(3.235.245.219) 您好!臺灣時間:2021/05/07 22:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃收智
研究生(外文):Shou-Chih Huang
論文名稱:雙凝聚槽成膜系統對聚(乙烯共乙烯醇)薄膜結構的影響
論文名稱(外文):Effect of dual-coagulation bath method membrane formation system on the morphology of poly(ethylene-co-vinyl alcohol)membrane
指導教授:賴君義賴君義引用關係李魁然
指導教授(外文):Juin-Yih LaiKueir-rarn Lee
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:101
中文關鍵詞:聚(乙烯共乙烯醇)雙凝聚槽雙連續結構
外文關鍵詞:bi-continuous structurepoly(ethylene-co-vinyl alcohol)dual-coagulation bath
相關次數:
  • 被引用被引用:0
  • 點閱點閱:114
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
論文主要目的是探討以雙凝聚劑(第一凝聚劑為乙醇,第二凝聚劑為水)誘導相分離法,製備具雙連續(bicontinuous)結構之對稱性Poly (ethylene-co-vinyl alcohol) (EVAL)薄膜。同時釐清形成雙連續結構之成膜機制。
將鑄膜液( EVAL / N-methyl-2-pyrrolidinone (NMP))刮於玻璃板後,立即浸入乙醇槽中,於控制溶劑與非溶劑交換後,將薄膜以冷凍萃取法固化結構,以便觀察薄膜結構於乙醇槽中的演變。發現浸泡於乙醇槽中5分鐘,薄膜會由短時間得到的緻密結構轉變為此時的雙連續結構。即使再增加浸泡於乙醇槽的時間,薄膜結構也不在有明顯的成長,猜測可能因EVAL為結晶性高分子,於成膜過程中會誘發結晶現象形成膠化(gel),造成黏度大幅提升使得合併成長現象被抑制,其雙連續結構得以維持。
將於乙醇槽中所生成之膠化態薄膜再浸入第二凝聚槽-水槽中時,由於水與NMP、乙醇之間的親合性極佳,因此水易於NMP和乙醇快速的進行交換,而固化結構且維持雙連續結構型態之薄膜。
第一槽之醇類種類改變時,藉著不同醇類、EVAL高分子和溶劑之間親合性的差異造成質傳速率不同,可以對薄膜達到結構控制之目的。將以雙凝聚槽系統製備之EVAL薄膜進行親疏水性的的接觸角測試,發現由於薄膜表面同時具有奈米與微米級的孔洞結構,使得水的接觸角可由原來的65o提升至120°,大幅增加了薄膜的疏水性。
The main purpose of this study was preparation of Poly (ethylene-co-vinyl alcohol) (EVAL) membranes with bi-continuous structure by dual-coagulation method and investigated the membrane formation mechanism at the same time
The casting solution (EVAL / N-methyl-2-pyrrolidinone(NMP) solution) cast on glass plate and immersed into ethanol bath quickly. After a period of time, liquid nitrogen was used to freeze the casting membranes immediately and low temperature ethanol bath was used to exchange solvent slowly to make sure the structure formation in the first ethanol bath without any destruction. The results showed that the bi-continuous structure was formed when the casting solution immersed into the ethanol bath for 5min. The reason should be that EVAL polymer crystallization induced the physical gel to suppress structure coarsening in ethanol bath. Using the second bath, water bath, was an easy way to exchange solvent and nonsolvent to vitrify the casting membrane.
The morphologyof EVAL membranes can be controlled by using different first coagulation bath due to affinity different between alcohol, EVAL and NMP. The hydrophobicity of membrane surface was increased from 65o to 120o, because the nano-scale and micro-scale pores were formed.
目錄
中文摘要 I
ABSTRACT II
目錄 IV
FIGURE CAPTIONS VII
TABLE CAPTIONS XIV
第一章 緒論 1
1-1 薄膜製備方法 1
1-2 非溶劑誘導相分離成膜理論 3
1-2-1熱力學 3
1-2-2動力學 7
1-3 聚乙烯共乙烯醇 12
1-3-1 聚乙烯共乙烯醇基本性質 12
1-3-2 聚乙稀共乙烯醇文獻回顧 13
1-4 研究動機與目的 23
第二章 實驗 24
2-1實驗藥品 24
2-3實驗儀器 25
2-3實驗方法 26
2-3-1高分子溶液配製 26
2-3-2薄膜製備 26
2-3-3雙凝聚槽成膜過程之觀察 28
2-3-4掃描式電子顯微鏡分析(SEM) 28
2-3-5 霧點(Cloud-point)量測 29
2-3-6 黏度測定 29
2-3-7 Simple PCI影像分析軟體 29
2-3-8 光穿透實驗 30
2-3-9接觸角量測 31
2-3-10 熱示差掃瞄卡量計分析(DSC) 31
第三章 結果與討論 32
3-1 蒸氣誘導相分離法對EVAL薄膜結構型態之影響 32
3-1-1 濕度對EVAL薄膜形態之影響 33
3-1-2 溫度對鑄膜液性質之影響 36
3-1-3蒸氣接觸時間對EVAL薄膜型態之影響 39
3-2 溼式誘導相分離法對EVAL薄膜結構型態之影響 44
3-2-1 凝聚劑對EVAL薄膜結構型態之影響 44
3-2-2鑄膜液於凝聚槽中滯留時間變化對薄膜結構之影響 50
3-2-3 雙凝聚劑成膜機制之探討 64
3-3 具雙連續結構之表面性質分析 78
第四章 結論 81
參考文獻 83
作者簡介 87
















Figure captions
Fig. 1-1 Schematic representation of a ternary phase diagram of polymer/solvent/ nonsolvent. 4
Fig. 1-2 Ternary system containing a one phase region (I), and a two-phase region (II) and a gel region (III).【1】 6
Fig. 1-3 A ternary system containing a crystallization line bimodal curve 7
Fig. 1-4 Schematic representation of a casting film/coagulation interface. 8
Fig. 1-5 Schematic representation of different coagulation paths. 8
Fig. 1-6 Ternary phase diagram nonsolvent/solvent/polymer system【14】 9
Fig. 1-7 Schematic diagrams showing the evolution of local morphologies for two phase-separation mechanisms.【15】 11
Fig. 1-8 Chemical structures of EVAL 12
Fig. 1-9 Phase diagram of water-DMSO- EVAL at various temp. ◆: measured gelation data at 25°C. ▲: measured gelation data at 45°C. ⊙: measured binodal at 65°C. ●: measured gelation data at 65°C. ■: measured binodal at 85°C. ■: measured gelation data at 85°C. Line AB: computed binodal at 25°C.【18】 14
Fig. 1-10 Calculated diffusion trajectories at the point of precipitation for EVAL solutions immersed into various coagulation baths.Dope: point”P” (20 wt% EVAL in DMSO); A: water bath, B:48 vol% DMSO in water, C: 68 vol% DMSO in water, D:73 vol% DMSO in water. ((- - -): tie line; IA, IB, IC and ID areinitial bath compositions).【20】 15
Fig. 1-11 Composition paths for precipitation of a 15 wt. % EVAL solution in a water bath. (-: crystallization equilibrium line; – – –: binodal boundary). (a) without evaporation; (b) with evaporation. The numbers shown denote evaporation time.【23】 17
Fig. 1-12 Composition paths for preparation of membranes by. (a) adirect immersion into a water bath; (b) an absorption process (1:toplayer and 2: sublayer).【25】 18
Fig. 1-13 Comparison between theoretically calculated phase behavior and experimentally determined phase transition. 【26】 19
Fig. 1-14 Schematic representation of the cosolvency mechanism of the EVAL polymer is the water-IPA mixture.【26】 19
Fig. 1-15 Schematic phase diagram and membrane formation path for EVAL casting solution crystallization boundary: –•–•–•; vitrification line: ••–••–;binodal curve: —; spinodal curve: - - - -.【28】. 21
Fig. 1-16 Model phase diagrams and cooling process.【31】 22
Fig. 2-1 Sketches of membranes prepared by (a.)vapor induced phase separation processes, (b.)dual-coagulant bath. 27
Fig. 2-2 Schematic representation of the light transmission experiment. 31
Fig. 3-1 The morphology of the EVAL membranes prepared by exposing 15wt% EVAL/ NMP casting film in humid air(RH=70%, T.= 30°C) for 24hr, followed by immersion in water: (A)cross-section x600; (B) cross-section x10k;(C)top surface x10k 33
Fig. 3-2 The morphology of the EVAL membranes prepared by exposing 15wt% EVAL/ NMP casting film in humid air(RH=80%, T.= 30°C) for 24hr, followed by immersion in water: (A)cross-section x600; (B) cross-section x10k;(C)top surface x10k 33
Fig. 3-3 The morphology of the EVAL membranes prepared by exposing 15wt% EVAL/ NMP casting film in humid air(RH=90%, T.= 30°C) for 24hr, followed by immersion in water: (A)cross-section x600; (B) cross-section x10k;(C)top surface x10k 34
Fig. 3-4 Light transmission curves of 15wt% EVAL/NMP solution exposed under different relative humidities(■:70%,●:80%,▲:90%). 35
Fig. 3-5 The morphology of the EVAL membranes prepared by exposing 15wt% EVAL/ NMP(Dope dissolution temperature = 60°C) casting film in humid air(RH=70%, T.= 30°C) for 15hr, followed by immersion in water: (A)cross-section x600; (B) cross-section x10k;(C)top surface x10k 37
Fig. 3-6 The morphology of the EVAL membranes prepared by exposing 15wt% EVAL/ NMP(Dope dissolution temperature = 120°C) casting film in humid air(RH=70%, T.= 30°C) for 15hr, followed by immersion in water: (A)cross-section x600; (B) cross-section x10k;(C)top surface x10k 37
Fig. 3-7 The morphology of EVAL membrane which was prepared by NIPS. 40
Fig. 3-8 The cross-section of the EVAL membranes formed by exposing 15wt% EVAL / NMP casting film in humid air (RH=70%, T.=30°C) for different exposure time: (a) 0.5 hr (b) 1 hr(c) 2 hr (x600);(d) magnification of (a) (e) magnification of (b) (f) magnification of (c) (x10k), followed by immersion in water. 41
Fig. 3-9 The surface structure of the EAVL membranes formed by exposing 15wt% EVAL/ NMP casting film in humid air (RH=70%, T.=30°C) for different exposure time: (a) 0.5 hr (b) 1 hr(c) 2 hr (x10k), followed by immersion in water. 41
Fig. 3-10 The cross-section of the EVAL membranes formed by exposing 15wt% EVAL / NMP casting film in humid air (RH=90%, T.=30°C) for different exposure time: (a) 0.5 hr (b) 1 hr(c) 2 hr (x600);(d) magnification of (a) (e) magnification of (b) (f) magnification of (c) (x10k), followed by immersion in water. 42
Fig. 3-11 The surface structure of the EAVL membranes formed by exposing 15wt% EVAL/ NMP casting film in humid air (RH=90%, T.=30°C) for different exposure time: (a) 0.5 hr (b) 1 hr(c) 2 hr (x10k), followed by immersion in water. 43
Fig. 3-12 magnification of Fig.3-11-(c) (x100k) 43
Fig. 3-13 The morphology of EVAL membrane prepared by immersing 15wt%EVAL /NMP membrane into mthanol for 1day, and then freezing dried. (a) Cross-section x600 (b) Cross-section x10k (c)Top surface x5k 45
Fig. 3-14 The morphology of EVAL membrane prepared by immersing 15wt%EVAL /NMP membrane into ethanol for 1day, and then freezing dried. (a) Cross-section ×600 (b) Cross-section ×10k (c) Top surface ×10k 46
Fig. 3-15 The morphology of EVAL membrane prepared by immersing 15wt%EVAL /NMP membrane into n-propanol for 1day, and then freezing dried. (a) Cross-section ×1k (b) Cross-section ×10k (c) Top surface ×10k 46
Fig. 3-16 The morphology of EVAL membrane prepared by immersing 15wt%EVAL /NMP membrane into n-butanol for 1day, and then freezing dried. (a) Cross-section ×1k (b) Cross-section ×10k (c) Top surface×10k 46
Fig. 3-17 Light transmission experiment for EVAL/NMP solution immersed in different nonsolvent bath. (a) methanol bath; (b) ethanol bath. 47
Fig. 3-18 Light transmission experiment for EVAL/NMP solution immersed in different nonsolvent bath. (a) n-propanol bath; (b) n-butanol bath. 47
Fig. 3-19 The morphology of EVAL membrane prepared by immersing 15wt%EVAL /NMP membrane into methanol for 10min, and then immersing into H2O 1day. (a) Cross-section ×600 (b) Cross-section ×10k (c) Top surface ×5k 49
Fig. 3-20 The morphology of EVAL membrane prepared by immersing 15wt%EVAL /NMP membrane into ethanol for 10min, and then immersing into H2O 1day. (a) Cross-section ×600 (b) Cross-section ×10k (c) Top surface ×5k 49
Fig. 3-21 The morphology of EVAL membrane prepared by immersing 15wt%EVAL /NMP membrane into n-propanol for 10min, and then immersing into H2O 1day. (a) Cross-section ×600 (b) Cross-section ×10k (c) Top surface ×5k 49
Fig. 3-22 The morphology of EVAL membrane prepared by immersing 15wt%EVAL /NMP membrane into n-butanol for 10min, and then immersing into H2O 1day. (a) Cross-section ×600 (b) Cross-section ×10k (c) Top surface ×5k 50
Fig. 3-23 Top surface structure of the EVAL membranes formed by immersing 15wt% EVAL / NMP casting film in methanol bath for various time, followed by immersion in water (x 5k). 51
Fig. 3-24 The cross-sectional structure of the EVAL membranes formed by immersing 15wt% EVAL / NMP casting film in methanol bath for various time, followed by immersion in water (x 600). 52
Fig. 3-25 The cross-sectional structure of the EVAL membranes formed by immersing 15wt% EVAL / NMP casting film in methanol bath for various time, followed by immersion in water (x 10k).Magnification of Fig. 3-24. 52
Fig. 3-26 Top surface structure of the EVAL membranes formed by immersing 15wt% EVAL / NMP casting film in ethanol bath for various time, followed by immersion in water (x 5k). 53
Fig. 3-27 The cross-sectional structure of the EVAL membranes formed by immersing 15wt% EVAL / NMP casting film in ethanol bath for various time, followed by immersion in water (x 600). 53
Fig. 3-28 The cross-section structure of the EVAL membranes formed by immersing 15wt% EVAL / NMP casting film in ethanol bath for various time, followed by immersion in water (x 10k). Magnification of Fig. 3-27 54
Fig. 3-29 Top surface structure of the EVAL membranes formed by immersing 15wt% EVAL / NMP casting film in n-propanol bath for various time, followed by immersion in water (x 5k). 54
Fig. 3-30 The cross-sectional structure of the EVAL membranes formed by immersing 15wt% EVAL / NMP casting film in n-propanol bath for various time, followed by immersion in water (x 600). 55
Fig. 3-31 The cross-sectional structure of the EVAL membranes formed by immersing 15wt% EVAL / NMP casting film in n-propanol bath for various time, followed by immersion in water (x 10k). Magnification of Fig. 3-30 55
Fig. 3-32 Top surface structure of the EVAL membranes formed by immersing 15wt% EVAL / NMP casting film in n-butanol bath for various time, followed by immersion in water (x 5k). 56
Fig. 3-33 The cross-sectional structure of the EVAL membranes formed by immersing 15wt% EVAL / NMP casting film in n-butanol bath for various time, followed by immersion in water (x 600). 56
Fig. 3-34 The cross-sectional structure of the EVAL membranes formed by immersing 15wt% EVAL / NMP casting film in n-butanol bath for various time, followed by immersion in water (x 10k).Magnification of Fig. 3-33 57
Fig. 3-35 Picture for EVAL gel formed by addition nonsolvent. (15wt% EVAL/NMP/ethanol) 59
Fig. 3-36 Schematic representation of gel EVAL / alcohol (1st coagulant ) interface. 60
Fig. 3-37 Different phase separation mechanism happened in various alcohol(1st coagulant). 62
Fig. 3-38 (a). picture of EVAL cast film moved from MeOH bath with 7 min stay into the water bath. (b). viscosity of 15wt% EVAL/85wt% (NMP+MeOH) different MeOH concent. 63
Fig. 3-39 The effect of solvent removal process on the morphology of EVAL membrane. Condition: 15wt% EVL/NMP ethanol bath 65
Fig. 3-40 The morphology of EVAL gel membrane which were kept in ethanol for 30min and then dry in vacuum 67
Fig. 3-41 The cloud-point curve of EVAL/NMP/ethanol at 30℃ 69
Fig. 3-42 Light transmission of EVAL gel membrane, which was immersed in ethanol bath (1st coagulant) 70
Fig. 3-43 The cross-sectional structure of the EVAL membranes formed by immersing 15wt% EVAL / NMP casting film in ethanol bath for various time and then freezing extraction.(x 600) 71
Fig. 3-44 The cross-sectional structure of the EVAL membranes formed by immersing 15wt% EVAL / NMP casting film in ethanol bath for various time and then freezing extraction.(x10k) 71
Fig. 3-45 Top surface structure of the EAVL membranes formed by immersing 15wt% EVAL / NMP casting film in ethanol bath for various time and then freezing extraction.(x 10k) 72
Fig. 3-46 Viscosity of 15wt% EVAL/85wt% (NMP+MeOH) different MeOH concent. 73
Fig. 3-47 Schematic representation of gel EVAL / water (2nd coagulant) interface. 75
Fig. 3-48 The cross-sectional structure of gel EVAL membrane immersed into water for various time.(x 1k) 76
Fig. 3-49 The cross-sectional structure of gel EVAL membrane immersed into water for various time.(x 10k) Magnification of Fig.3-48 76
Fig. 3-50 Top surface structure of gel EVAL membrane immersed into water for various time.(x 10k) 77
Fig. 3-51 Schematic evolution of the membrane structure. 78
Fig. 3-52 EVAL membrane the effect of morphology on water contact angle. 80







Table captions
Table 1-1 Typical properties of EVAL polymer 12
Table 3-1 DSC analysis of EVAL membrane fabricated by VIPS 34
Table 3-2 Effect of polymer solution dissolution tempareture on the nodules size of EVAL membranes. 37
Table 3-3 DSC analysis of EVAL membranes prepared by VIPS with various dissolution temperatures. 38
Table 3-4 Viscosity of polymer solution of different dissolution temperature. 38
Table 3-5 Solubility parameter of each component 60
Table 3-6 Molar volume of each nonsolvents used in this study 61
Table 3-7 Thermal properties analysis of EVAL membrane fabricated by dual coagulant method 74
Table 3-8 Water contact angle of EVAL membrane fabricated by dual coagulant method 79
1.M. H. V. Mulder, Basic Principles of Membrane Technology, Kluwer Academic Publishers, The Netherlands, 1996.
2.H. Tompa, Polymer solutions, Butterworths, London (1956).
3.K. Kamide, Thermodynamics of polymer solutions, Elsevier Science Publishers B. V., Amsterdam, The Netherlands (1990).
4.L. Zeman and G. Tkacik, “Thermodynamic analysis of a membrane-forming system water/n-methyl-2-pyrrolidone/ polysulfone”, J. Membr. Sci., 36(1988) 119-140.
5.G. E. Gaides, A. J. Mchugh, “Gelation in an amorphous polymer: a discussion of its relation to membrane formation”, Polymer, 30(1989) 2118-2123.
6.J. Y. Kim, Y. D. Kim, T. Kanamori, H. K. Lee, K. J. Balk, S. C. Kim, “Vitrification phenomena in polysulfone/NMP/water system”, J. Appl. Polym. Sci., 71(1999) 431-438.
7.D.R. Lloyd, K.E. Kinzer, and H.S. Tseng, “Microporous Membrane Formation via Thermally Induced Phase Separation. Ⅰ. Solid-Liquid Phase Separation”, J. Membr. Sci., 52(1990) 239.
8.R.H. Mehta, D.A. Madsen, and D.S. Kalika, “Microporous Membranes Based on Poly(Ether Ether Ketone) via Thermally- Induced Phase Separation”, J. Membr. Sci., 107(1995) 93.
9.D.R. Lloyd, S.S. Kim, and K.E. Kinzer, “Microporous Membrane Formation via Thermally Induced Phase Separation. Ⅱ. Liquid-Liquid Phase Separation”, J. Membr. Sci., 64(1991) 1.
10.L.P. Cheng, A.H. Dwan, and C.C. Gryte, “Membrane Formation by Isothermal Precipitation in Polyamide-Formic Acid-Water Systems. Ⅰ.Description of Membrane Morphology”, J. Polym. Sci. Part B, Polym. Phys., 33(1995) 211.
11.L.P. Cheng, A.H. Dwan, and C.C. Gryte, “Membrane Formation by Isothermal Precipitation in Polyamide-Formic Acid-Water Systems. Ⅱ.Precipitation Dynamics”, J. Polym. Sci. Part B, Polym. Phys., 33 (1995) 223.
12.I.M. Wienk, R.M. Boom, M.A.M. Beerlage, A.M.W. Bulte, C.A. Smolders, and H. Strathmann, “Recent Advances in the Formation of Phase Inversion Membranes Made from Amorphous or Semi-crystalline Polymers”, J. Membr. Sci., 113(1996) 361.
13.A.M.W. Bulte, B. Folkers, M.H.V. Mulder, and C.A. Smolders, “Membranes of Semi-Crystalline Aliphatic Polyamide Nylon 4,6: Formation by Diffusion-Induced Phase Separation”, J. Appl. Polym. Sci., 50(1993) 13.
14.C. Stropnik, V. Musil, and M. Brumen, “Polymeric Membrane Formation by Wet-Phase Separation; Turbidity and Shrinkage Phenomena as Evidence for the Elementary Processes”, Polymer, 41(2000) 9227.
15.G. T. Caneba, D. S. Soong, Polymer Membrane Formation through the Thermal Inversion Process 2. Mathematical Modeling of Membrane Structure Formation, Macromolecules, 18(1985) 2545-2555.
16.E. D. Siggia, “Late stages of spinodal decomposition in binary mixtures”, Phys. Rev. A, 20(1979) 595-605.
17.M. Lifshitz, V. V. Slyozov, “The kinetics of precipitation from supersaturated solid solutions”, J. Phys. Chem. Solids, 19(1961)35-50.
18.T.H. Young, J.Y. Lai, W.M. You, L.P. Cheng, “Equilibrium phase behavior of the membrane forming water-DMSO-EVAL copolymer system”, J. Membr. Sci., 128(1996) 55-65.
19.T.H. Young, L.P. Cheng, W.M. You, L.Y. Chen, “Prediction of EVAL membrane morphologies using the phase diagram ofwater–DMSO–EVAL at different temperatures”, Polymer, 40(1999) 2189-2195.
20.L.P. Cheng, T.H. Young, W.M. You, “Formation of crystalline EVAL membranes by controlled mass transfer process in water-DMSO-EVAL copolymer systems”, J. Membr. Sci., 145 (1998) 77-90.
21.L.P. Cheng, T.H. Young, W.Y. Chuang, L.Y. Chen, L.W. Chen, “The formation mechanism of membranes prepared from thenonsolvent–solvent–crystalline polymer systems”, Polymer, 42 (2001)443-451.
22.T.H. Young, D.M. Wang, C.C. Hsieh, L.W. Chen, “The effect of the second phase inversion on microstructures in phase inversion EVAL membranes”, J. Membr. Sci., 146 (1998)169-178.
23.T.H. Young, Y.H. Huang, L.Y. Chen, “Effect of solvent evaporation on the formation of asymmetric and symmetric membranes with crystallizable EVAL polymer”, J. Membr.Sci., 164 (2000)111-120.
24.T.H. Young, D.T. Lin, L.Y. Chen, Y.H. Huang, W.Y. Chiu, “Membranes with a particulate morphology prepared by a dry–wet casting process”, Polymer, 40 (1999)5257-5264.
25.T.H. Young, Y.H. Huang, Y.S. Huang, “The formation mechanism of EVAL membranes prepared with or without the nonsolvent absorption process”, J. Membr. Sci., 171 (2000)197-206.
26.T.H. Young, L.P. Cheng, C.C. Hsieh, L.W Chen, “Phase Behavior of EVAL Polymers in Water-2-Propanol Cosolvent”, Macromolecules, 31(1998) 1229-1235
27.T.H. Young, C.C. Hsieh, L.Y. Chen, Y.S. Huang “The formation mechanism of membranes prepared from the crystalline EVAL polymer-water (nonsolvent)-2-propanol (nonsolvent) system”, J. Membr. Sci., 159 (1999)21-27.
28.R.L. Luo, T.H. Young, Y.M. Sun, “Structure formation and characterization of EVAL membranes with cosolvent of isopropanol and water”, Polymer, 44 (2003)157-166.
29.H. Matsuyama, T. Iwatani, Y. Kitamura, M. Tearamoto, “Formation of Porous Poly(ethylene-co-vinyl alcohol) Membrane via Thermally Induced Phase Separation”, J. Appl. Polym. Sci., 79(2001) 2449-2455.
30.H. Matsuyama, K. Kobayashi, T. Maki, M. Tearamoto, “Effect of the Ethylene Content of Poly(ethylene-co-vinyl alcohol) on the Formation of Microporous Membranes via Thermally Induced Phase Separation”, J. Appl. Polym. Sci., 82(2001) 2583-2589.
31.M. Shang, H. Matsuyama, T. Maki, M. Tearamoto,D.R. Lioyd “Effect of Crystallization and Liquid–Liquid Phase Separation on Phase-Separation Kinetics in Poly(ethylene-co-vinyl alcohol)/ Glycerol Solution”, J. Appl. Polym. Sci., 87(2003) 853-860.
32.M. Shang, H. Matsuyama, T. Maki, M. Tearamoto,D.R. Lioyd “Preparation and Characterization of Poly(ethylene-co-vinyl alcohol) Membranes via Thermally Induced Liquid–Liquid Phase Separation”, J. Appl. Polym. Sci., 41(2003) 194-201.
33.D.J. Lin, K. Beltsios, T.H. Young, Y.S. Jeng, L.P. Cheng, “Strong effect of precursor preparation on the morphology of semicrystalline phase inversion poly(vinylidene fluoride) membranes”, J. Membr. Sci., 274 (2006)64-72.
34.D.J. Lin, K. Beltsios, C.L. Chang, L.P. Cheng, “Fine Structure and Formation Mechanism of Particulate Phase-Inversion Poly(vinylidene fluoride) Membranes”, J. Appl. Polym. Sci., 41(2003) 1578-1588.
35.郭純因,非溶劑誘導相分離製備具雙連續結構微孔膜及其成膜機制之研究, 中原大學化學工程學系博士論文, (2008).
36.蘇順良, 雙凝聚槽製備PMMA三層結構薄膜之成膜機制探討, 中原大學化學工程學系碩士論文, (2006).
37.S.P. Nunes, Takashi Inoue, “Evidence for spinodal decomposition and nucleation and growth mechanisms during membrane formation”, J. Membr. Sci., 111(1996) 93-103
38.R.A. Zoppi, S. Contant, E.A.R. Duek, F.R. Marques, M.L.F. Wada, S.P. Nunes, “Porous poly(l-lactide) films obtained by immersion precipitation process: morphology, phase separation and culture of VERO cells”, Polymer 40 (1999) 3275–3289
39.H. Matsuyama, K. Nakagawa, T. Maki, M. Teramoto, “Studies on Phase Separation Rate in Porous Polyimide Membrane Formation by Immersion Precipitation”, J. Appl. Polym. Sci., 90(2003) 292-296
40.H. Tanaka,” Viscoelastic phase separation”, J. Phys.: Condens. Matter, 12 (2000) R207–R264
41.李宛諭, 以非溶劑誘導相轉換法制備高孔隙鍍膜面結構之探討, 國立台灣大學化學工程研究所碩士論文, (2007).
42.林俊豪, 水氣誘導式相分離對聚砜中空纖維膜成膜機制之研究, 中原大學化學工程學系碩士論文, (2005).
43.B. Liu, Q. Du, Y. Yang, “The phase diagrams of mixtures of EVAL and PEG in relation to membrane formation”, J. Membr. Sci., 180(2000) 81-92
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔