(3.238.173.209) 您好!臺灣時間:2021/05/08 15:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鐘培元
研究生(外文):Pei-Yuan Chung
論文名稱:氣液平衡量測研究:CO2/PZ/TEA/H2O系統
論文名稱(外文):Vapor-Liquid Equilibrium Measurements for CO2/PZ/TEA/H2O Systems
指導教授:李夢輝李夢輝引用關係
指導教授(外文):Meng-Hui Li
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:83
中文關鍵詞:氣液平衡二氧化碳醇胺
外文關鍵詞:vapor-liquid equilibriumcarbon dioxide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:103
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要量測酸性氣體二氧化碳在混合醇胺水溶液系統(Triethanolamine (TEA) + Piperazine (PZ) + Water (H2O))下的氣液平衡溶解度數據,所探討的系統濃度分別為:2 kmol × m-3 TEA + 0.5 ~1.5 kmol × m-3 PZ 以及 3 kmol × m-3 TEA + 0.5~1.5 kmol × m-3 PZ;溫度範圍為40, 60, 以及 80 °C;二氧化碳分壓範圍為0.7~160 kPa。
迴歸部份選擇以Kent and Eisenberg (1976) 提出的熱力學模式來建立本系統的氣液平衡熱力學模式,並利用所建立的熱力學模式來描述本實驗的數據,最終可以得到令人滿意的結果。
而在文獻上的氣液平衡數據獨缺本研究所選擇的系統TEA + PZ + H2O ,所以除了提供一組新的實驗系統數據之外,所建立的熱力學計算模式也可作為吸收酸性氣體設備方面的參考依據。
New experimental results have been presented for the solubilities of carbon dioxide in mixtures of Triethanolamine (TEA) + Piperazine (PZ) + Water (H2O) have been measured at 40, 60, and 80 °C and at partial pressures of acid gases up to 160 kPa.
The concentration ranges of the ternary mixtures studied were 2 kmol × m-3 TEA + 0.5 to 1.5 kmol × m-3 PZ and 3 kmol × m-3 TEA + 0.5 to 1.5 kmol × m-3 PZ aqueous solutions.
The modified Kent-Eisenberg model has been used to represent the solubility of mixtures of CO2 in the considered ternary solutions. And the model reasonably reproduces the equilibrium partial pressures of CO2 above the ternary solutions for the systems.
摘要............................................................................................................. I
Abstract ......................................................................................................II
致謝.......................................................................................................... III
目錄.......................................................................................................... IV
表目錄......................................................................................................VI
圖目錄.....................................................................................................VII
第1 章 緒論.............................................................................................. 1
1.1 前言................................................................................................. 1
1.2 酸性氣體吸收技術介紹................................................................. 2
1.3 醇胺簡介......................................................................................... 3
1.4 TEA (Triethanolamine)及PZ (Piperazine)介紹.............................. 5
1.4.1 TEA ............................................................................................ 5
1.4.2 PZ ............................................................................................... 6
1.5 研究目的......................................................................................... 9
第2 章 原理............................................................................................ 10
2.1 氣液平衡model 文獻回顧........................................................... 10
2.1.1 Ideal Solution Model:............................................................... 10
2.1.2 Activity Coefficient Model: ..................................................... 11
2.2 氣液平衡模式建立....................................................................... 13
2.2.1 理論......................................................................................... 13
2.2.2 計算......................................................................................... 15
第3 章 實驗............................................................................................ 17
3.1 文獻之氣液平衡實驗設備與分析法........................................... 17
3.1.1 實驗設備................................................................................. 17
3.1.2 分析法..................................................................................... 17
3.2 實驗藥品....................................................................................... 18
3.3 實驗裝置....................................................................................... 21
3.4 實驗步驟....................................................................................... 23
3.5 吸收負載(α)量測........................................................................... 23
3.6 CO2 分壓( CO2 P )計算...................................................................... 24
第4 章 結果與討論................................................................................ 25
4.1 對照實驗....................................................................................... 25
4.2 氣液平衡數據量測結果............................................................... 25
4.3 氣液平衡模式預測....................................................................... 48
第5 章 結論............................................................................................ 65
符號說明.................................................................................................. 66
參考文獻.................................................................................................. 68
附錄A...................................................................................................... 74


表目錄
Table 1-1 常用醇胺之結構式................................................................. 4
Table 1-2 Literature data of CO2 and H2S solubility in TEA systems .... 7
Table 1-3 Literature data of CO2 and H2S solubility in PZ systems....... 8
Table 3-1 文獻之氣液平衡實驗設備.................................................. 19
Table 3-2 TEA 及PZ 之熱物性質....................................................... 20
Table 4-1 Solubility of CO2 in 2 kmol ⋅ m
-3
MDEA solution at 40℃ .. 26
Table 4-2 Solubility of CO2 in 2 kmol ⋅ m
-3
TEA solution ................... 28
Table 4-3 Solubility of CO2 in 2 kmol ⋅ m
-3
TEA + 0.5 kmol ⋅ m
-3
PZ
solution ................................................................................ 29
Table 4-4 Solubility of CO2 in 2 kmol ⋅ m
-3
TEA + 1.0 kmol ⋅ m
-3
PZ
solution ................................................................................ 30
Table 4-5 Solubility of CO2 in 2 kmol ⋅ m
-3
TEA + 1.5 kmol ⋅ m
-3
PZ
solution ................................................................................ 31
Table 4-6 Solubility of CO2 in 3 kmol ⋅ m
-3
TEA solution ................... 32
Table 4-7 Solubility of CO2 in 3 kmol ⋅ m
-3
TEA + 0.5 kmol ⋅ m
-3
PZ
solution ................................................................................ 33
Table 4-8 Solubility of CO2 in 3 kmol ⋅ m
-3
TEA + 1.0 kmol ⋅ m
-3
PZ
solution ................................................................................ 34
Table 4-9 Solubility of CO2 in 3 kmol ⋅ m
-3
TEA + 1.5 kmol ⋅ m
-3
PZ
solution ................................................................................ 35
Table 4-10 本研究所採用之氣液平衡常數及亨利定律常數.............. 53
Table 4-12 迴歸所得之氣液平衡參數.................................................. 54



圖目錄
Figure 3-1 氣液平衡實驗裝置圖........................................................... 22
Figure 4-1 Solubility of CO2 in 2 kmol ⋅ m
-3
MDEA solution in 40℃ .. 27
Figure 4-2 Solubility of CO2 in 2 kmol ⋅ m
-3
TEA solution..................... 36
Figure 4-3 Solubility of CO2 in 2 kmol ⋅ m
-3
TEA + 0.5 kmol ⋅ m
-3
PZ
solution................................................................................... 37
Figure 4-4 Solubility of CO2 in 2 kmol ⋅ m
-3
TEA + 1.0 kmol ⋅ m
-3
PZ
solution................................................................................... 38
Figure 4-5 Solubility of CO2 in 2 kmol ⋅ m
-3
TEA + 1.5 kmol ⋅ m
-3
PZ
solution................................................................................... 39
Figure 4-6 Solubility of CO2 in 3 kmol ⋅ m
-3
TEA solution..................... 40
Figure 4-7 Solubility of CO2 in 3 kmol ⋅ m
-3
TEA + 0.5 kmol ⋅ m
-3
PZ
solution................................................................................... 41
Figure 4-8 Solubility of CO2 in 3 kmol ⋅ m
-3
TEA + 1.0 kmol ⋅ m
-3
PZ
solution................................................................................... 42
Figure 4-9 Solubility of CO2 in 3 kmol ⋅ m-3 TEA + 1.5 kmol ⋅ m-3 PZ
solution................................................................................... 43
Figure 4-10 Solubility of CO2 in Aqueous TEA + PZ solutions at 40℃.
Points: data;Lines: calculated by Kent-Eisenberg model. .. 45
Figure 4-11 Solubility of CO2 in Aqueous TEA + PZ solutions at 60℃.
Points: data;Lines: calculated by Kent-Eisenberg model. .. 46
Figure 4-12 Solubility of CO2 in Aqueous TEA + PZ solutions at 80℃.
Points: data;Lines: calculated by Kent-Eisenberg model. .. 47
Figure 4-13 Comparison of predicted and measured partial pressure for
CO2 in 2 kmol ⋅ m
-3
TEA systems. ......................................... 49
Figure 4-14 Comparison of predicted and measured partial pressure for
CO2 in 3 kmol ⋅ m
-3
TEA systems. ......................................... 50
Figure 4-15 Comparison of predicted and measured partial pressure for
CO2 in total systems at 40, 60, and 80℃. .............................. 51
Figure 4-16 Correlation of the solubility for CO2 in aqueous 2 kmol ⋅ m
-3
TEA solution. Points: data;Lines: calculated by
Kent-Eisenberg model............................................................ 55
Figure 4-17 Correlation of the solubility for CO2 in aqueous 5 kmol ⋅ m
-3
TEA solution. Points: data;Lines: calculated by
Kent-Eisenberg model............................................................ 56
Figure 4-18 Correlation of the solubility for CO2 in aqueous TEA
solutions at 25℃. Points: data;Lines: calculated by
Kent-Eisenberg model............................................................ 57
Figure 4-19 Prediction of solubility data for CO2 in 2 kmol ⋅ m
-3
TEA +
0.5 kmol ⋅ m
-3
PZ aqueous solution from 20℃ to 100℃.
Points: data;Lines: calculated by Kent-Eisenberg model. .. 58
Figure 4-20 Prediction of solubility data for CO2 in 2 kmol ⋅ m
-3
TEA +
1.0 kmol ⋅ m
-3
PZ aqueous solution from 20℃ to 100℃.
Points: data;Lines: calculated by Kent-Eisenberg model. .. 59
Figure 4-21 Prediction of solubility data for CO2 in 2 kmol ⋅ m
-3
TEA +
1.5 kmol ⋅ m
-3
PZ aqueous solution from 20℃ to 100℃.
Points: data;Lines: calculated by Kent-Eisenberg model. .. 60
Figure 4-22 Prediction of solubility data for CO2 in 3 kmol ⋅ m
-3
TEA +
0.5 kmol ⋅ m
-3
PZ aqueous solution from 20℃ to 100℃.
Points: data;Lines: calculated by Kent-Eisenberg model. .. 61
Figure 4-23 Prediction of solubility data for CO2 in 3 kmol ⋅ m
-3
TEA +
1.0 kmol ⋅ m
-3
PZ aqueous solution from 20℃ to 100℃.
Points: data;Lines: calculated by Kent-Eisenberg model. .. 62
Figure 4-24 Prediction of solubility data for CO2 in 3 kmol ⋅ m
-3
TEA +
1.5 kmol ⋅ m
-3
PZ aqueous solution from 20℃ to 100℃.
Points: data;Lines: calculated by Kent-Eisenberg model. .. 63
Appl, M.; Wagner, U.; Henrici, H. J.; Kuessner, K.; Voldamer, K.; Fuerest, E. Removal of CO2 and/or H2S and/or COS from Gases Containing These Constituents.; U.S.A., 1982.
Astarita, G.; Savage, D. W.; Bisio, A. Gas Treating with Chemical Solvents, John-Wiley and Sons: New York, 1983.
Atwood, K.; Arnold, M. R.; Kindrick, R. C. Equilibrium for The System, Ethanolamines-Hydrogen Sulfide-Water. Ind. Eng. Chem. 1957, 49, 1439.
Austgen, D. M.; Rochelle, G. T. Model of Vapor-Liquid Equilibria for Aqueous Acid Gas-Alkanolamine Systems. 2. Representation of H2S and CO2 Solubility in Aqueous MDEA and CO2 Solubility in Aqueous Mixture of MDEA with MEA or DEA. Ind. Eng. Chem. Res. 1991, 30, 543.
Austgen, D. M.; Rochelle, G. T.; Chen, C. C. A Model of Vapor-Liquid Equilibria for Aqueous Acid Gas-Alkanolamine Systems using the Electrolyte-NRTL Equation. Ind. Eng. Chem. Res. 1989, 28, 1060.
Bishnoi, S.; Rochelle, G. T. Absorption of Carbon Dioxide into Aqueous Piperazine: Reaction Kinetics, Mass Transfer and Solubility. Chem. Eng. Sci. 2000a, 55, 5531.
Bishnoi, S.; Rochelle, G. T. Physical and Chemical Solubility of Carbon Dioxide in Aqueous Methyldiethanolamine. Fluid Phase Equilibria 2000b, 168, 241.
Blauwhoff, P. M. M.; Versteeg, G. F.; Van Swaaij, W. P. M. A Study on the Reaction Between CO2 and Alkanolamines in Aqueous Solutions. Chem. Eng. Sci. 1984, 39, 207.

Chakma, A.; Meisen, A. Solubility of CO2 in Aqueous Methyl- diethanolamine and N,N-Bis(hydroxyethyl) Piperazine Solutions. Ind. Eng. Chem. Res. 1987, 26, 2461.
Chakraborty, A. K.; Astarita, G.; Bischoff, K. B. CO2 Absorption in Aqueous Solutions of Hindered Amines. Chem. Eng. Sci. 1986, 41, 997.
Clegg, S. L.; Pitzer, K. S. Thermodynamics of Multicomponent, Miscible, Ionic Solutions: Generalized Equations for Symmetrical Electrolytes. J. Phys. Chem. 1992, 96, 3513.
Deshmukh, R. D.; Mather, A. E. A Mathematical Model for Equilibrium Solubility of Hydrogen Sulfide and Carbon Dioxide in Aqueous Alkanolamine Solutions. Chem. Eng. Sci. 1981, 36, 355.
Edwards, T. J.; Maurer, G.; Newman, J.; Prausnitz, J. M. Thermodynamics of Aqueous Solution Containing Volatile Weak Electolytes. AIChE. J. 1975, 21, 248.
Edwards, T. J.; Maurer, G.; Newman, J.; Prausnitz, J. M. Vapor Liquid Equilibria in Multicomponent Aqueous Solutions of Volatile Weak Electrolytes. AIChE. J. 1978, 24, 966.
Guggenheim, E. A. The Specific Thermodynamic Properties of Aqueous Solutions of Strong Electrolytes. Philos. Mag. 1935, 19, 588.
Hu, W.; Chakma, A. Modeling of Equilibrium Solubility of CO2 and H2S in Aqueous Amino Methyl Propanol (AMP) Solutions. Chem. Eng. Commun. 1990, 94, 53.
Isaacs, E. E.; Otto, F. D.; Mather, A. E. Solubility of Mixtures of Hydrogen Sulfide and Carbon Dioxide in a Monoethanolamine Solution at Low Partial Pressures. J. Chem. Eng. Data. 1980, 25, 118.


Jou, F. Y.; Mather, A. E.; Otto, F. D. Solubility of H2S and CO2 in Aqueous Methyldiethanolamine Solutions. Industrial and Engineering Chemistry, Process Design and Development 1982, 21, 539.
Jou, F. Y.; Otto, F. D.; Mather, A. E. Equilibria of H2S and CO2 in Triethanolamine Solutions. Can. J. Chem. Eng. 1985, 63, 122.
Jou, F. Y.; Otto, F. D.; Mather, A. E. Solubility of Mixtures of Hydrogen Sulfide and Carbon Dioxide in Aqueous Solutions of Triethanol- amine. J. Chem. Eng. Data. 1996, 41, 1181.
Kennard, M. L.; Meisen, A. Solubility of Carbon Dioxide in Aqueous Diethanolamine Solutions at Elevated Temperatures and Pressures. J. Chem. Eng. Data. 1984, 29, 309.
Kent, R. L.; Eisenberg, B. Better Data for Amine Treating. Hydrocarbon Process. 1976, 55, 87.
Kohl, A. L.; Riesenfeld, F. C. Gas Purification, 4th ed, Gulf, Houston, Texas, 1985.
Lal, D.; Otto, F. D.; Mather, A. E. The Solubility of H2S and CO2 in a Diethanolamine Solution at Low Partial Pressure. Can. J. Chem. Eng. 1985, 63, 681.
Lawson, J. D.; Garst, A. W. Gas Sweetening Data: Equilibrium Solubility of Hydrogen Sulfide and Carbon Dioxide in Aqueous Mono-ethanolamine and Aqueous Diethanolamine Solutions. J. Chem. Eng. Data. 1976, 21, 20.
Lee, J. I.; Otto, F. D.; Mather, A. E. The Solubility of H2S and CO2 in Aqueous Monoethanolamine Solutions. Can. J. Chem. Eng. 1974, 52, 803.
Li, M.-H.; Chang, B.-C. Solubilities of Carbon Dioxide in Water + Monoethanolamine + 2-Amino-2-methyl-1-propanol. J. Chem. Eng. Data. 1994, 39, 448.
Li, M. H.; Chang, B. C. Solubilities of Carbon Dioxide in Water + Monoethanolamine + 2-Amino-2-methyl-1-propanol. J. Chem. Eng. Data. 1994, 39, 448.
Li, M. H.; Shen, K. P. Calculation of Equilibrium Solubility of Carbon Dioxide in Aqueous Mixtures of Monoethanolamine with Methyldiethanolamine. Fluid Phase Equilib. 1993, 85, 129.
Li, M. H.; Shen, K. P. Densities and Solubilities of Solutions of Carbon Dioxide in Qater + Monoethanolamine + N-methyldiethanolamine. J. Chem. Eng. Data. 1992, 37, 288.
Li, Y. G.; Mather, A. E. Correlation and Prediction of the Solubility of CO2 and H2S in Aqueous Solutions of Triethanolamine. Ind. Eng. Chem. Res. 1996, 35, 4804.
Li, Y. G.; Mather, A. E. The Correlation and Prediction of the Solubility of Carbon Dioxide in a Mixed Alkanolamine Solution. Ind. Eng. Chem. Res. 1994, 33, 2006.
Liu, H.B.; Zhang, C. F.; Xu, G. W. A Study on Equilibrium Solubility for Carbon Dioxide in Methyldiethanolamine-Piperazine-Water Solution. Ind. Eng. Chem. Res. 1999, 38, 4032.
Lyudkovskaya, M. A.; Leibush, A. G. Solubility of Carbon Dioxide in Solutions of Ethanolamines under Pressure. Zh. Prik. Khim. 1949, 22, 558.
MacGregor, R. J.; Mather, A. E. Equilibrium Solubility of H2S and CO2 and Their Mixtures in a Mixed Solvent. Can. J. Chem. Eng. 1991, 69, 1357-1366.
Mason, J. W.; Dodge, B. F. Equilibrium Absorption of Carbon Dioxide by Solutions of the Ethanolamines. Trans. AIChE. 1936, 32, 27.
Peng, D. Y.; Robinson, D. B. A New Two-Constant Equation of State. Ind. Eng. Chem. Fundam. 1976, 15, 59.

Pitzer, K. S.; Simonson, J. M. Thermodynamics of Multicomponent, Miscible, Ionic Systems: Theory and Equations. J. Phys. Chem. 1986, 90, 3005.
Pitzer, R. H. Electrolytes : From Dilute Solutions to Fused Salts. J. Am. Chem. Soc. 1980, 102, 902.
Qian, W. M.; Li, Y. G.; Mather, A. E. Correlation and Prediction of the Solubility of CO2 and H2S in an Aqueous Solution of Methyl- diethanolamine and Sulfolane. Ind. Eng. Chem. Res. 1995, 34, 2545.
Renon, H.; Prausnitz, J. M. Compositions in Thermodynamic Excess Functions for Liquid Mixtures. AIChE. J. 1968, 14, 135.
Roberts, B. E.; Mather, A. E. Solubility of CO2 and H2S in a Hindered Amine Solution. Chem. Eng. Commun. 1988, 72, 201.
Sartori, G.; Savage, D. W. Sterically Hindered Amine for CO2 Removal from Gases. Ind. Eng. Chem. Fundam. 1983, 22, 239.
Seo, D. J.; Hong, W. H. Effect of Piperazine on the Kinetics of Carbon Dioxide with Aqueous Solutions of 2-Amino-2-methyl-1-propanol. Ind. Eng. Chem. Res. 2000, 39, 2062.
Shneerson, A. L.; Leibush, A. G. Absorption of Carbon Dioxide by Ethanolamines. I. Rate of Absorption of Carbon Dioxide in Solutions of Mono-, Di-, and Triethanolamine. Zh. Prik. Khim. 1946, 19, 869.
Soave, G. Equilibrium Constants from a Modified Redlich-Kwong Equation of State. Chem. Eng. Sci. 1972, 27, 1197.
Sun, W.-C.; Yong, C.-B.; Li, M.-H. Kinetics of the Absorption of Carbon Dioxide into Mixed Aqueous Solutions of 2-Amino-2-methyl-l- propanol and Piperazine. Chem. Eng. Sci. 2005, 60, 503.
Teng, T. T.; Mather, A. E. Solubility of H2S, CO2 and Their Mixtures in an AMP Solution. Can. J. Chem. Eng. 1989, 67, 846.
Tontiwachwuthikul, P.; Meisen, A.; Lim, C. J. Solubility of carbon dioxide in 2-amino-2-methyl-1-propanol solutions. J. Chem. Eng. Data. 1991, 36, 130.
Van den Berg, L. Carbon Dioxide Absorption and Desorption in a Packed Tower Using Water and Solutions of Sodium Carbonate and of Triethanolamine. Can. J. Chem. Eng. 1962, 40, 250.
Xu, G.-W.; Zhang, C.-F.; Qin, S.-J.; Gao, W.-H.; Liu, H.-B. Gas-Liquid Equilibrium in a CO2-MDEA-H2O System and the Effect of Piperazine on It. Ind. Eng. Chem. Res. 1998, 37, 1473.
Xu, G.; Zhang, C.; Qin, S.; Wang, Y. Kinetics Study on Absorption of Carbon Dioxide into Solutions of Activated Methyldiethanolamine. Ind. Eng. Chem. Res. 1992, 31, 921.
Zhang, X.; Zhang, C.-F.; Qin, S.-J.; Zheng, Z.-S. A Kinetics Study on the Absorption of Carbon Dioxide into a Mixed Aqueous Solution of Methyldiethanolamine and Piperazine. Ind. Eng. Chem. Res. 2001, 40, 3785.
王成維 二氧化碳在醇胺 (AMP)與有機溶劑 (sulfolane)掺合物水溶液中之氣液平衡量測研究. 中原大學化學工程研究所碩士論文 2001.
吳武忠 氣液平衡量測研究 : CO2/MEA/MDEA/H2O. 中原大學化學工程研究所碩士論文 1998.
吳喬棋 酸性混合氣體與混合醇胺水溶液之氣液平衡模式建立. 中原大學化學工程研究所碩士論文 1997.
陳明德 二氧化碳在混合醇胺 (MEA/TEA)水溶液中之氣液平衡溶解度量測. 中原大學化學工程研究所碩士論文 2000.
黎育瑋 反應速率促進劑PZ 加速醇胺TEA 水溶液吸收二氧化碳之反應動力學研究. 中原大學化學工程研究所碩士論文 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔