(3.238.99.243) 您好!臺灣時間:2021/05/17 00:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:康朝翔
研究生(外文):Chao-Hsiang Kang
論文名稱:大氣電漿熔射製備中溫型固態電解質Sc2O3-Y2O3-ZrO2及其特性分析
論文名稱(外文):Preparation and Characterization of Solid Electrolyte for IT-SOFC using Atmospheric Plasma Spray
指導教授:童國倫童國倫引用關係
指導教授(外文):Kuo-Lun Tung
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:87
中文關鍵詞:大氣電漿熔射固態電解質氧化鋯離子導電度中溫型固態氧化物燃料電池
外文關鍵詞:IT-SOFCIonic conductivityZirconia-basedSolid ElectrolyteAPS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:184
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用大氣電漿熔射系統製備固態氧化物燃料電池電解質層,並探討不同組成的添加劑對其氧離子導電度之影響,用以獲得高效率的燃料電池。
研究結果發現,大氣電漿熔射技術可提供極高的火焰溫度,用以快速的形成穩定的塗層與晶型結構,並減少傳統燒結製程上所耗費的時間與能量。在粉體的製備方面,晶型的強度比例可藉由提高鍛燒溫度來改善添加劑的混掺效果,將鍛燒溫度提升至 1400 ℃後,添加比例濃度有明顯改善。另外,在電解質的製備方面,由 XRD 分析指出,波峰角度的偏移與添加劑濃度有明顯的關係,經由計算結果顯示,以 9-ScYZ 較接近 9 mol% ScSZ 的添加劑濃度,所以擁有較好的立方晶型結構,並有利於氧離子傳導。而 0-ScYZ 與 5-ScYZ 除了添加劑濃度不足外,所形成的多晶相結構亦是造成導電值下降的原因。從 SEM 觀察電解質表面及截面的堆疊情形可以發現,通常會產生長型的裂紋孔洞,而造成孔隙度增加。在阻抗量測方面,以未添加 Sc2O3 電解質的阻抗值最大,且阻抗值隨添加 Sc2O3 比例增加而減少。另外,由阻抗所得到的半圓弧直徑大小可得知電荷轉移阻抗值大小,結果顯示,以未添加 Sc2O3 電解質的電極與電解質間的電荷轉移阻抗值較大。改變操作溫度後,離子導電度隨溫度增加而增加,以 9-ScYZ 上升幅度最高。
綜合上述結果,得知利用 APS 可以大幅度的減少傳統燒結上所耗費的時間與能量。但粉體的製備與熔射參數的設定為影響電解質效能好壞的主要因素,因為粉體混合是否均勻,影響到隨後晶相結構的穩定程度,另外,熔射參數的設定與孔隙度有著相當大的關係,若能將孔隙度降至 5 % 以下,則可以減少離子傳遞的阻抗值大小,最後製備一高傳導的電解質。
In this study, the electrolyte of solid oxide fuel cell (SOFC) was prepared by atmospheric plasma spray system (APS) to investigate the effect of material compositions on ionic conductivity for developing high efficiency SOFC.
The results showed that the APS can provide high torch temperature to rapidly stabilize the cubic phase. In addition, this process was proved to successfully reduce the preparative time and energy consuming. Regarding the preparation of powders, it was found that the cubic phase ratio could be increased by raising the annealing temperature. The doping efficiency can also be obviously improved by annealing at 1400 ℃. On the other hand, the XRD patterns can also indicate the relationship between two theta degree value and dopant concentration in the prepared electrolytes. The calculated value revealed that the dopant concentration of 9-ScYZ more approached the real dopant concentration compared with the other two electrolytes. This suggested that the crystal structure could get more stable cubic phase and then facilitate the increase of ionic conductivity. Otherwise, it was found that the calculated values of 0-ScYZ and 5-ScYZ were smaller than the real dopant concentration. In the SEM images, it was clearly observed that the surface and cross-section of electrolytes produced many cracks, which were also one of the factors to increase the porosity. In the resistance analysis part, it was found that the Y2O3-riched solid electrolyte revealed a higher ohmic resistance compared with the other two solid electrolytes doped with Sc2O3. Moreover, the ohmic resistance decreased as an increase of Sc2O3. Meanwhile, the semicircle diameter of Nyquist plot also indicated the charge transfer resistance. The results showed that the Y2O3-riched solid electrolyte has highest charge transfer resistance at the electrolyte/electrode interface. The ionic conductivity significantly increased when operating temperature increased.
In conclusion, the APS system effectively reduced the preparation time and the resource consumption. The higher electrolyte performance depends on the uniform powders and optimum parameters. The stable cubic phase is determined by the uniform powders. Furthermore, the optimum parameters have significant relationship with porosity. The resistance of ionic conductivity would be reduced if the porosity can be lower than 5 vol. % and then preparing highly conductivity electrolyte.
目 錄
中文摘要................................I
英文摘要................................II
誌 謝................................IV
目 錄................................VI
圖索引................................VIII
表索引................................X
第一章 緒論................................1
第二章 文獻回顧................................3
2-1 燃料電池簡介................................3
2-1-1 燃料電池原理與發展................................3
2-1-2 燃料電池種類................................3
2-1-3 燃料電池種類................................5
2-2 SOFC之電解質材料................................12
2-2-1 鈣鈦礦結構................................12
2-2-2 螢石結構................................14
2-3 固態電解質之製備方式................................17
2-3-1 電解質製備方法................................18
2-3-2 熱熔射技術................................20
2-3-3 大氣電漿熔射法................................23
第三章 實驗材料與方法................................26
3-1 實驗裝置................................26
3-2 實驗藥品與材料................................27
3-3 實驗設備與分析儀器................................32
3-4 實驗方法與步驟................................35
3-4-1 混合粉體................................35
3-4-2 鍍膜程序................................35
3-5 實驗數據分析................................38
3-5-1 交流阻抗分析儀分析複數阻抗圖譜................................38
3-5-2 掃描式電子顯微鏡分析粒子堆疊結構................................39
3-5-3 X射線能量散佈元素分析儀分析表面元素................................39
3-5-4 X光粉末繞射儀分析晶型結構................................40
3-5-5 孔隙度量測................................40
第四章 結果與討論................................42
4-1 粉末製備與熔射塗層之特性分析................................42
4-1-1 X光繞射分析................................42
4-1-2 微結構與表面元素分析................................48
4-1-3 孔隙度分析................................53
4-2 離子導電度分析................................55
4-2-1 交流阻抗分析................................55
4-2-2 操作溫度對離子導電度之影響................................59
4-2-3 添加劑比例對離子導電度之影響................................60
4-3 商業粉體與熔射塗層之特性分析................................62
4-3-1 X光繞射分析................................62
4-3-2 微結構與表面元素分析................................63
4-3-3 交流阻抗分析................................65
第五章 結論................................68
參考文獻................................70
符號說明................................74
中英對照................................75

圖索引
第二章
Fig. 2-1 Schema of William Grove's 1842 fuel cell.........................4
Fig. 2-2 Schematic of the SOFC theory.........................9
Fig. 2-3 Structure of perovskite.........................13
Fig. 2-4 Structure of fluorite.........................16
Fig. 2-5 History of plasma spray.........................20
Fig. 2-6 The structure of typical plasma spray gun.........................22
Fig. 2-7 Schematic diagram of atmospheric plasma spray.........................23
Fig. 2-8 SEM micrograph of the cross-section of a yttria-stabilized zirconia (YSZ) coating produced by atmospheric plasma spraying (APS).........................25
第三章
Fig. 3-1 The atmospheric plasma spray system.........................26
Fig. 3-2 SEM image of YSZ substrate.........................27
Fig. 3-3 SEM images of (a) ZrO2 (b) Y2O3 (c) Sc2O3 powders.........................29
Fig. 3-4 SEM image of 8mol%YSZ commercial powder.........................30
Fig. 3-5 The instrument of AC impedance.........................38
Fig. 3-6 The Schematic of bulk volume.........................41
第四章
Fig. 4-1 XRD patterns of 0-ScYZ at different processes.........................43
Fig. 4-2 XRD pattern for APS-0-ScYZ.........................44
Fig. 4-3 XRD pattern of APS-9-ScYZ.........................45
Fig. 4-4 XRD pattern for APS-5-SYZ.........................46
Fig. 4-5 XRD patterns of (a) 0-ScYZ, (b) 5-ScYZ and (c) 9-ScYZ electrolytes.........................47
Fig. 4-6 (a) SEM image and (b) EDX spectrum 5-ScYZ powder. The inset in (b) is the element atomic ratios of Zr, Sc, Y and O.........................49
Fig. 4-7 SEM images of (a) 0-ScYZ, (c) 9-ScYZ and (e) 5-SYZ electrolytes; (b), (d) and (f) are the corresponding SEM images of electrolyte at high magnification.........................50
Fig. 4-8(a) SEM image and (b) EDX spectrum 5-ScYZ electrolyte. The inset in (b) is the element atomic ratios of Zr, Sc, Y and O.........................51
Fig. 4-9Cross-section view of SEM images of electrolytes: (a) 0-ScYZ (b) 5-ScYZ and (c) 9-ScYZ.........................52
Fig. 4-10The porosity of different composition electrolytes.........................54
Fig. 4-11 (a) Equivalent circuit model of Randles cell and (b) Nyquist plot for Randles cell.(Princeton Applied Research Company)........................56
Fig. 4-12 The AC impedance analysis of three electrolytes at different temperature.........................58
Fig. 4-13 Effect of temperature on the ionic conductivity of electrolytes.........................59
Fig. 4-14 Conductivity for different composition of ZrO2-based system at isothermal conditions.........................60
Fig. 4-15 Arrhenius plot of conductivity show the effect of dopant concentration on ZrO2-based system.........................61
Fig. 4-16 XRD pattern for APS-0-ScYZ.........................62
Fig. 4-17 SEM images of C-8YSZ electrolyte: (a) surface and (b) cross-section.........................63
Fig. 4-18 (a) SEM image and (b) EDX spectrum C-8YSZ electrolyte. The inset in (b) is the element atomic ratios of Zr, Y and O.........................64
Fig. 4-19 The AC impedance analysis of three electrolytes at different temperature.........................66
Fig. 4-20 Arrhenius plot of conductivity show the effect of dopant concentration on ZrO2-based system.........................67

表索引
第二章
Table 2-1 Summary for different types of fuel cells.........................6
Table 2-2 Comparison of the methods for producing thin and dense electrolyte for SOFC applications.........................17
第三章
Table 3-1 Different composition of powders.........................35
Table 3-2 The plasma spraying parameters for controller of plasma gun.........................36
Table 3-3 The major parameters of plasma spraying condition.........................37
Table 3-4 The setting conditions of XRD.........................40
第四章
Table 4-1 The porosity of 5-ScYZ electrolyte at three different experiments.........................53
Aruna, S. T., M. Muthuraman and K. C. Patil, “Synthesis and properties of Ni-YSZ cermet: Anode material for solid oxide fuel cells,” Solid State Ionics, 111(1-2), 45-51 (1998).
Aruna, S. T., M. Muthuraman and K. C. Patil, “Synthesis and properties of Ni-YSZ cermet: Anode material for solid oxide fuel cells,” Solid State Ionics, 111(1-2), 45-51 (1998).
Badwal, S. P. S. and K. Foger, “Solid oxide electrolyte fuel cell review,” Ceram. Int., 22(3), 257-265 (1996).
Badwal, S. P. S. and K. Foger, “Solid oxide electrolyte fuel cell review,” Ceram. Int., 22(3), 257-265 (1996).
Badwal, S. P. S., “Characterisation, conductivity and mechanical properties of oxygen-ion conductor La0.9Sr0.1Ga0.8Mg0.2O3-x,” J. Mater. Chem., 7(1), 79-83 (1997).
Badwal, S. P. S., “Characterisation, conductivity and mechanical properties of oxygen-ion conductor La0.9Sr0.1Ga0.8Mg0.2O3-x,”J. Mater. Chem., 7(1), 79-83 (1997).
Badwal, S. P. S., F. T. Ciacchi, S. Rajendran and J. Drennan, An investigation of conductivity, microstructure and stability of electrolyte compositions in the system 9 mol% (Sc2O3-Y2O3)-ZrO2(Al2O3),” Solid State Ionics, 109(1), 167-186 (1998).
Balazs, G. B. and R. S. Glass, “AC impedance studies of rare earth oxide doped ceria, ” Solid State Ionics, 76(1-2), 155-162 (1995).
Balazs, G. B. and R. S. Glass, “AC impedance studies of rare earth oxide doped ceria, ” Solid State Ionics, 76(1-2), 155-162 (1995).
Chen, T. Y. and K. Z. Fung, “Comparison of dissolution behavior and ionic conduction between Sr and/or Mg doped LaGaO3 and LaAlO3,” J. Power Sources, 132(1-2), 1-10 (2004).
Chen, T. Y. and K. Z. Fung, “Comparison of dissolution behavior and ionic conduction between Sr and/or Mg doped LaGaO3 and LaAlO3,” J. Power Sources, 132(1-2), 1-10 (2004).
Ciacchi, F. T. and S. P. S. Badwal, “The system Y2O3-Sc2O3-ZrO2: Phase stability and ionic conductivity studies,” J. Eur. Ceram. Soc., 7(3), 197-206 (1991).
Doshi, R.; V. L. Richards, J. D. Carter, X. Wang and M. Krumpelt, “Development of Solid-Oxide Fuel Cells That Operate at 500[degree]C,” J. Electrochem. Soc., 146(4), 1273-1278 (1999).
Eguchi, K., “Ceramic materials containing rare earth oxides for solid oxide fuel cell,” J. Alloy Compd., 250(1-2), 486-491 (1997).
Fauchais, P., “Understanding plas spraying (Topical Review),” Phys. D: Appl. Phys. 37, R86–R108 (2004).
Gottesfeld, S. and J. Pafford, “A New Approach to the Problem of Carbon Monoxide Poisoning in Fuel Cells Operating at Low Temperatures,” J. Electrochem. Soc., 135(10), 2651-2652 (1988).
Hsu M. F. , L. J. Wu, J.M. Wu, Y. H. Shiu and K. F. Lin, “Solid Oxide Fuel Cell Fabricated Using All-Perovskite Materials,” Electrochem. Solid-State Lett., 9(4), A193-A195 (2006).
Huang, P. N. and A. Petric, “Superior Oxygen Ion Conductivity of Lanthanum Gallate Doped with Strontium and Magnesium,” J. Electrochem. Soc., 143(5), 1644-1648 (1996).
Hui, R.; Z. Wang, O. Kesler, L. Rose, J. Jankovic, S. Yick, R. Maric and D. Ghosh, “Thermal plasma spraying for SOFCs: Applications, potential advantages, and challenges,” J. Power Sources, 170(2), 308-323 (2007).
Hui, S., J. Roller, S. Yick, X. Zhang, C. Deces-Petit, Y. Xie, R. Maric and D. Ghosh, “A brief review of the ionic conductivity enhancement for selected oxide electrolytes,” J. Power Sources, 172(2), 493-502 (2007).
Ishihara, T., H. Matsuda and Y. Takita, “Doped LaGaO3 Perovskite Type Oxide as a New Oxide Ionic Conductor,” J. Am. Chem. Soc., 116(9), 3801-3803 (1994).
Khor, K. A., L. G. Yu, S. H. Chan and X. J. Chen, “Densification of plasma sprayed YSZ electrolytes by spark plasma sintering (SPS),” J. Eur. Ceram. Soc., 23(11), 1855-1863 (2003).
Lee, C. H., C. H. Lee, H. Y. Lee and S. M. Oh, “Microstructure and anodic properties of Ni/YSZ cermets in solid oxide fuel cells,” Solid State Ionics, 98(1-2), 39-48 (1997).
Ley, K. L., R. Liu, C. Pu, Q. Fan, N. Leyarovska, C. Segre and E. S. Smotkin, “Methanol Oxidation on Single-Phase Pt-Ru-Os Ternary Alloys,” J. Electrochem. Soc., 144(5), 1543-1548 (1997).
Li, C. J., C.X. Li and X. J. Ning, “Performance of YSZ Electrolyte Layer Deposited by Atmospheric Plasma Spraying for Cermet-Supported Tubular SOFC,” Surf. Coat. Techn., 190(1), 60-64 (2005).
Li, C. J., X. J. Ning and C. X. Li, “Effect of densification processes on the properties of plasma-sprayed YSZ electrolyte coatings for solid oxide fuel cells,” Surf. Coat. Techn, 190(1), 60-64 (2005),.
Li, C. X., C. J. Li, H. G. Long, Y. Z. Xing, X. J. Ning, C. Zhang, H. L. Liao and C. Coddet, “Characterization of atmospheric plasma-sprayed Sc2O3-ZrO2 electrolyte coating,” Solid State Ionics, 177(19-25), 2149-2153 (2006).
Ma, X. Q., H. Zhang, J. Dai, J. Roth, R. Hui, T.D. Xiao, and D.E. Reisner, “Intermediate Temperature Solid Oxide Fuel Cell Based on Fully Integrated Plasma-Sprayed Components,” J. Therm. Spray Techn., 14(1), 61-66 (2005).
Okumura K., Y. Aihara, S. Ito and S. Kawasaki, “Development of thermal spraying-sintering technology for solid oxide fuel cells,” J. Therm. Spray Techn., 9(3), 354-359 (2000).
Ostergard, M. J. L., C. Clausen, C. Bagger and M. Mogensen, “Manganite-zirconia composite cathodes for SOFC: Influence of structure and composition,” Electrochim. Acta, 40(12), 1971-1981 (1995).
Pawlowski, L., “The Science and Engineering of Thermal Spray Coatings,” In John Wiley & Sons Ltd, New York: 1995.
Politova, T. I. and J. T. S. Irvine, “Investigation of scandia-yttria-zirconia system as an electrolyte material for intermediate temperature fuel cells--influence of yttria content in system (Y2O3)x(Sc2O3)(11-x)(ZrO2)89,” Solid State Ionics, 168(1-2), 153-165 (2004).
Scagliotti, F. and F. Parmigiani, “Plasma-Sprayed Zirconia Electrolytes,” Solid State Ionics, 28-30, 1766-1769 (1988).
Schwenk, A., “The influence of inner nozzle contour on the plasma torch performance for atmospheric plasma spraying,” 16th ISPC, Italy, June 22-27 (2003).
Stafford, R. J., S. J. Rothman and J. L. Routbort, “Effect of dopant size on the ionic conductivity of cubic stabilised ZrO2,” Solid State Ionics, 37 (1), 67-72 (1989)
Vardelle, A., M. Vardelle and P. Fauchais, “Influence of velocity and surface temperature of alumina particles on properties of plasma sprayed coatings,” Plasma Chem. Plasma P., 2(3), 255-291 (1982).
Vardelle, A., M. Vardelle and P. Fauchais, “Influence of velocity and surface temperature of alumina particles on properties of plasma sprayed coatings,” Plasma Chem. Plasma P., 2(3), 255-291 (1982).
Vardelle, M. and J. L. Besson., “γ-Alumina Obtained by Arc Plasma Spraying: A Study of the Optimization of Spraying Conditions,” Ceram. Int., 7(2), 48-54 (1981).
Wainright, J. S., J. T. Wang, D. Weng, R. F. Savinell and M. Litt, Acid-Doped Polybenzimidazoles: “A New Polymer Electrolyte,” J. Electrochem. Soc., 142(7), L121-L123 (1995).
Will, J.; A. Mitterdorfer, C. Kleinlogel, D. Perednis and L. J. Gauckler, “Fabrication of thin electrolytes for second-generation solid oxide fuel cells,” Solid State Ionics, 131(1-2), 79-96 (2000).
Xing, Y. Z., C. J. Li, C. X. Li and G. J. Yang, “Influence of through-lamella grain growth on ionic conductivity of plasma-sprayed yttria-stabilized zirconia as an electrolyte in solid oxide fuel cells,” J. of Power Sources, 176, 31-38 (2008).
Zhang, C., C. J. Li, G. Zhang, X. J. Ning, C. X. Li, H. L. Liao and C. Coddet, “Ionic Conductivity and Its Temperature Dependence of Atmospheric Plasma-Sprayed Yttria Stabilized Zirconia Electrolyte,” Mater. Sci. Eng. B, 137, 24-30 (2007).
王海軍,熱熔射實用技術,國防工業出版社,北京 (2006)。
吳子健、吳朝軍、曾克裏、王全勝,熱熔射技術與應用,機械工業出版社,北京 (2006)。
蕭威典,熔射覆膜技術,全華科技圖書股份有限公司,臺北 (2006)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊