(3.80.6.131) 您好!臺灣時間:2021/05/14 03:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:郭怡茵
研究生(外文):Yi-Yin Kao
論文名稱:二氧化矽/二氧化鈦核殼顆粒的製備與探討
論文名稱(外文):Preparation and Properties of SiO2 / TiO2 core-shell particles
指導教授:許克瀛
指導教授(外文):Keh-Ying Hsu
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:105
中文關鍵詞:核殼結構溶膠-凝膠螯合劑二氧化鈦
外文關鍵詞:titaniachelating agentcore-shell structuresol-gel
相關次數:
  • 被引用被引用:3
  • 點閱點閱:338
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:4
利用Stöbe method製備二氧化矽微球,再以溶膠-凝膠法將二氧化鈦包覆在二氧化矽上。添加螯合劑乙醯丙酮(Acetylacetone , AcAc )與二氧化鈦的前趨物鈦烷氧化物進行螯合反應和加入聚二乙醇(Polyethylene glycol, PEG)來達到降低鈦烷氧化物水解的速率,避免二氧化鈦快速沉澱的現象發生,以製備出包覆均勻的二氧化矽/二氧化鈦核殼結構的顆粒。再添加離子型介面活性劑硫酸鈉十二烷酯(Sodium dodecyl sulfate, SDS)和非離子型分散劑聚乙烯基烷(Polyvinylpyrrolidone, PVP)達到顆粒分散的效果,接著利用高溫鍛燒改質,改善核殼顆粒的晶相。

使用的分析儀器包括Zata sizer、SEM、XRD、FTIR、TGA及UV/vis等儀器,以Zata sizer來分析二氧化矽奈米球在溫度參數的影響下其粒徑的分佈,在SEM上,可觀察到核殼顆粒的結構,從XRD中,探討二氧化矽和有機基團對二氧化鈦晶相的影響,由FTIR可鑑定核殼顆粒的化學結構,利用TGA來做核殼顆粒的熱性質分析,最後以UV/vis探討合成顆粒的吸收波長範圍與吸收度。
The silica nanospheres were prepared by Stöbe method, and coating with with the titania on the silica particles via sol-gel route. To prepare the homogenous silica/titania core-shell particles, the acetylacetone served as chelating agent to chelate with the titanium alkoxide which used as the titania precursor, and added the polyethylene glycol additionally to stabilize the hydrolysis-condensation process and to avoid fast precipitation. In addition, the ionic surfactant sodium dodecyl sulfate and the nonionic surfactant polyvinylpyrrolidone dispersed the core-shell particles. In order to improve crystalline, high temperature to calcine core-shell particles was used.

There are many instruments of analysis to be used, including Zata sizer, SEM, X-ray powder diffraction, FTIR and TGA. From the Zata sizer results, the particle size distribution of silica nanospheres with the temperature parameter was analyzed. From the SEM results, the core-shell materials and its structure were observed. From the XRD result, the change of titania lattice constants from the influence of slica and the organic group was confirmed. From the FTIR result, the chemical structure of core-shell particles was identified. From the TGA result, the thermal property of core-shell particles was obtained. And from the UV/vis result, the wavelength and absorbance of core-shell particles was identified
總目錄


中文摘要 I
英文摘要 II
誌謝 III
總目錄 IV
圖目錄 VII
表目錄 X

第1章 緒論 1
1-1 前言 1
1-2 研究動機 3
第2章 基本理論與文獻回顧 4
2-1溶膠-凝膠法 4
2-1-1 溶膠-凝膠法之定義 4
2-1-2 以溶膠-凝膠法製作功能性材料之優點 4
2-2奈米材料的特性 7
2-3 二氧化鈦光觸媒的結構 10
2-4 二氧化矽的結構與應用 14
2-5 二氧化矽/二氧化鈦文獻回顧 17
第3章 實驗方法及原理 21
3-1 實驗原理 21
3-1-1 溶膠-凝膠法之反應機制 21
3-1-2 Stöbe method製備二氧化矽核球 22
3-1-3 二氧化矽/二氧化鈦成核理論 23
3-1-4 添加螯合劑減緩TTIP水解速率 24
3-1-5 添加界面活性劑達到粒子分散的效果 24
3-2 實驗流程圖 29
3-3 實驗分析儀器 30
3-4 實驗藥品 32
3-5 利用Stöbe method 製備二氧化矽顆粒 34
3-6 二氧化鈦顆粒製備 34
3-7二氧化矽/二氧化鈦核殼顆粒製備 34
3-7-1 製備二氧化矽/二氧化鈦核殼顆粒 (加水順序) 34
3-7-2 添加螯合劑AcAc (反應時間、濃度) 36
3-7-3 添加螯合劑AcAc及PEG 400 37
3-7-4 添加穩定劑PVP 37
3-7-5 添加穩定劑SDS 38
3-8 鍛燒改質二氧化矽/二氧化鈦核殼顆粒 39
第4章 結果與討論 40
4-1 溫度對二氧化矽微球粒徑的影響 40
4-2 二氧化矽/二氧化鈦核殼顆粒的型態性質 46
4-2-1 加水順序對核殼顆粒的影響 46
4-2-2 添加螯合劑對核殼顆粒的影響 52
4-2-3 添加穩定劑對核殼顆粒的影響 64
4-3 二氧化矽/二氧化鈦核殼顆粒晶相結構的探討 72
4-4 二氧化矽/二氧化鈦核殼顆粒的結構鑑定 82
4-4 二氧化矽/二氧化鈦核殼顆粒的結構鑑定 82
4-5 二氧化矽/二氧化鈦核殼顆粒的熱性質分析 87
4-6 二氧化矽/二氧化鈦核殼顆粒的紫外光-可見光分析 89
第5章 結論 91
第6章 參考文獻 93

圖目錄

Figure 2 1. 粒子大小與半導體能階間的關係[19] 9
Figure 2 2. 二氧化鈦之鍵結方式 (a)Rutile;(b)Anatase;(c) Brookite [20] 12
Figure 2 3. 二氧化鈦相圖[20] 12
Figure 2 4. 二氧化矽的結構[27] 15
Figure 2 5. 二氧化矽顆粒凝集和成長理論 [28] 16
Figure 3 1. 二氧化矽成核、成長示意圖[44] 26
Figure 3 2. Acetyl acetone的結構式 26
Figure 3 3. Acetyl acetone降低鈦烷氧化合物水解速度反應機構[45] 27
Figure 3 4. 接枝共聚物在粒子與連續介面的位置 27
Figure 3 5. 立體穩定機制 27
Figure 3 6. 單一散度二氧化矽/二氧化鈦核殼顆粒實驗流程圖 29
Figure 3 7. 二氧化矽/二氧化鈦核殼顆粒實驗流程圖-後加水 35
Figure 3 8. 二氧化矽/二氧化鈦核殼顆粒實驗流程圖-先加水 35
Figure 3 9. 添加螯合劑AcAc實驗流程圖 36
Figure 3 10. 添加螯合劑AcAc及PEG 400實驗流程圖 37
Figure 3 11. 添加穩定劑PVP實驗流程圖 38
Figure 3 12. 添加穩定劑SDS實驗流程圖 39
Figure 4 1. 不同溫度下製備的二氧化矽微球粒徑分析圖(a-g) 44
Figure 4 2. 不同溫度下製備的二氧化矽微球粒徑比較圖 44
Figure 4 3. 不同溫度下製備的二氧化矽微球SEM圖(a) 25℃(b) 30℃ 45
Figure 4 4. 二氧化矽和二氧化鈦之SEM圖(a)二氧化矽 (b)二氧化鈦 49
Figure 4 5. 後加水步驟添加TTIP為(a)0.3ml TTIP (b)0.5ml TTIP (c)0.7ml TTIP (d)1.0ml所製備二氧化矽/二氧化鈦顆粒之SEM圖 50
Figure 4 6. 先加水步驟添加TTIP為(a)0.5ml (b)0.7ml所製備二氧化矽/二氧化鈦顆粒之SEM圖 51
Figure 4 7. 加入TTIP:AcAc比 (a)1:0.3 (b)1:0.5 (c)1:1 (d)1:1.2 (e)1:1.5 (f)1:2 (g)1:4,反應5小時所製備的二氧化矽/二氧化鈦顆粒SEM圖 57
Figure 4 8. 加入TTIP:AcAc = 1:1反應(a)3小時 (b)5小時 (c)8小時 (d)12小時 (e)24小時 (f)48小時,所製備的二氧化矽/二氧化鈦顆粒SEM圖 59
Figure 4 9. 加入TTIP:AcAc = 1:1及15w% PEG 400反應(a)3小時 (b)5小時 (c)8小時 (d)12小時 (e)24小時 (f)48小時,所製備的核殼顆粒SEM圖 61
Figure 4 10. acetyl acetone與titanium isopropoxide依1:1到1:4的比例進行螯合作用之Gellability zone圖[31] 62
Figure 4 11.二氧化鈦與PEG鍵結示意圖[46] 62
Figure 4 12. 添加穩定劑PVP 10 (a)0.1g (b)0.3g (c)0.5g (d)0.7g (e)1.0g (f)1.5g,所製備二氧化矽/二氧化鈦顆粒之SEM圖 67
Figure 4 13. 添加穩定劑PVP K40 (a)0.1g (b)0.3g (c)0.5g (d)0.7g (e)1.0g (f)1.5g,所製備二氧化矽/二氧化鈦顆粒之SEM圖 69
Figure 4 14. 添加介面活性劑SDS (a)0.3g (b)0.5g (c)0.7g (d)1.0g (e)1.5g (f)2.0g,所製備二氧化矽/二氧化鈦顆粒之SEM圖 71
Figure 4 15. 未鍛燒 (a)SiO2 (b)TiO2 (c)S1 (d)S2 (e) S3之XRD圖 75
Figure 4 16. TiO2在不同溫度鍛燒下之XRD比較圖 76
Figure 4 17. S1在不同溫度鍛燒下之XRD比較圖 77
Figure 4 18. S2在不同溫度鍛燒下之XRD比較圖 78
Figure 4 19. S3在不同溫度鍛燒下之XRD比較圖 79
Figure 4 20. 未鍛燒 (a) SiO2 (b) TiO2 (c) S1 (d) S2 (e) S3之FTIR圖 84
Figure 4 21. 500℃鍛燒 (a) S1 (b) S2 (c) S3之FTIR圖 85
Figure 4 22. TiO2/SiO2表面鏈鍵結構模型 85
Figure 4 23. 核殼顆粒(a) S1 (b) S2 (c) S3 之TGA圖 88
Figure 4 24. 二氧化矽、二氧化鈦和核殼顆粒之UV/vis圖 90


表目錄

Table 2 1. 二氧化鈦晶格參數表[20] 13
Table 3 1. 實驗藥品 32
Table 4 1. 不同溫度下製備二氧化矽微球的結果 45
Table 4 2. 改變加水順序所製備之核殼顆粒粒徑表 51
Table 4 3. 添加螯合劑AcAc及PEG對反應時間之粒徑表 63
Table 4 4. 實驗配方及編號表 75
Table 4 5. JCPDS-TiO2 anatase phase 80
Table 4 6. JCPDS-TiO2 rutile phase 80
Table 4 7. XRD晶相比較表 81
Table 4 8. SiO2/TiO2 核殼顆粒之FTIR官能基吸收峰對照表 86
Table 4 9. UV/vis對照表 90
[1]F. Caruso, “Nanoengineering of Particle Surfaces.”, Adv. Mater., 13, NO.1, 11, 2001
[2]A. J. Bard, “Integrated Chemical Systems”, John Wiley & Sons, Inc., New York, 1994.
[3]G. Dagan, M. Tomkiewicz, “Titanium dioxide aerogels for photocatalytic decontamination of aquatic environments.”, J. Phys. Chem., 97, 12651, 1993.
[4]U. Diebold, “The surface science of titanium dioxide.”, Surf. Sci. Rep., 48, 54, 2003.
[5]O. K. Varghese, G. K. Mor, C. A. Grimes, “Photoelectrochemical Properties of Highly-ordered Titania Nanotube-arrays”, Nanosci. Nanotechnol., 4, 733, 2004.
[6]R. J. Wu, Y. L. Sun, C. C. Lin, H. W. Chen, “Composite of TiO2 nanowires and nafion as humidity sensor material.”, Sensors and Actuators B, 115, 198 ,2006.
[7]H. Yu, J. Yu, B. Cheng, “Photocatalytic activity of the calcined H-titanate nanowires for photocatalytic oxidation of acetone in air.”, Chemosphere, 66, 2050, 2007.
[8]A. L. Linsebigler, G. Lu, J. T. Yates, “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results.”, Chem. Rev., 95, 735, 1995.
[9]W. P. Hsu, R. Yu, E. Matijevic, ” Paper Whiteners: I. Titania Coated Silica.”, J. Colloid Interface Sci., 156, 56, 1993.
[10]M. Galan-Fereres, L. J. Alemany, R. Mariscal, M. A. Baiiares, J. A. Anderson, J. L. G. Fierro, “Surface Acidity and Properties of Titania-Silica Catalyst”, Chem. Mater., 7, 1342, 1995.
[11]C. Anderson, A.J. Bard, ” An Improved Photocatalyst of TiO2/SiO2
Prepared by a Sol-Gel Synthesis”, J. Phys. Chem. 99, 9882, 1995.
[12]R. Ray, J. Am. Ceram. Soc. 52, 344, 1969.
[13]K. C. Chen, T. Tsuchuys, “Sol-Gel processing of Silica. I The role of starting compounds [J].”, J. Non-Cryst. Solids, 81, 227, 1986.
[14]C. Sanchez, J. Livage, M. Henry and F. Babonneau, ”Chemical Modification of Alkoxide Precursors.”, J. Non-Crystal. Solids, 100, 65, 1988.
[15]A. L. Linsebigler, G. Q. Ln, J. T. Yates, ” Photocatalysis on TiO2 Surfaces Principles, Mechanisms, and Selected Results”, Che. Rev., 95, 735, 1995.
[16]G. Philipp, H. Schmidt, “New materials for contact lenses preparedfrom Si- and Ti-alkoxides by the sol-gel process”, J. Non-Cryst. Solids, 63 283-292, 1984.
[17]H. Schmidt, L. C. Klein, “Sol-gel optics : processing and applications”, Kluwer Academic Publishers, 451-482,1994.
[18]R. W. Siegel, E. Hu, M. C. Roco, “WTEC Panel Report on Nanostructure Science and Tecjnology: R & D Status and Trends in Nanoparticles”, Nanostructured Materials, and Nanodevices, Klumer, 1999.
[19]M. G. Bawendi, P.J. Carroll, W. L. Willson, “Luminescence properties of CdSe quantum crystallites: Resonance between interior and surface localized states.”, J. Chem. Phys., 96, 946, 1992.
[20]Phase diagrams for Ceramists, The American Ceramic Society, inc., 76, 4150, 1975.
[21]U. Diebold, “The surface science of titanium dioxide.”, Surf. Sci. Reports, 48, 53, 2003.
[22]T. E. Weirich, M. Winterer, S. Seifried, H. Hahn, H. Fuess, “Rietveld analysis of electron powder diffraction data from nanocrystalline anatase, TiO2”, Ultramicroscopy, 81, 263, 2000.
[23]Powder Diffraction File, Card No. 21–1272, JCPDS-International Centre for Diffraction Data, Swarthmore 1997.
[24]郝士明, ”漫談晶體結構學─從材料學談起”, 政大印書館股份有限公司,台北市 ,1997.
[25]F. Tomoyuki, Y. Toshimasa, K. Nakamura, O. Miyawaki, ”The sol-gel prearation and characterization of nanoporous silicamembrane with controlled pore size”, Journal of Membrane Science187, 171-180 (2001).
[26]L. A. Belyakova, A. M. Varvarin, ”Surfaces properties of silica gelsmodified with hydrophobic groups”, Colloids and Surfaces A:physicochemical and Engineering Aspects, 154, 285, 1999.
[27]高分子工業, ”合成二氧化矽的特性與用途.”, 高分子工業78, 72, 1998.
[28]R. K. Iler, ”The chemistry of silica”, John Wiley & Sons, New York, 1979.
[29]W. Stöber, A. Fink, E. Bohn, “Controlled Growth of Monodispersed Silica Spheres in the Micron Size Range,”, J. Colloid Interface Sci., 26, 62, 1968.
[30]K. P. Kumar, J. Kumar, K. Keizer, “Effect of Peptization on Densification and Phase-Transformation Behavior of Sol-Gel Derived Nanostructured Titania”, J. Am. Ceram. Soc., 77, 1396, 1994.
[31]M. M. Haridas, S. Datta, J. R. Bellare, “Time and Temperature Based Gellability Zones in Modified Titanium Alkoxide Sols”, Ceramics inter., 601, 25, 1999.
[32]Y. C. Zhu, C. X. Ding, “Oriented Growth of Nano-TiOB2B Whiskers”, Nanostructured Mater., 427, 3, 11, 1999.
[33]X. Liu, J. Yang, “An improvement on sol-gel method for preparing ultrafine and crystallized titania powder.”, Materials Science and Engineering A, 289, 241, 2000.
[34]Chang C. C., Chen W. C., “High-Refractive-Index thin films prepared fromaminoalkoxysilane-capped pyromellitic dianhydride-titania hybrid materials.”, J Polym Sci Part A: Polym Chem , 2001, 39, 3419-3427.
[35]C. Malibert , S. Bach, “ Elaboration and Characterization of Thin Films of TiO2 Prepared by Sol-Gel Process.”, Thin solid films, 79, 418, 2002.
[36]Y. Djaoued, S. Badilescu, P. V. Ashrit, “Study of Anatase to Rutile Phase Transition in Nanocrystalline Titania Films.”, J. Sol-gel Science and Technology 24, 233, 2002.
[37]T. Ihara, M. Miyoshi, and Y. Iriyama, “Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping.”, Applied Catalysis B: Environ., 42, 403, 2003.
[38]R. J. Davis, Z. Liu, “Titania-Silica: A Model Binary Oxide Catalyst System.”, Chem. Mater., 9, 2311, 1997.
[39]H. H. Choi, J. Park, “Nanosized titania encapsulated silica particles using an aqueous TiCl4 solution.”, Applied Surface Science, 240, 7, 2005
[40]K. Y. Jung, S. B. Park, “Enhanced photoactivity of silica-embedded titania particles prepared by sol–gel process for the decomposition of trichloroethylene”, Applied Catalysis B: Environmental, 25, 249, 2000.
[41]N. Enomoto, K. Kawasaki, “Synthesis of mesoporous silica modified with titania and application to gas adsorbent.”, Solid State Ionics, 151, 171, 2002.
[42]Z. Chen, Z. L. Wang, “Preparation of Metallodielectric Composite Particles with Multishell Structure.”, Langmuir, 20, 3042, 2004.
[43]H. Nur, “Modification of titanium surface species of titania by attachment of silica nanoparticles.”, Materials Science and Engineering B, 133, 49, 2006.
[44]周更生, 陳貞志, “Sol-Gel方法製備單一分佈二氧化矽粒子-溶劑效應.”, 化工年會, 2003.
[45]S. Doeuff, M. Henry, C. Sanchez, “Hydrolysis Of Titanium Alkoxides:Modification of the Molecular Precursor by ceticAcid.”, J. Livage, J. Non-cryst. Solids. 89, 206, 1987.
[46]X. Wang, X. Liu, “An improvement on sol-gel method for preparing ultrafine and crystallized titania powder.”, Materials Science and Engineering A, 289, 241, 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔