(3.238.235.155) 您好!臺灣時間:2021/05/16 18:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:魏士偉
研究生(外文):Shi-Wei Wei
論文名稱:聚醯胺/醋酸纖維酯複合膜應用於滲透蒸發分離之研究
論文名稱(外文):Study on polyamide/cellulose acetate composite membrane for pervaporation separation
指導教授:賴君義賴君義引用關係李魁然
指導教授(外文):Juin-Yih LaiKueir-Rarn Lee
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:98
中文關鍵詞:聚醯胺可變單一能量慢速正子束滲透蒸發界面聚合
外文關鍵詞:VMSPBpervaporationinterfacial polymerizationpolyamide
相關次數:
  • 被引用被引用:9
  • 點閱點閱:138
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了改善聚醯胺(polyamide. PA)薄膜低透過量的缺點,本研究利用不同結構之胺單體(DMDPA、NTEA、DETA)與不同結構之醯氯單體(DEMDC、PC、TMC),於親水的非對稱醋酸纖維酯(cellulose acetate, CA)薄膜表面進行界面聚合反應,製備一系列聚醯胺/醋酸纖維酯複合膜,應用於滲透蒸發程序分離醇類水溶液。研究中利用全反射式傅立葉轉換紅外線光譜儀(ATR-FTIR)、X射線光電子能譜儀(XPS)與掃瞄式電子顯微鏡(SEM)來鑑定聚醯胺聚合層的化學結構與型態。接觸角試驗被用來量測聚醯胺聚合層與對進料溶液的親和性。
研究中探討單體結構與聚合條件,例如:水相與有機相單體溶液濃度、水相處理時間、聚合時間、有機相溶劑等效應對滲透蒸發分離效能的影響。亦探討滲透蒸發操作條件,例如:操作壓力、進料溶液組成、溫度與種類等效應對滲透蒸發分離效能的影響。研究發現不同單體化學結構所造成反應性及立體障礙的差異,主導聚合層結構型態與交聯程度,而理想的單體組合為胺單體 DETA與醯氯單體 TMC。
在探討以不同有機相溶劑所製備聚醯胺層之結構變化與滲透蒸發分離效能的關聯性研究中發現,隨著有機相溶劑黏度下降,聚醯胺層厚度隨之增加,滲透蒸發效能呈現透過量下降而透過水濃度上升的趨勢。為進一步了解有機相溶劑對聚醯胺聚合層細微結構的影響,利用正子湮滅光譜分析技術(Positron annihilation spectroscopy, PAS)使用可變單一能量慢速正子束(Variable monoenergy slow positron beam, VMSPB)分析儀來偵測聚醯胺複合膜其聚合層之自由體積與結構變化,並期望與滲透蒸發分離效能有良好的關聯性。
研究結果顯示,CA基材膜浸泡於0.5 wt% DETA水溶液中10秒,然後表面接觸0.5 wt% TMC/iso-pentane有機溶液進行界面聚合反應10秒,所製得之複合薄膜於25 ℃下進行滲透蒸發分離90 wt%異丙醇水溶液有最佳之分離效能,其透過量約為780 g/m2h而透過水濃度高於99 wt%。
To improve the permeation rate of polyamide (PA) membrane, a series of polyamide thin-film composite (TFC) membranes was prepared via interfacial polymerization of various water-soluble amines (DMDPA, NTEA, DETA) and various acyl chloride monomers (DEMDC, PC, TMC) on the surface of asymmetric cellulose acetate (CA) membranes. The PA/CA composite membranes were applied to the pervaporation separation of aqueous alcohol solutions. Attenuated total reflection infrared spectroscopy (ATR-FTIR), x-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) were used to characterize the chemical structures and morphologies of the polyamide active layers of the composite membranes. The affinity between the membrane and the feed solution was studied through contact angle measurement.
The effects of the chemical structure of the monomers and the interfacial polymerization conditions, such as the monomer concentration of aqueous and organic solutions, the immersion time of aqueous solution, the polymerization time and organic solvents, on the pervaporation performance were investigated. In addition, the effects of the operation conditions of the pervaporation separation process, such as the operating pressure, the composition, the operating temperature, and the kind of the feed solution, on the pervaporation performance were also studied. It was found that the different chemical structures of the monomers, which caused different reactivities and sterical stabilizations, dominated the chemical structures and cross-linking degrees of the polyamide active layers of the composite membranes. The desirable monomers for interfacial polymerization were the amine monomer DETA and the acyl chloride TMC.
From this study on the correlation between the chemical structure of polyamide layer and the pervaporation, it was found that the thickness of the polyamide active layer increased, the permeation rate decreased, and the water concentration in the permeate increased with a decrease in the viscosity of the organic solvent. To further understand the variation in the fine-structure of polyamide active layer of the composite membrane prepared via interfacial polymerization using different organic solvents, positron annihilation spectroscopy (PAS) coupled with a variable monoenergy slow positron beam (VMSPB) was utilized to detect the depth profile of the free volume and multilayer structure in the PA/CA composite membrane. The data obtained from PAS experiments were expected to correlate well with the pervaporation performance.
It was found that the DETA-TMC/CA thin-film composite membranes prepared by immersing CA into 0.5 wt% aqueous DETA solution for 10s and then contacting it with 0.5 wt% TMC in iso-pentane organic solution for 5s had the best pervaporation performance of 90 wt% aqueous iso-propanol solution at 25 ℃, which was the permeation rate was about 780 g/m2h and the water concentration in the permeate was high than 99 wt%.
中文摘要 I
英文摘要 III
致謝 V
目錄 VII
圖索引 XI
表索引 XVII
第一章 緒論 1
1-1 薄膜發展之優勢 1
1-2 薄膜簡介 2
1-3 薄膜分離技術 4
1-4 滲透蒸發分離程序 6
1-5 複合薄膜製備 8
1-5-1 基材膜之製備 8
1-5-2 緻密膜之製備 9
1-6 聚醯胺高分子 11
1-7 正子湮滅光譜(Positron annihilation spectroscopy, PAS)分析技術 12
1-7-1 正子湮滅時間(Positron Annihilation Lifetime, PAL)分析儀 14
1-7-2 可變單一能量慢速正子束 (Variable monoenergy slow positron
beam, VMSPB) 分析儀
15
1-7-2-1 都卜勒展寬能量光譜(Doppler-broadened energy spectrum, DBES) 15
1-7-2-2 正子湮滅時間光譜(Positron annihilation lifetime spectroscopy,
PALS
18
1-8 文獻回顧 18
1-8-1 界面聚合發展史 18
1-8-2 界面聚合基材膜 19
1-8-3 界面聚合反應單體 20
1-8-4 界面聚合製備條件 22
1-8-5 聚醯胺複合膜鑑定 23
1-8-6 界面聚合複合膜應用於滲透蒸發 24
1-9 研究動機 27
第二章 實驗 29
2-1 實驗藥品 29
2-2 實驗儀器 30
2-3 實驗架構 31
2-4 薄膜製備 31
2-4-1 基材膜製備 31
2-4-2 複合薄膜之製備 32
2-5 薄膜鑑定 33
2-5-1 掃描式電子顯微鏡 ( SEM ) 33
2-5-2 X 射線光電子能譜儀 (XPS) 34
2-5-3 全反射式傅立葉轉換紅外線光譜儀 (ATR-FTIR) 36
2-5-4 滲透蒸發測試 36
2-5-5 都卜勒展寬能量光譜 (Doppler-broadened Energy Spectrum, DBES) 38
2-5-6 正子湮滅時間光譜分析(Positron Annihilation Lifetime Spectroscopy,
PALS)
39
第三章 結果與討論 41
3-1 複合薄膜結構設計與鑑定 41
3-1-1 醯氯單體結構變化 41
3-1-2 胺單體結構變化 45
3-2 水相溶液處理時間對滲透蒸發分離效能之影響 54
3-3 聚合時間對滲透蒸發分離效能之影響 55
3-4 水相溶液濃度對滲透蒸發分離效能之影響 57
3-5 有機相溶液濃度對滲透蒸發分離效能之影響 59
3-6 有機相溶劑對滲透蒸發分離效能之影響 61
3-7 進料組成對複合薄膜分離效能之影響 70
3-8 進料溫度對複合薄膜分離效能之影響 71
3-9 操作壓力對複合薄膜分離效能之影響 72
3-10 進料醇類對複合薄膜分離效能之影響 73
第四章 結論 74
第五章 參考文獻 76


圖索引
第一章 緒論
Fig.1-1 Schematic representation of various membrane
cross-sectional morphologies.
3
Fig.1-2 Schematic representation of the nominal pore size and best
theoretical model for the principal membrane separation
processes.
4
Fig.1-3 Schematic representation of a two-phase system separated by a
membrane.
5
Fig.1-4 The principle of pervaporation. 7
Fig.1-5 Schematic diagram of composite membrane. 8
Fig.1-6 Schematic drawing of the formation of a composite membrane
via interfacial polymerization.
9
Fig.1-7 The scheme of chemical reaction for synthesized polyamide
from interfacial polymerization of TETA and TMC onto the
surface of the mPAN membrane.
10
Fig.1-8 Diagrams of polymer film growth at liquid interfaces. 12
Fig.1-9 Mean stopping distance and stopping profiles for positron as a
function of incident energy
14
Fig.1-10 Normalized positron annihilation lifetime (PAL) spectra. 15
Fig.1-11 A Doppler broadening energy spectrum (DBES, top) and
definitions of S, W, and R (3/2 ratio) parameters from DBES.
S is ratio of total counts from central region, W is the ratio of
wing region, to the total 511 keV annihilation counts,
respectively while R is the ratio of 3/2 annihilation.
16
第二章 實驗
Fig.2-1 The chemical structure of amine monomers, (a)
Diethylenetriamine (DETA), (b) Nitrilotriethylamine (NTEA),
(c) 3.3-Diamino-N-methyl-dipropylamine (DMDPA).
32
Fig.2-2 Fig. 2-2 The chemical structure of acyl chloride monomers, (a)
trimesoyl chloride (TMC), (b) Phthaloyl Chloride (PC), (c)
Diethylmalonyl dichloride (DEMDC).
32
Fig.2-3 Illustration of interfacial polymerization procedure. 33
Fig.2-4 The schematic diagram of the photoelectric effect. 35
Fig.2-5 The schematic diagram of XPS. 35
Fig.2-6 The schematic diagram of pervaporation apparatus. 37
Fig.2-7 Variable monoenergy slow positron beam positron beam. 38
Fig.2-8 positron beam. 40
第三章 結果與討論
Fig. 3-1-1-1 Effect of the acyl chloride monomer on the ATR-FTIR spectra of
(a) CA support and polyamide thin film composite membranes
prepared by 1wt% DETA for 30s and then contacting with (b)
1wt% DCMDC (c) 1wt% PC;(d) 1wt% TMC for 30s.
42
Fig. 3-1-1-2 Fig. 3-1-1-2 SEM images of (a) (b) CA support and polyamide
thin-film composite membranes, (c) (d) DETA-DEMDC/CA, (e)
(f)DETA- PC/CA, (g) (h) DETA-TMC/CA.
43
Fig.3-1-2-1 Fig. 3-1-2-1 Effect of the amine monomer on the ATR-FTIR
spectra of (a) CA support and polyamide thin film composite
membrane prepared by (b) 1wt% DMDPA;(c) 1wt% NTEA;(d)
1wt% DETA for 30s and then contacting with 1wt% TMC for
30s.
46
Fig.3-1-2-2 Fig. 3-1-2-2 SEM image of (a)(b)CA support and polyamide
thin-film composite membrane. (c)(d) DADPA-TMC/CA (e)(f)
NTEA-TMC/CA, (g)(h) DETA-TMC/CA.
47
Fig.3-1-2-3 Light transmission curves of various polyamide free-standing
membrane.
49
Fig.3-1-2-4 C1s X-ray photoelectron spectra of the polyamide thin-film
composite membrane. (a) DMDPA-TMC/CA, (b)
NTEA-TMC/CA, (c) DETA-TMC/CA.
50
Fig.3-2-1 Effect of the immersion time of DETA solution on the
pervaporation of 90 wt% aqueous ethanol mixture at 25℃
through the polyamide thin-film composite membrane.
(Polymerization condition:CA immersing in 0.5 wt% DETA
solution and then contacting with 0.5wt% TMC solution for 10s).
55
Fig.3-3-1 Effect of the polymerization time on the pervaporation of 90
wt% aqueous ethanol mixture at 25℃ through the polyamide
thin-film composite membrane. (Polymerization condition:CA
immersing in 0.5 wt% DETA solution for 15s and then
contacting with 0.5 wt% TMC solution).
56
Fig.3-3-2 SEM images of polyamide thin-film composite membranes
prepared by immersing in 0.5 wt% DETA solution for 10s and
contacting with 0.5 wt% TMC solution for (a)(b) 2, (c)(d) 15,
(e)(f) 30 sec.
57
Fig. 3-4-1 Effect of the concentration of DETA solution on the
pervaporation of 90 wt% aqueous ethanol mixture at 25℃
through the polyamide thin-film composite membrane.
(Polymerization condition:CA immersing in DETA solution for
10s and then contacting with 0.5 wt% TMC solution for 5s).
58
Fig. 3-4-2 SEM image of polyamide thin-film composite membrane were
prepared by immersing in (a)0.1 wt% (b) 0.5 wt%, (c) 1 wt%,
(d)1.5 wt% DETA solution for 10s and contacting with 0.5 wt%
TMC solution for 5 sec .
59
Fig.3-5-1 Effect of the concentration of TMC solution on the pervaporation
of 90 wt% aqueous ethanol mixture at 25℃ through the
polyamide thin-film composite membrane.(Polymerization
condition:CA immersing in 0.5 wt% DETA solution for 10s and
then contacting with TMC solution for 5s).
60
Fig. 3-5-2 SEM image of polyamide thin-film composite membrane were
prepared by immersing in 0.5 wt% DETA solution for 10s and
contacting with (a)0.1 wt% (b) 0.5 wt%, (c) 1.5 wt% TMC
solution for 5 sec .
61
Fig. 3-6-1 Effect of the organic solvent on the ATR-FTIR spectra of
polyamide thin film composite membranes prepared by 0.5 wt%
DETA for 10s and then contacting with 0.5 wt% TMC in (a)
tetralin (b) toluene, (c) n-hexane, (d) iso-pentane for 5s.
62
Fig.3-6-2 3-6-2 surface SEM morphologies (x50K) of (a) CA support and
polyamide thin-film composite membranes prepared with
organic solvents (b) tetralin , (c) toluene, (d) n-hexane , (e)
iso-pentane.
Fig.3-6-3 S parameter as a function of positron incident energy for
polyamide thin film composite membrane prepared with various
organic solvents (●) tetralin, (▼) toluene, (◆) n-hexane, (▼)
iso-pentane.
64
Fig.3-6-4 3-6-4 cross-section SEM morphologies of (a) CA support and
polyamide thin-film composite membranes prepared with
organic solvents (b) tetralin , (c) toluene, (d) n-hexane , (e)
iso-pentane.
65
Fig.3-6-5 Effect of the organic solvent on pervaporation separation index
of 90 wt% aqueous ethanol aqueous solution through
polyamide/cellulose acetate composite membrane at 25℃.
69
Fig.3-7-1 Effect of the Ethanol concentration in feed on pervaporation
performance through polyamide/cellulose acetate composite
membrane at 25℃.
70
Fig.3-8-1 Effect of the feed temperature on pervaporation performance of
90 wt% aqueous ethanol aqueous solution through
polyamide/cellulose acetate composite membrane.
71
Fig.3-9-1 Effect of the permeate pressure on pervaporation performance of
90 wt% aqueous ethanol aqueous solution through
polyamide/cellulose acetate composite membrane.


表索引
第一章 緒論
Table 1-1 Driving forces and the two-phase systems separated by
membranes for different membrane processes.
5
第三章 結果與討論
Table 3-1-1 Effect of the chemical structure of the acyl chloride monomer
on pervaporation separation of 90 wt% ethanol aqueous
solution through the polyamide/cellulose acetate thin-film
composite membrane at 25 ℃.
44
Table 3-1-2-1 Relative bond assignments of C1s x-ray photoelectron spectra. 50
Table 3-1-2-2 o-Ps lifetime τ3 and relative intensity I3 of polyamide
membranes.
52
Table 3-1-2-3 Effect of the chemical structure of the amine on
pervaporation separation of 90 wt% ethanol aqueous solution
through the polyamide/cellulose acetate thin-film composite
membrane at 25 ℃.
53
Table 3-6-1 The properties of organic solvent. 62
Table 3-6-2 Surface atomic composition of the skin layer and their
concentration ratios.
66
XVIII
Table 3-7-1 Effect of the ethanol concentration in ethanol aqueous
solution on the contact angle of polyamide/cellulose acetate
composite membrane at 25℃.
71
Table 3-10-1 Effect of 90 wt% aqueous alcohol solutions on the
pervaporation performance for the polyamide thin-film
composite membrane at 25℃.
73
Table 3-6-3 Effect of the organic solvent on pervaporation performance of
90 wt% aqueous ethanol aqueous solution through
polyamide/cellulose acetate composite membrane at 25℃.
68
1.M. Mulder, Basic principle of membrane technology, Kluwer Academic Publisher, The Netherlands, 1996.
2.S. P. Nunes, K. V. Peinemann, Membrane technology in the chemical industry, Wiley, Germany, 2003.
3.U. S. Toti, T. M. Aminabhavi, Different viscosity grade sodium alginate and modified sodium alginate membranes in pervaporation separation of water + acetic acid and water + isopropanol mixtures, J. Membr. Sci., 228 (2004) 199-208.
4.M. Y. Teng, K. R. Lee, S. C. Fan, T. T. Wu, J. Y. Lai, Development of aromatic polyamide membrane for pervaporation and vapor permeation, J. Membr. Sci., 164 (2000) 241-249.
5.H. A. Tsai, S. C. Chen, W. L. Chou, K. R. Lee, M. C. Yang, J. Y. Lai, Pervaporation of water/alcohol mixtures through chitosan/cellulose acetate composite hollow fiber membranes, J. Appl. Polym. Sci., 94 (2004) 1562-1568.
6.J. Huang, Y. C. Wang, C. L. Li, K. R. Lee, S. C. Fan, T. T. Wu, J. Y. Lai, Dehydration of water-alcohol mixtures by pervaporation and vapor permeation through surface resintering expanded poly(tetrafluoroethylene) membranes, Eur. Polym. J., 38 (2002) 179-186.
7.李魁然, 滲透蒸發薄膜研究-成膜與改質, 中原大學化學工程學系博士學位論文, 1993.
8.M. Y. Teng, K. R. Lee, D. J. Liaw, Y. S. Lin, J. Y. Lai, Plasma deposition of acrylamide onto novel aromatic polyamide membrane for pervaporation, Eur. Polym. J., 36 (2000) 663-672.
9.H. Wang, X. Lin, K. Tanaka, H. Kita, K. I. Okamoto, Preparation of plasma-grafted polymer membranes and their morphology and pervaporation properties toward benzene/cyclohexane mixtures, J. Polym. Sci. Part A: Polym. Chem., 36 (1998) 2247-2259.
10.J. G. Wijmans, R. W. Baker, The solution-diffusion model: a review, J. Membr. Sci., 107 (1995) 1-21.
11.B. J. Chang, Y. H. Chang, D. K. Kim, J. H. Kim, S. B. Lee, New copolyimide membranes for the pervaporation of trichloroethylene from water, J. Membr. Sci., 248 (2005) 99-107.
12.Y. C. Wang, C. L. Li, J. Huang, C. Lin, K. R. Lee, D. J. Liaw, J. Y. Lai, Pervaporation of benzene/cyclohexane mixtures through aromatic polyamide membranes, J. Membr. Sci., 185 (2001) 193-200.
13.L. T. Rozelle, J. E. Cadotte, K. E. Cobian, C. V. Kopp Jr., Nonpolysaccharide membranes for reverse osmosis: NS-100 membranes, in S. Sourirajan (Ed.), Reverse Osmosis and Synthetic Membranes, National Research Council Canada, Ottawa 1977.
14.P. W. Morgan, Condensation Polymers: By Interfacial and Solution Methods, Interscience Publishers, NY 1965.
15.Y. C. Jean, P. E. Mallon, D. M. Schrader, Principles and Applications of Position and positronium chemistry, World Scientific, Singapore 2003.
16.D. M. Schrader, Y. C. Jean, Position and positronium chemistry, Elsevier Sci., Amsterdam 1988.
17.H. M. Chen, W. S. Hung, J. H. Lo, S. H. Huang, M. L. Cheng, G. Liu, K. R. Lee, J. Y. Lai, Y. M. Sun, C. C. Hu, R. Suzuki, T. Ohdaira, N. Oshima, Y. C. Jean, Free-volume depth profile of polymeric membranes studied by positron annihilation spectroscopy: layer structure from interfacial polymerization, Macromolecules, 40 (2007) 7542-7557.
18.H. Cao, R. Zhang, J.-P. Yuan, C.-M. Huang, Y. C. Jean, R. Suzuki, T. Ohdaira, B. Nielsen, Free-volume hole model for positronium formation in polymers: surface studies, J. Phys.: Condens. Matter, 10 (1998) 10429-10422.
19.J. Algers, R. Suzuki, T. Ohdaira, F. H. J. Maurer, Characterization of free volume and density gradients of polystyrene surfaces by low-energy positron lifetime measurements, Polymer, 45 (2004) 4533-4539.
20.Y. C. Jean, J. Zhang, H. Chen, Y. Li, G. Liu, Positron annihilation spectroscopy for surface and interface studies in nanoscale polymeric films, Spectrochim. Acta, Part A, 61 (2005) 1683-1691.
21.R. J. Petersen, Composite reverse osmosis and nanofiltration, J. Membr. Sci., 83 (1993) 81-150.
22.N. W. Oh, J. Jegal, K. H. Lee, Preparation and characterization of nanofiltration composite membranes using polyacrylonitrile (PAN). II. preparation and characterization of polyamide composite membranes, J. Appl. Polym. Sci., 80 (2001) 2729-2736.
23.J. Wei, X. Jian, C. Wu, S. Zhang, C. Yan, Influence of polymer structure on thermal stability of composite membranes, J. Membr. Sci., 256 (2005) 116-121.
24.C. Wu, S. Zhang, D. Yang, J. Wei, C. Yan, X. Jian, Preparation, characterization and application in wastewater treatment of a novel thermal stable composite membrane, J. Membr. Sci., 279 (2006) 238-245.
25.S. Verıssimo, K. Peinemann, J. Bordado, Thin-film composite hollow fiber membranes: An optimized manufacturing method, J. Membr. Sci., 264 (2005) 48-55.
26.F. Yang, S. Zhang, D. Yang, X. Jian, Preparation and characterization of polypiperazine amide/PPESK hollow fiber composite nanofiltration membrane, J. Membr. Sci., 301 (2007) 85-92.
27.J. Liu, Z. Xu, X. Li, Y. Zhang, Y. Zhou, Z. Wang, X. Wang, An improved process to prepare high separation performance PA/PVDF hollow fiber composite nanofiltration membranes, Sep. Purif. Technol, 58 (2007) 53-60.
28.K. Yoon, B. Hsiao, B. Chu, High flux nanofiltration membranes based on interfacially polymerized polyamide barrier layer on polyacrylonitrile nanofibrous scaffolds, J. Membr. Sci., 326 (2009) 484-492.
29.B., Z. Huo, P. Wu, Study on a novel polyester composite nanofiltration membrane by interfacial polymerization of triethanolamine (TEOA) and trimesoyl chloride (TMC) I. Preparation, characterization and nanofiltration properties test of membrane, J. Membr. Sci., 320 (2008) 198-205.
30.M. Liu, D. Wu, S. Yu, C. Gao, Influence of the polyacyl chloride structure on the reverse osmosis performance, surface properties and chlorine stability of the thin-film composite polyamide membranes, J. Membr. Sci., 326 (2009) 205-214.
31.G. Chen, S. Li, X. Zhang, S. Zhang, Novel thin-film composite membranes with improved water flux from sulfonated cardo poly(arylene ether sulfone) bearing pendant amino groups, J. Membr. Sci., 310 (2008) 102-109.
32.L. Li, S. Zhang, X. Zhang, G. Zheng, Polyamide thin film composite membranes prepared from isomeric biphenyl tetraacyl chloride and m-phenylenediamine, J. Membr. Sci., 315 (2008) 20-27.
33.C. K. Kim, J. H. Kim, I. J. Roh, J. J. Kim, The changes of membrane performance with polyamide molecular structure in the reverse osmosis process, J. Membr. Sci., 165 (2000) 189-199.
34.S. Verissimo, K.-V. Peinemann, J. Bordado, Influence of the diamine structure on the nanofiltration performance, surface morphology and surface charge of the composite polyamide membranes, J. Membr. Sci., 279 (2006) 266-275.
35.P. R. Buch, D. J. Mohan, A. V. R. Reddy, Preparation, characterization and chlorine stability of aromatic–cycloaliphatic polyamide thin film composite membranes, J. Membr. Sci., 309 (2008) 36-44.
36.S. H. Kim, S. Y. Kwak, T. Suzuki, Positron Annihilation Spectroscopic Evidence to Demonstrate the Flux-Enhancement Mechanism in Morphology-Controlled Thin-Film-Composite (TFC) Membrane, Environ. Sci. Technol., 39 (2005) 1764-1770.
37.S. H. Chen, D. J. Chang, R. M. Liou, C. S. Hsu, S. S. Lin, Preparation and separation properties of polyamide nanofiltration membrane, J. Appl. Polym. Sci., 83 (2002) 1112-1118.
38.J. Jegal, S. G. Min, K. H. Lee, Factors affecting the interfacial polymerization of polyamide active layers for the formation of polyamide composite membranes, J. Appl. Polym. Sci., 86 (2002) 2781-2787.
39.I. C. Kim, J. Jegal, K. H. Lee, Effect of aqueous and organic solutions on the performance of polyamide thin-film-composite nanofiltration membranes, J. Polym. Sci. Part B: Polym Phys., 40 (2002) 2151-2163.
40.A. L. Ahmad, B. S. Ooi, Properties–performance of thin film composites membrane: study on trimesoyl chloride content and polymerization time, J. Membr. Sci., 255 (2005) 67-77.
41.A. P. Rao, N. V. Desai, R. Rangarajan, Interfacial synthesized thin film composite RO membranes for seawater desalination, J. Membr. Sci., 124 (1997) 263-272.
42.S. H. Kim, S. Y. Kwak, B. H. Sohn, T. H. Park, Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem, J. Membr. Sci., 211 (2003) 157-165.
43.S. Kwak, Relationship of relaxation property to reverse osmosis permeability in aromatic polyamide thin-film-composite membranes, Polymer, 40 (1999) 6361-6368.
44.Y. Jin, Z. Su, Effects of polymerization conditions on hydrophilic groups in aromatic polyamide thin films, J. Membr. Sci., 330 (2009) 175-179.
45.A. P. Rao, S. V. Joshi, J. J. Trivedi, C. V. Devmurari, V. J. Shah, Structure–performance correlation of polyamide thin film composite membranes: effect of coating conditions on film formation, J. Membr. Sci., 211 (2003) 13-24.
46.Y. Zhou, S. Yu, M. Liu, C. Gao., Polyamide thin film composite membrane prepared from m-phenylenediamine and m-phenylenediamine- 5-sulfonic acid, J. Membr. Sci., 270 (2005) 162-168.
47.P. S. Singh, S. V. Joshi, J. J. Trivedi, C. V. Devmurari, A. P. Rao, P. K. Ghosh, Probing the structural variations of thin film composite RO membranes obtained by coating polyamide over polysulfone membranes of different pore dimensions, J. Membr. Sci., 278 (2006) 19-25.
48.S. Y. Kwak, S. G. Jung, S. H. Kim, Structure-motion-performance relationship of flux-enhanced reverse osmosis (RO) membranes composed of aromatic polyamide thin films, Environ. Sci. Technol., 35 (2001) 4334-4340.
49.S. Y. Kwak, S. G. Jung, Y. S. Yoon, D. W. Ihm, Details of surface features in aromatic polyamide reverse osmosis membranes characterized by scanning electron and atomic force microscopy, J. Polym. Sci. Part B: Polym. Phys., 37 (1999) 1429-1440.
50.V. Freger, Swelling and morphology of the skin layer of polyamide composite membranes: an atomic force microscopy study, Environ. Sci. Technol, 38 (2004) 3168-3175.
51.J. H. Kim, K. H. Lee, S. Y. Kim, Pervaporation separation of water from ethanol through polyimide composite membranes., J. Membr. Sci., 169 (2000) 81-93.
52.S. H. Huang, W. L. Lin, D. J. Liaw, C. L. Li, S. T. Kao, D. M. Wang, K. R. Lee, J. Y. Lai, Characterization, transport and sorption properties of poly(thiol ester amide) thin-film composite pervaporation membranes, J. Membr. Sci., 322 (2008) 139-145.
53.謝昀穎, 新型超薄滲透蒸發複合膜之研究,中原大學化學工程學系碩士學位論文 2008.
54.S. H. Huang, C. L. Li, C. C. Hu, H. A. Tsai, K. R. Lee, J. Y. Lai, Polyamide thin-film composite membranes prepared by interfacial polymerization for pervaporation separation, Desalination, 200 (2006) 387-289.
55.黃書賢, 界面聚合聚醯胺複合膜應用於滲透蒸發分離程序之研究”,中原大學化學工程學系博士學位論文 2008.
56.C. H. Yu, I. Kusumawardhana, J. Y. Lai, Y. L. Liu, PTFE/polyamide thin-film composite membranes using PTFE films modifiedwith ethylene diamine polymer and interfacial polymerization: Preparation and pervaporation application, J. Collid Inter. Sci., 336 (2009) 260-267.
57.W. S. Hung, C. H. Lo, M. L. Cheng, H. Chen, G. Liu, L. Chakka, D. Nanda, K. L. Tung, S. H. Huang, K. R. Lee, J. Y. Lai, Y. M. Sun, C. C. Yu, R. Zhang, Y. C. Jean, Polymeric membrane studied using slow positron beam, Appl. Surf. Sci., 255 (2008) 201-204.
58.S. H. Huang, W. S. Hung, D. J. Liaw, C. L. Li, S. T. Kao, D. M. Wang, M. D. Guzman, C. C. Hu, Y. C. Jean, K. R. Lee, J. Y. Lai, Investigation of multilayer pervaporation membrane by positron annihilation spectroscopy, Macromolecules, 41 (2008) 6438-6443.
59.Allan F. M. Barton, CRC handbook of solubility parameters and other cohesion parameters, CRC press, inc., Florida 1988.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊