Park, J., “DNA microarrays on nanoscale-controlled surface,” Nucleic Acids Research, Volume 33, Issue 12, e106 (2005).
【34】Guo, Z., Guilfoyle, R., Thiel, A., Wang, R., Smith, L. “Direct fluorescence analysis of genetic polymorphisms by hybridization with oligonucleotide arrays on glass supports,” Nucleic acids research, Volume 22, Issue 24, Pages 5456-5465 (1994).
【35】Liqiang Wangand and Zukang Lu, “Detection apparatus for fluorescent microarray slides,” Proc. SPIE., Volume 6149, 614918 (2006)
【36】馬立人, 蔣中華, “生物晶片(第二版),”九州圖書文物有限公司, ISBN 957-8324-78-2, (2003).
【37】Yan Yu Qing, Li Jie, “Study on the Interfere Factors of Signal-Noise Ratio during Scanning Gene Chip,” The Journal of American Science, Volume 2, Issue 1, Pages 80-82 (2006).
【38】Maruyama, A., Ueda, M., Kim, W., Akaike, T., “Design of polymer materials enhancing nucleotide hybridization for anti-gene technology,” Advanced Drug Delivery Reviews, Volume 52, Issue 3, Pages 227-233 (2001).
【39】Zammatteo, N., Jeanmart, L., Hamels, S., Courtois, S., Louette, P., Hevesi, L., Remacle, J., “Comparison between different strategies of covalent attachment of DNA to glass surfaces to build DNA microarrays,” Analytical Biochemistry, Volume 280, Issue 1, Pages 143-150 (2000).
【40】Peterson, A.W., Heaton, R.J. and Georgiadis, R.M., “The effect of surface probe density on DNA hybridization,” Nucleic Acids Res, 29 (24), 5163– 5168 (2001)
【41】Rule, G., Montagna, R., and Durst, R., “Characteristics of DNA-tagged liposomes allowing their use in capillary-migration, sandwich-hybridization assays,” Analytical Biochemistry, Volume 244, Issue 2, Pages 260-269 (1997).
【42】Deng, P., Lee, Y., Cheng, P., “Two-dimensional micro-bubble actuator array to enhance the efficiency of molecular beacon based DNA micro-biosensors.,” Biosensors and Bioelectronics, Volume 21, Issue 8, Pages 1443-1450 (2006).
【43】McQuain, M., Seale, K., Peek, J., Fisher, T., Levy, S., Stremler, M., and Haseltona, F., “Chaotic mixer improves microarray hybridization,” Analytical Biochemistry, Volume 235, Issue 2, Pages 215-226 (2004).
【44】Wu, P., Hogrebe, P., Grainger, D., “DNA and protein microarray printing on silicon nitride waveguide surfaces,” Biosensors & Bioelectronics, Volume 21, Issue 7, Pages 1252-1263 (2006).
【45】Koehler R. and Peyret, N. “Effects of DNA secondary structure on oligonucleotide probe binding efficiency,” Computational Biology and Chemistry, Volume 29, Issue 6, Pages 393-397 (2005).
【46】Letowski, J., Brousseau, R. and Masson, L. “Designing better probes: effect of probe size, mismatch position and number on hybridization in DNA oligonucleotide microarrays,” J. of Microbiological Methods (2004).
【47】Peytavi, R., Tang, L., Raymond, F., Boissinot, K., Bissonnette, L., Boissinot, M., Picard, F. J., Huletsky, A., Ouellette, M., and Bergeron, M., “Correlation between microarray DNA hybridization efficiency and the position of short capture probe on the tartget nucleic acid,” BioTechniques, 39, 89-96 (2005).
【48】Koehler, R. and Peyret, N. “Effects of DNA secondary structure on oligonucleotide probe binding efficiency,” Computational Biology and Chemistry, 29, 393–397 (2005).
【49】Dan Kai Yang, Jie Len Huang, Chia Chun Chen, Hung Ju Su, Jui Chuang Wu, “Enhancement of target-DNA hybridization efficiency by pre-hybridization on sequence-orientated micro-arrayed probes,” Journal of the Chinese Institute of Chemical Engineers 39, 187–193 (2008)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔