跳到主要內容

臺灣博碩士論文加值系統

(44.192.15.251) 您好!臺灣時間:2024/03/05 00:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉勝文
研究生(外文):Sheng-Wen Liu
論文名稱:聚碳酸酯薄膜微結構之改變對二氧化碳氣體透過行為之影響
論文名稱(外文):Effect of the micro-structure variation on carbon dioxide permeation behavior of PC membrane
指導教授:賴君義賴君義引用關係李魁然
指導教授(外文):Juin-Yih LaiKueir-Rarn Lee
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:69
中文關鍵詞:熱處理塑化效應自由體積正子湮滅光譜分析技術氣體透過
外文關鍵詞:plasticizationfree-volumegas permeabilityPositron Annihilation Spectroscopy (PAS)heat-treated
相關次數:
  • 被引用被引用:0
  • 點閱點閱:178
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本研究以乾式相轉換法製備出緻密的聚碳酸酯(Polycarbonate,PC)氣體分離膜,再經由不同溫度進行熱處理,研究中主要藉由正子湮滅光譜(Positron Annihilation Spectroscopy,PAS)分析技術探討PC薄膜經熱處理後的物理結構變化及不同氣體環境下對氣體透過效能與塑化效應之影響。
藉由SEM、FTIR、DSC及UMTM測試發現,PC緻密薄膜經由不同溫度熱處理後,其表面型態結構、玻璃轉移溫度(Glass transition temperature,Tg)及機械性質並未有明顯地差異,但卻呈現不同的氣體透過效能,可見薄膜內仍有微結構變化是無法從傳統儀器觀察,因此本研究利用「正子湮滅光譜分析技術」,以分子的尺度觀察PC高分子薄膜經熱處理後,在不同氣體環境下膜內自由體積的變化。實驗中發現在常壓時,不管是否經過熱處理,薄膜內的自由體積分佈均呈現單一分佈,但經由二氧化碳加壓後,於一般o-Ps lifetime量測範圍(1~5 ns)會呈現雙孔洞分佈,因此定義o-Ps lifetime小於1.7 ns的範圍稱為小孔洞(τ3,small)及而大於1.7 ns的範圍稱為大孔洞(τ3,big);但於惰性氣體氦氣的加壓環境下,隨著壓力增加,其自由體積並無明顯變化,故推測此現象為二氧化碳之塑化效應所導致。藉由氣體透過效能及正子湮滅光譜數據分析比較,經二氧化碳加壓後之PC薄膜,其氣體透過行為是以大孔洞(τ3,big)為主導。
從實驗結果中也發現PC薄膜於較多殘餘溶劑含量下,會呈現較明顯的塑化現象且在高壓下有較大的自由體積,但是經由高於Tg熱處理後,PC薄膜內殘餘溶劑含量的減少,使得塑化效應降低,隨著壓力增加則以壓縮效應為主導,並使得二氧化碳透過係數明顯下降。
In this study, dense homogeneous polycarbonate (PC) membranes were prepared via a dry-phase inversion method at different heat treatments and were tested for pure gas permeability of carbon dioxide (CO2). The effect of different gas pressure conditions as well as different heat treatments on the morphologies of dense PC membranes and on their gas permeability performances was studied with the use of positron annihilation spectroscopy (PAS).
There was no noticeable effect on the surface morphologies, chemical structures, glass transition temperatures (Tg), and mechanical properties of the different heat-treated PC membranes, as shown by the SEM, FTIR, DSC, and UMTM data, respectively. However, these heat-treated PC membranes had different gas permeability performances, so we could not characterize the change in their structure at the molecular scale by conventional instruments. The PAS was utilized to detect the free-volume size and the intensity of the heat-treated PC membranes at different gas pressure conditions. The free-volume in the PC membranes has monomodal distribution at atmospheric pressure environment, whereas bimodal free-volume distributions were attained at carbon dioxide pressure environment. The plasticization of carbon dioxide may lead to this phenomenon because there was almost no change in the free-volume size of the PC membranes with increasing pressure at inert gas (helium, He) pressure environment. Based on the analysis of the PAS data in regard to gas permeability performances, it seemed that big pores predominantly controlled the carbon dioxide permeation behavior.
The results showed that the free-volume and the gas permeability of the PC membranes increased with increasing amounts of residual solvent at high carbon dioxide pressure. For the PC membranes with low residual solvent contents above Tg, the gas permeability performance could be affected significantly by antiplasticization, and the free-volume and the gas permeability of the PC membranes decreased with increasing carbon dioxide pressure because the compression effect was predominant.
目 錄

摘要 I
英文摘要 III
致謝 V
目錄 VII
圖索引 Ⅹ
表索引 ⅩII

第一章 文獻回顧 1
1-1 氣體分離薄膜之發展 1
1-2 薄膜分離程序 2
1-3 氣體分離膜之塑化效應 3
1-3.1 化學改質薄膜 6
1-3.2 熱處理薄膜 7
1-3.3 電漿改質薄膜 7
1-4 正子湮滅光譜分析技術 8
1-5 研究目的與動機 9

第二章 實驗 11
2-1 實驗藥品 11
2-2 實驗儀器 12
2-3 實驗步驟及原理 14
2-3.1 PC緻密薄膜製備 14
2-3.2 熱處理PC薄膜 14
2-3.3 熱性質分析(DSC) 14
2-3.4 機械性質測試 15
2-3.5 PC薄膜殘餘溶劑鑑定 15
2-3.5 掃描式電子顯微鏡(SEM) 16
2-3.5 傅氏紅外線光譜儀(FTIR) 17
2-3.8 正子湮滅時間光譜 (PALS) 18
2-3.9 氣體透過效能測試 (GPA) 21
2-3.10 實驗流程 23

第三章 結果與討論 24
3-1 熱處理對PC緻密薄膜性質之影響 24
3-1.1 熱處理溫度對PC緻密薄膜氣體透過效能之影響 24
3-1.2 熱處理溫度對PC緻密薄膜結構型態之影響 25
3-1.3 熱處理溫度對PC緻密薄膜化學組成之影響 27
3-1.4 熱處理溫度對PC緻密薄膜物性及機械性質之影響 28
3-1.5 熱處理溫度對PC緻密薄膜自由體積之影響 29
3-2 不同氣體壓力環境對PC薄膜結構變化之影響響 33
3-2.1 二氧化碳對PC緻密薄膜自由體積之影響 34
3-2.2 氦氣對PC緻密薄膜自由體積之影響 36
3-3 塑化效應對PC薄膜結構變化與氣體透過效能之影響影響 38
3-3.1 熱處理對PC緻密薄膜殘餘溶劑之影響 38
3-3.2 塑化效應對PC緻密薄膜自由體積之影響 40

第四章 結論 48

參考文獻 49

作者自述 58



圖索引

第一章
Fig. 1-1 Solution-diffusion mechanism and schematic representation of two-phase system separated by a membrane 3

第二章
Fig. 2-1 Calibration curve used to calculate amount of residual solvent 16

Fig. 2-2 Positron annihilation lifetime spectroscopy (PALS) 19

Fig. 2-3 Normalized positron annihilation lifetime (PAL) spectra 21


Fig. 2-4 Apparatus of the gas permeation 22

Fig. 2-5 Experimental flow chart 23

第三章
Fig. 3-1 Effect of annealing temperature on (a) CO2 and (b) N2 permeability (tested at 5 atm and 35°C) 25

Fig. 3-2 Morphologies of PC membrane: Surface (×100k) (a) raw, after heat treatment at (b) 80°C and (c) 180°C; Cross-

section (×30k) (d) raw, after heat treatment (e) 80°C and (f) 180°C 26

Fig. 3-3 FTIR-ATR spectra of PC membranes (a) raw, after heat treatment at (b) 80°C and (c) 180°C 27

Fig. 3-4 o-Ps lifetime (a) τ3,small and (b) τ3,big of PC membranes annealed at different temperatures and 5 atm CO2

pressure 31

Fig. 3-5 Intensity (a) I3,small and (b) I3,big of PC membranes annealed at different temperatures and 5 atm CO2

pressure 32

Fig. 3-6 The distributions of o-Ps lifetime for PC membranes annealed at different temperatures and 5 atm CO2 pressure

33
Fig. 3-7 The distributions of o-Ps lifetime for PC membranes at different CO2 pressures 35

Fig. 3-8 The distributions of o-Ps lifetime for PC membranes at different He pressures 38

Fig. 3-9 Effect of annealing temperature on amount of residual solvent in PC membranes 39

Fig. 3-10 Effect of annealing temperature on CO2 permeability in PC membranes at 35oC 41

Fig. 3-11 (a) o-Ps lifetime τ3,small and (b) relative intensity I3,small vs. CO2 pressure for PC membranes annealed at

different temperatures. (τ3,small is directly correlated to free volume and hole size by equation (2-1)) 42

Fig. 3-12 (a) o-Ps lifetime τ3,big and (b) relative intensity I3,big vs. CO2 pressure for PC membranes annealed at

different temperatures. (τ3,big is directly correlated to free volume and hole size by equation (2-1)) 43

Fig. 3-13 The distributions of o-Ps lifetime for PC membranes at different CO2 pressures 44

Fig. 3-14 The distributions of o-Ps lifetime for PC membranes annealed at 80oC and different CO2 pressures 45

Fig. 3-15 The distributions of o-Ps lifetime for PC membranes annealed at 180oC and different CO2 pressures 45

Fig. 3-16 (a) o-Ps lifetime τ3 and (b) relative intensity vs. He pressure I3 for PC membranes annealed at different

temperatures. (τ3 is directly correlated to free volume and hole size by following equation (2-1)) 47

表索引

第三章
Table 3-1 Infrared frequencies and band assignments 28

Table 3-2 Tg and mechanical properties of PC membranes annealed at different temperatures 28

Table 3-3 o-Ps lifetime of PC membranes annealed at different temperatures and CO2 pressures 35

Table 3-4 o-Ps lifetime of PC membranes annealed at different temperatures and He pressures 37
參考文獻
1.D. R. Paul and Y. P. Yampol’skii, “ Polymeric gas separation membranes ”, CRC Press, Boca Raton, FL, USA, (1994).

2.R. W. Baker, “ Membrane technology and applications ”, McGraw-Hill, Menlo Park, California, (2000).

3.C. M. Zimmerman and W. J. Koros, “ Polypyrrolones for membrane gas separations. I. Structure comparison of gas transport and sorption properties ”, J. Polym. Sci. Part B: Polym. Phys., 37, 1235, (1999).

4.Z. Wang, T. Chen and J. Xu, “ Gas transport properties of novel cardo poly(aryl ether ketone)s with pendant alkyl groups ”, Macromolecules, 33, 5672, (2000).

5.Z. Wang, T. Chen and J. Xu, “ Novel poly(aryl ether ketone)s containing various pendant groups. II. Gas-transport properties ”, J. Appl. Polym. Sci., 64, 1725, (1997).

6.J. Zhang and X. Hou, “ The gas permeation property in trimethylsilyl-substituted PPO and triphenylsilyl-substituted PPO ”, J. Membr. Sci., 97, 275, (1994).

7.J. H. Kim, S. B. Lee and S. Y. Kim, “ Incorporation effects of fluorinated side groups into polyimide membranes on their physical and gas permeation properties ”, J. Appl. Polym. Sci., 77, 2756, (2000).

8.S. Takahashi, M. Yoshida, M. Asano, T. Tanaka and T. Nakagawa, “ Effect of heavy-ion irradiation on the gas permeability of poly(ethylene terephthalate) (PET) membranes ”, J. Appl. Polym. Sci., 82, 206, (2001).

9.J. Won, M. H. Kim, Y. S. Kang, H. C. Park, U. Y. Kim, S. C. Choi and S. K. Koh, “ Surface modification of polyimide and polysulfone membranes by ion beam for gas separation ”, J. Appl. Polym. Sci., 75, 1554, (2000).

10.C. T. Wright and D. R. Paul, “ Gas sorption and transport in UV-irradiated poly(2,6-dimethyl-1,4-phenylene oxide) films ”, J. Appl. Polym. Sci., 67, 875, (1998).

11.M. H. Kim, J. H. Kim, C. K. Kim, Y. S. Kang, H. C. Park and J. O. Won, “ Control of phase separation behavior of PC/PMMA blends and their application to the gas separation membranes ”, J. Polym. Sci. Part B: Polym. Phys., 37, 2950, (1999).

12.F. A. Ruiz-Trevino and D. R. Paul, “ Gas permselectivity properties of high free volume polymers modified by a low molecular weight additive ”, J. Appl. Polym. Sci., 68, 403, (1998).

13.S. H. Chen, S. S. Lin, D. J. Chang and J. S. Chang, “ Gas transport properties of CoAlPO4-5/PC membranes ” J. Appl.. Polym. Sci., 77, 89, (2000).

14.A. B. Fuertes, “ Adsorption-selectivity carbon membrane for gas separation ”, J. Membr. Sci., 177, 9, (2000).

15.T. Matsuura, “ Synthetic membranes and membrane separation processes ”, CRC Press, Inc., Canada, (1994).

16.J. G. Wijmans and R. W. Baker, “ The solution-diffusion model: a review ”, J. Membr. Sci., 107, 1, (1995).

17.W. J. Koros and R. Mahajan, “ Pushing the limits on possibilities for large scale gas separation: which strategies ? ”, J. Membr. Sci., 175, 181, (2000).

18.M. Wessling, M. L. Lopez and H. Strathman, “ Accelerated plasticization of thin-film composite membranes used in gas separation ”, Separ. Purif. Technol., 24, 223, (2001).

19.J. J. Krol, M. Boerrigter and G. H. Koops, “ Polyimide hollow fiber gas separation membranes: preparation and the suppression of plasticization in propane/propylene environments ”, J. Membr. Sci., 184, 275, (2001).

20.M. Wessling, L. Huisman, T. H. V. d. Boomgaard and C. A. smoulders, “ Time-dependent permeation of carbon dioxide through a polyimide membrane above the plasticization pressure ”, J. Appl. Polym. Sci., 58, 1959, (1995).

21.L. S. White, T. A. Blinka, H. A. Kloczewski and I.-F. Wang, “ Properties of a polyimide gas separation membranes in natural gas streams ”, J. Membr. Sci., 103, 73, (1995).

22.A. F. Ismail and W. Lorna, “ Penetrant-induced plasticization phenomenon in glassy polymers for gas separation membrane ”, Separ. Purif. Technol., 27, 175, (2002).
23.A.F. Ismail and W. Lorna, “ Penetrant-induced plasticization phenomenon in glassy polymers for gas separation membrane ”, Separ. Purif. Technol., 27, 173, (2002).

24.Y. J. Fu, C. C. Hu, H. Z. Qui, K. R. Lee and J. Y. Lai, “ Effects of residual solvent on gas separation properties of polyimide membranes ” , Separ. Purif. Technol., 62, 175, (2008).

25.C. Joly, D. Le Cerf , C. Chappey, D. Langevin and G. Muller, “ Residual solvent effect on the permeation properties of fluorinated polyimide films ”, Separ. Purif. Technol., 16, 47, (1999).

26.J. C. Jansen, M. Macchione and E. Drioli, “ On the unusual solvent retention and the effect on the gas transport in perfluorinated Hyflon AD® membranes ”, J. Membr. Sci., 287, 132, (2007).

27.A. Bos, I. G. M. Pünt, M. Wessling and H. Strathmann, “ CO2-induced plasticization phenomena in glassy polymers ”, J. Membr. Sci., 155, 67, (1999).

28.A. G. Wonders and D. R. Paul, “ Effect of CO2 exposure history on sorption and transport in polycarbonate ” , J. Membr. Sci., 5, 63, (1979).

29.A. F. Ismail and W. Lorna, “ Suppression of plasticization in polysulfone membranes for gas separations by heat-treatment technique ”, Separ. Purif. Technol., 30, 37, (2003).

30.B. J. Briscoe and C. T. Kelly, “ The plasticization of a polyurethane by carbon dioxide at high pneumatic stresses ”, Polymer, 36, 3099, (1995).
31.J. H. Petropoulos, “ Plasticization effects on the gas permeability and permselectivity of polymer membranes ”, J. Membr. Sci., 75, 47, (1992).

32.A. Y. Houde, S. S. Kulkarni and M. G. Kulkarni, “ Permeation and plasticization behavior of glassy polymers: a WAXD interpretation ”, J. Membr. Sci., 71, 117, (1992).

33.R. T. Chern and C. N. Provan, “ Gas induced plasticization and the permselectivity of poly(tetrabromophenolphthhalein terephthalate) to a mixture of carbon dioxide and methane ”, Macromolecules, 24, 2203, (1991).

34.G. S. Huvard, V. T. Stannett, W. J. Koros and H. B. Hopfenberg, “ The pressure dependence of CO2 sorption and permeation in poly(acrylonitrile) ”, J. Membr. Sci., 6, 185, (1980).

35.J. S. Chiou and D. R. Paul, “ Effects of CO2 exposure on gas transport properties of glassy polymers ”, J. Membr. Sci., 32 , 195, (1987).

36.Z. Zhang and Y. P. Handa, “ An in situ study of plasticization of polymers by high-pressure gases ”, J. Polym. Sci. Part B: Polym. Phys., 36, 977, (1998).

37.P. Alessi, A. Cortesi, I. Kikic and F. Vecchione, “ Plasticization of polymers with supercritical carbon dioxide: experimental determination of glass-transition temperatures ”, J. Appl. Polym. Sci., 88, 2189, (2003).

38.C. Zhou, T. S. Chung, R. Wang, Y. Liu and S. H. Goh, “ The accelerated CO2 plasticization of ultra-thin polyimide films and the effect of surface chemical cross-linking on plasticization and physical aging ”, J. Membr. Sci., 225, 125, (2003).

39.C. Staudt-Bickel and W. J. Koros, “ Improvement of CO2/CH4 separation characteristics of polyimides by chemical crosslinking ”, J. Membr. Sci., 155, 145, (1999).

40.J. D. Wind, C. Staudt-Bickel, D. R. Paul and W. J. Koros, “ The effects of crosslinking chemistry on CO2 plasticization of polyimide gas separation membranes ”, Ind. Eng. Chem. Res., 41, 6139, (2002).

41.S. Sridhar, T. M. Aminabhavi and M. Ramakrishna, “ Separation of binary mixtures of carbon dioxide and methane through sulfonated polycarbonate membranes ”, J. Appl. Polym. Sci., 105, 1749, (2007).

42.L. Makaruk, H. Polanska and T. Mizerski, “ The effect of chemical structure of derivatives of 1,1-bis(4-hydroxyphenyl)-2,2-propane in the antiplasticization of polycarbonate ”, J. Appl. Polym. Sci., 23, 1935, (1979).

43.A. Bos, I. G. M. Pünt, M. Wessling and H. Strathmann, “ Plasticization-resistant glassy polyimide membranes for CO2/CO4 separation ”, Separ. Purif. Technol., 14, 27, (1998).

44.M. L. Steen, L. Hymas, E. D. Havey, N. E. Capps, D. G. Castner and E. R., “Fisher, Low temperature plasma treatment of asymmetric polysulfone membranes for permanent hrdrophilic surface modification ”, J. Membr. Sci., 188, 97, (2001).

45.K. S. Houston, D. H. Weinkauf and F. F. Stewart, “ Gas transport characteristics of plasma treated poly(dimethylsiloxane) and polyphosphazene membrane materials ”, J. Membr. Sci., 205, 103, (2002).

46.C. C. Hu, C. Y. Tu, Y. C. Wang,C. L. Li, K. R. Lee and J. Y. Lai, ” Effects of plasma treatment on CO2 plasticization of poly(methyl methacrylate) gas-separation membranes ”, J. Appl. Polym. Sci., 93, 395, (2004).

47.J.-P. Yuan, H. Cao, E. W. Hellmuth and Y. C. Jean, “ Subnanometer hole properties of CO2-exposed polysulfone studied by positron annihilation lifetime spectroscopy ”, J. Polym. Sci. Part B: Polym. Phys., 36, 3049, (1998).

48.Y.C Jean, X. Hong, J. Liu, C.M. Huang, H. Cao, C.Y. Chung, G.H. Dai, K.L. Cheng and H. Yang, “ High sensitivity of positron annihilation lifetime to time and pressure effects in gas-exposed polymers ”, J. Rad. Nucl. Chem., Articles, 210(2), 513, (1996).

49.H. Chen, M. L. Cheng, Y. C. Jean, L. J. Lee and J. Yang, “ Effect of CO2 exposure on free volumes in polystyrene studied by positron annihilation spectroscopy ”, J. Polym. Sci. Part B: Polym. Phys., 46, 388, (2008).

50.J. Bi, G.P. Simon, A. Yamasaki, C.L. Wang, Y. Kobayashi and H.J. Griesser, “ Effects of solvent in the casting of poly(1-trimethylsilyl-1-propyne) membranes ”, Rad. Phys. Chem., 58, 563, (2000).

51.M. Mohsen, E.A.H. Gomaa, H. Schut, and A. Van Veen, “ Positron annihilation lifetime studies of gas sorption and deposition in polyethylene and poly[1-(trimethyl)-1- propyne] ”, J. Appl. Polym. Sci., 80, 970, (2001).

52.X. Hong, Y. C. Jean, H. Yang, S. S. Jordan and W. J. Koros, “ Free-volume hole properties of gas-exposed polycarbonate studied by positron annihilation lifetime spectroscopy ”, Macromolecules, 29, 7859, (1996).

53.H. M. Chen, W. S. Hung, J. H. Lo, S. H. Huang, M. L. Cheng, G. Liu, K. R. Lee, J. Y. Lai, Y. M. Sun, C. C. Hu, R. Suzuki, T. Ohdaira, N. Oshima and Y. C. Jean, “ Free-volume depth profile of polymeric membranes studied by positron annihilation spectroscopy: layer structure from interfacial polymerization ”, Macromolecules, 40, 7542, (2007).

54.D. M. Schrader and Y. C. Jean, “ Position and positronium chemistry ”, Elsevier Sci., Amsterdam, (1988).

55.Y. C. Jean, P. E. Mallon and D. M. Schrader, “ Principles and applications of position and positronium chemistry ”, World Scientific, Singapore, (2003).

56.葉岳霖, 添加劑對熱穩定化聚丙烯腈中空纖維滲透蒸發膜之影響, 中原大學碩士論文, (2009).

57.P. Hacarlioglu, L. Toppare and L. Yilmaz, “ Effect of preparation parameters on performance of dense homogeneous polycarbonate gas separation membranes ”, J. Appl. Polym. Sci., 90, 776, (2003).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top