(3.236.214.19) 您好!臺灣時間:2021/05/10 03:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳學融
研究生(外文):Hsueh-Jung Chen
論文名稱:間歇式進料對先導型流體化床焚化爐中燃燒行為之效應
論文名稱(外文):The Study of Combustion Behavior in A Pilot Scale Fluidized Bed Incinerator with Intermittence Batch Feeding.
指導教授:錢建嵩
指導教授(外文):Chien-Song Chyang
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:172
中文關鍵詞:間歇式流體化床焚化爐
外文關鍵詞:Fluidized Bed IncineratorIntermittence Batch Feeding
相關次數:
  • 被引用被引用:1
  • 點閱點閱:427
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中 文 摘 要
一般大型焚化爐都以連續進料燃燒,鮮少使用間歇式進料燃燒。而在處理特殊的有害廢棄物,如醫療廢棄物,係因具危害性,而不可進行切割、破碎等處理,則必須採取批次或間歇式進料於焚化爐內燃燒,以防有害物質外漏釀成災害,因此本研究選用此方法進行實驗。
本研究於一總高4.6 m,乾舷區內徑0.75 m,燃燒室為0.8 m × 0.4 m之渦旋式流體化床焚化爐(Vortexing Fluidized Bed Incineration, VFBI)中以大型木塊( 10.5 cm × 28 cm)與橡膠球( 9.4 cm)進行研究,採取間歇式進料,模擬不同廢棄物於間歇式進料流體化床焚化爐中對其燃燒行為之影響。並藉由改變操作參數如:投料時間間隔、靜床高與床下計量氧比,探討操作參數對於溫度分佈與氣態污染物NOx跟CO的關係,以瞭解爐內之燃燒情形。
本研究以橡膠模擬人工廢棄物並利用回應曲面法(RSM)進行分析,而以木頭模擬天然廢棄物利用單因子分析以進行對照。結果顯示,爐內溫度會隨進料時間點改變而呈現週期變化,最高溫度出現於飛濺區。橡膠於床內燃燒對於每次投料後爐內床溫會出現兩階段的溫度上升,前者代表揮發物之釋放與燃燒,後者則為固定碳燃燒所帶來之熱量變化。
燃燒橡膠時,經因子效應顯著性檢定顯示,床下計量氧比則對於爐出口CO平均濃度之影響較大;但各操作參數對於爐出口NOx平均濃度之效應則較不明顯,皆低於90%信心水準。燃燒木頭時,爐出口CO平均濃度隨著床下計量氧比增加而呈現先升後降之趨勢。靜床高增加,CO濃度有先降後升之變化。進料時間間隔拉長時,CO濃度亦隨時間間隔增加而上升。改變床下計量比或進料時間間隔對於爐出口NOx影響較不明顯,但在最高之靜床高下,NOx濃度則較高。
以爐出口CO濃度最低之前提下,以橡膠與木頭為進料物之最適化操作條件為:床下風量=3 Nm3/min,二次風風量=1.5 Nm3/min,過量空氣80%,靜床高=38cm,進料時間間隔=1batch/10min,橡膠需操作於床下計量氧比為100%,而木頭則操作於床下計量氧比為140%。
Abstract
It always uses continuous feeding in incinerator. In medical waste combustion which is usually enwrapped in package to prevent hazardous material emitting to the environment. Intermittent batch feeding is applied for this kind feeding material.
In this study, all the experiments were carried out in a pilot scale vortexing fluidized bed incineration of 0.75 m I.D. and 4.6 m in height. The intermittent feeding was used in this investigation. The woodblock (ø 10.5 cm × 28 cm) and Rubber (ø 9.4 cm) were used as feeding material to simulate the artificial and nature waste, also silica sand was employed as the bed material. The effects of various operating conditions on mean bed temperature, mean freeboard temperature, mean CO and NOx emissions were investigated. The operating parameters including under bed stoichiometric ratio, static bed height and interval time of feeding were studied.
The experimental results show that the highest temperature of the incinerator takes place in splash zone. There are two stages increasing in the bed temperature when rubber is as the fuel. It can be attributed to the combustion in the first stage. Then the char burns in the second stage. In rubber combustion, the CO emission increase with under bed stoichiometric ratio or interval time of feeding. But it increase first and then decreasing with static bed height increasing. The NOx emission increase with static bed height increasing. But it also rises first and then decreasing in interval time of feeding increasing. The NOx emission in the 140% under bed stoichiometric ratio is the lowest in different under bed stoichiometric ratio. In the woodblock combustion process, the CO emission increases with interval time of feeding increasing. The CO emission rises first and then decreasing with under bed stoichiometric ratio. But it is opposite tendency in static bed height increasing. In NOx emission, the effect with under bed stoichiometric ratio and interval of feeding times is not significant. It is the highest NOx emission in the highest static bed height. The optimum operating condition for the experiments are primary air=3Nm3/min, second air flow rate=1.5Nm3/min, excess oxygen 80%, static bed height 38cm, 140% under bed stoichiometric ratio for woodblock and 100% under bed stoichiometric ratio for rubber.
中文摘要…………………………………………………………………………I
英文摘要………………………………………………………………………III
誌謝……………………………………………………………………………V
目錄……………………………………………………………VI
圖目錄……………………………………………………………………X
表目錄……………………………………………………………XVII
第一章 緒論…………………………………………………………1
第二章 文獻回顧………………………………………………………2
2-1 間歇式進………………………………………………2
2-1-1 間歇式進料之緣由…………………………………2
2-1-2 間歇式進料之燃燒行為……………….…………………..3
2-2 燃燒現象………...…………...…………………………………….7
2-2-1 流體化床之燃燒現象…………….………………………..9
2-2-2 流體化床中燃燒粒子的破裂與收縮……………..……...12
2-2-3 揮發物釋放與燃燒………………………..……...………...13
2-2-4 焦炭之燃燒………………...……………………………….14
2-3 氮氧化物與CO之生成………………...…..…………..………...15
2-3-1 NOx之生成…………...………………………..…..………..15
2-3-2 CO之生成………………….……………………..………....22
2-4 操作變數之影響………………...…….………………..………...26
2-4-1 床下計量氧比之影響…………..……………….……..…26
2-4-2 靜床高效應………………….……...…………………..…27
第三章 實驗設備及操作方法………………...………………..………..…28
3-1 實驗設備…………….………...……………………………….…28
3-1-1 渦旋式流體化床焚化爐主體……..…...………………..….28
3-1-2 進料系統…………………………………..……………..…33
3-1-3 送風及儀控系統…………………...…………………..…...34
3-1-4 熱能回收與煙道氣處理系統…….....…………………..….37
3-2 燃料與床質性質….……………...……………………………….39
3-2-1 燃料性質與製備……………...……………...…………..…39
3-2-2 床質……………………………………..………………..…41
3-3 操作方法與實驗變數…………………………...…….……….…42
3-3-1 開爐與操作方法………….……………………………..….42
3-3-2操作條件……...…………...…………………...………..….43
3-3-3 採樣方法……………………………………….……..…….44
3-4 數據分析方法……………...……………………………………..45
3-4-1 回應曲面法………………………...…………...……..….46
3-4-2 實驗設計……...……………………………...……...…..….50
第四章 結果與討論…………………………………………….……..……56
4-1 爐內溫度分佈…………………………………………………….56
4-2 回應曲面法分析…………………………………………….……59
4-2-1 操作溫度對爐床平均溫度之影響…...…………..…..…….59
4-2-2 操作變數對乾舷區平均溫度之影響…………......………..67
4-3 操作變數對NOx與CO之影響………………...……………..…74
4-3-1 操作變數對CO之影響……………….………...…..…….74
4-3-2 操作變數對NOx之影響……………..………...…..…….89
4-4 操作變數對平均振幅之影響……….………...…………….……96
4-4-1操作變數對爐床溫度平均振幅之影響….……….……….96
4-4-2 操作變數對乾舷區溫度平均振幅之影響…….......…….104
4-4-3操作變數對CO濃度平均振幅之影響…….…....….111
4-4-4操作變數對NOx濃度平均振幅之影響…….......….117
4-5 操作條件之最適化…………………………………..………….123
第五章 結論與建議………………………………………………….……124
符號說明………………………………………………………………..…….127
參考文獻………………………………………………………….……….….129
附錄 A……………………………………………………………...….….….138
附錄 B……………………………………………………………….....…….140
附錄 C………………………………………………………………….…….151
作著自述..……………………………...……………………………….……. 153

圖 目 錄

Figure 2-1 Overall schematic of solid fuel combustion…………….………….8
Figure 2-2 Events following the admission of a piece of bituminous coal to a hot fluidized bed of sand…………………….................................10
Figure 2-3 Processes involved during the combustion of biomass……...……10
Figure 2-4 Scheme of reaction for prompt NOx……………...………………18
Figure 2-5 Scheme of conversion of fuel-nitrogen…………………………...20
Figure 2-6 A conceptual schematic diagram of the transformation of CO during incineration……………...…………………...……………24
Figure 3-1 Flow diagram of the vortexing fluidized bed incinerator……..….29
Figure 3-2 Schematic diagram of the vortexing fluidized bed incinerator…...30
Figure 3-3 Front view of the windbox…………………………….………….31
Figure 3-4 Side view of the windbox………………………..……………….32
Figure 3-5 Schematic diagram of combustion chamber………...……………32
Figure 3-6 Intermittence batch feeding system………………………………34
Figure 3-7 Top view for the tangential secondary air injection in the vortexing fluidized bed incinerator.………………………...……………….36
Figure 3-8 Schematic diagram of nitrogen system…………….…………......36
Figure 3-9 Shape of the fuel……...…………………...………...……………39
Figure 3-10 Size distribution of the bed material…………...…………………41
Figure 3-11 The Umf experimental result of the bed material..…………...……42
Figure 3-12 A Three-factor-and-three-level box-behnken design……………..47
Figure 4-1 Time history of temperature distribution within in the vortexing fluidized bed incinerator (EA=80%, 2ndair=1.5Nm3/min, Qbed=3Nm3/min, Cb=120%, Hb=38cm, F=1batch/15min, fuel:wood)………………………………………………………...56
Figure 4-2 Time history of temperature distribution within the vortexing fluidized bed incinerator (EA=80%, 2ndair=1.5Nm3/min, Qbed=3Nm3/min , Cb=120%, Hb=38cm, F=1batch/15min, fuel: rubber)…………………………………………………………….57
Figure 4-3 A typical behavior of mass loss of a wood sample during pyrolysis and char combustion.…………………..…………………………58
Figure 4-4 A typical behavior of mass loss of a rubber sample during pyrolysis and char combustion.………………………..………..…..………58
Figure 4-5 Main effect of the mean bed temperature on each factor with any other two factors fixed at center level in different under bed stoichiometric oxygen ratio.(Wood:Hb=38cm, F=1batch/10min, EA:80%, Qbed=3Nm3/min , Q2nd=1.5 Nm3/min )…………………63
Figure 4-6 Main effect of bed temperature on each factor with any other two factors fixed at center level in the different static bed height. (Wood:F=1batch/10min, Cb=120%, EA:80%, Qbed=3Nm3/min, Q2nd=1.5 Nm3/min )…………...………………………..…………65
Figure 4-7 Main effect of bed temperature of on each factor with any other two factors fixed at center level in the different interval time of feeding. (Wood:Hb=38cm, Cb=120%, EA:80%, Qbed=3Nm3/min, Q2nd=1.5 Nm3/min )…………………………………………..………….….66
Figure 4-8 Main effect of mean freeboard temperature on each factor with any other two factors fixed at center level in the different under bed stoichiometric oxygen ratio. (Wood:Hb=38cm, F=1batch/10min, EA:80%, Qbed=3Nm3/min, Q2nd=1.5 Nm3/min )………………...70
Figure 4-9 Main effect of mean freeboard temperature on each factor with any other two factors fixed at center level in the different static bed height.(Wood:F=1batch/10min,Cb=120%, EA:80%, Qbed=3Nm3/min, Q2nd=1.5 Nm3/min )……………….……………72
Figure 4-10 Main effect of mean freeboard temperature on each factor with any other two factors fixed at center level in the different interval time of feeding. (Wood:Hb=38cm, Cb=120%, EA:80%, Qbed=3Nm3/min, Q2nd=1.5 Nm3/min )……………………………………………….73
Figure 4-11 Main effect of mean CO emission on each factor with any other two factors fixed at center level in the different under bed stoichiometric oxygen ratio.(Wood:Hb=38cm, F=1batch/10min, EA:80%, Qbed=3Nm3/min, Q2nd=1.5 Nm3/min )…………………….………78
Figure 4-12 The picture of particle in the combustion chamber……….………79
Figure 4-13 Main effect of mean CO emission on each factor with any other two factors fixed at center level in the different static bed height. (Wood:F=1batch/10min, Cb=120%, EA:80%, Qbed=3Nm3/min, Q2nd=1.5 Nm3/min )…………………………...…………………..80
Figure 4-14 Main effect of mean CO emission on each factor with any other two factors fixed at center level in the different interval time of feeding. (Wood:Hb=38cm, Cb=120%, EA:80%, Qbed=3Nm3/min, Q2nd=1.5 Nm3/min )..………………………..………………………………81
Figure 4-15 Time history of CO emission of rubber in the different under bed stoichiometric oxygen ratio. (Hb=38cm, EA:80%, 1batch/10min, Qbed =3Nm3/min, Q2nd=1.5 Nm3/min )…………………………….83
Figure 4-16 Time history of CO emission of wood in the different under bed stoichiometric oxygen ratio. (Hb=38cm, EA:80%, 1batch/10min, Qbed=3Nm3/min, Q2nd=1.5 Nm3/min)……………………………84
Figure 4-17 Time history of CO emission of rubber in the different static bed height. (Cb=120%, EA:80%, 1batch/10min, Qbed=3Nm3/min, Q2nd=1.5 Nm3/min )……………………………………………….85
Figure 4-18 Time history of CO emission of wood in the different static bed height. (Cb=120%, EA:80%, 1batch/10min, Qbed=3Nm3/min, Q2nd=1.5 Nm3/min )………………………………………………86
Figure 4-19 Time history of CO emission of rubber in the different interval time of feeding. (Cb=140%, EA:80%, Qbed=3Nm3/min, Q2nd=1.5 Nm3/min )…………………………………………………………87
Figure 4-20 Time history of CO emission of wood in the different interval time of feeding. (Cb=120%, EA:80%, Qbed=3Nm3/min, Q2nd=1.5 Nm3/min )…………………………………………………………88
Figure 4-21 Main effect of mean NOx emission on each factor with any other two factors fixed at center level in the different under bed stoichiometric oxygen ratio. (Wood:Hb=38cm, F=1batch/10min, EA:80%, Qbed=3Nm3/min, Q2nd=1.5 Nm3/min )……………….....91
Figure 4-22 Main effect of mean NOx emission on each factor with any other two factors fixed at center level in the different static bed height. (Wood:F=1batch/10min, Cb=120%, EA:80%, Qbed=3Nm3/min, Q2nd=1.5 Nm3/min )…………………………..…...………………92
Figure 4-23 Main effect of mean NOx emission on each factor with any other two factors fixed at center level in the different interval time of feeding. (Wood:Hb=38cm, Cb=120%, EA:80%, Qbed=3Nm3/min, Q2nd=1.5 Nm3/min )...…………..…………………………………94
Figure 4-24 NOx concentration of rubber in the different time of interval feeding. ( Hb=38cm, C0=120%, EA:80%, Qbed=3Nm3/min, Q2nd=1.5 Nm3/min )………………..………………………...……………...95
Figure 4-25 Main effect of the mean amplitude of bed temperature on each factor with any other two factors fixed at center level in the different under bed stoichiometric oxygen ratio. (Wood:Hb=38cm, F=1batch/10min, EA:80%,Qbed=3Nm3/min,Q2nd=1.5 Nm3/min)..100
Figure 4-26 Main effect of the mean amplitude of bed temperature on each factor with any other two factors fixed at center level in the different static bed height . (Wood:F=1batch/10min, Cb=120%, EA:80%, Qbed=3Nm3/min, Q2nd=1.5 Nm3/min )………………101
Figure 4-27 Main effect of the mean amplitude of bed temperature on each factor with any other two factors fixed at center level in the different interval time of feeding. (Wood:Hb=38cm, Cb=120%, EA:80%, Qbed=3Nm3/min, Q2nd=1.5 Nm3/min )………….……103
Figure 4-28 Main effect of the mean amplitude of freeboard temperature on each factor with any other two factors fixed at center level in the different under bed stoichiometric oxygen ratio.(Wood:Hb=38cm, F=1batch/10min,EA:80%,Qbed=3Nm3/min,Q2nd=1.5 Nm3/min)...108
Figure 4-29 Main effect of the mean amplitude of freeboard temperature on each factor with any other two factors fixed at center level in the different static bed height . (Wood:F=1batch/10min, Cb=120%, EA:80%, Qbed=3Nm3/min, Q2nd=1.5 Nm3/min )….…………..…109
Figure 4-30 Main effect of the mean amplitude of freeboard temperature on each factor with any other two factors fixed at center level in the different interval time of feeding. (Wood:Hb=38cm, Cb=120%, EA:80%, Qbed=3Nm3/min, Q2nd=1.5 Nm3/min )………………....110
Figure 4-31 Main effect of the mean amplitude of CO emission on each factor with any other two factors fixed at center level in the different under bed stoichiometric oxygen ratio.(Wood:Hb=38cm, F=1batch/10min, EA:80%,Qbed=3Nm3/min,Q2nd=1.5 Nm3/min ).113
Figure 4-32 Main effect of the mean amplitude of CO emission on each factor with any other two factors fixed at center level in the different static bed height.(Wood:F=1batch/10min, Cb=120%, EA:80%, Qbed=3Nm3/min, Q2nd=1.5 Nm3/min )………………...…………114
Figure 4-33 Main effect of the mean amplitude of CO emission on each factor with any other two factors fixed at center level in the different interval time of feeding. (Wood:Hb=38cm, Cb=120%, EA:80%, Qbed=3Nm3/min, Q2nd=1.5 Nm3/min )…………………………...116
Figure 4-34 Main effect of the mean amplitude of NOx emission on each factor with any other two factors fixed at center level in the different under bed stoichiometric oxygen ratio. (Wood:Hb=38cm, F=1batch/10min,EA:80%,Qbed=3Nm3/min,Q2nd=1.5 Nm3/min)...119
Figure 4-35 Main effect of the mean amplitude of NOx emission on each factor with any other two factors fixed at center level in the different static bed height.(Wood:F=1batch/10min,Cb=120%,EA:80%, Qbed=3Nm3/min, Q2nd=1.5 Nm3/min )………………..…….……120
Figure 4-36 Main effect of the mean amplitude of NOx emission on each factor with any other two factors fixed at center level in the different interval time of feeding. (Wood:Hb=38cm, Cb=120%, EA:80%, Qbed=3Nm3/min, Q2nd=1.5 Nm3/min )…………………………...122





表目錄

Table 2-1 Compared with previous investigations of feeding type for combustion behavior………………………………………4
Table 2-2 Equilibrium constants for the formation of NO and NO2…….22
Table 3-1 The properties of fuel……………………………………………40
Table 3-2 The experimental conditions……………………………………44
Table 3-3 Coded factors, coded levels and corresponding operating parameters and values……………………………………………51
Table 3-4 Three-factor-three level box-behnken experimental design…52
Table 4-1 Analysis of variance for the whole quadratic model for the mean bed temperature…………………………………………………60
Table 4-2 Effect examinations of the coded factors for the mean bed temperature……………………………………………………60
Table 4-3 Analysis of variance for the whole quadratic model for the mean bed temperature(Modified)………………………………………61
Table 4-4 Effect examinations of the coded factors for the mean bed temperature(Modified)…………………………………………62
Table 4-5 Analysis of variance for the whole quadratic model for the mean freeboard temperature…………………………………………67
Table 4-6 Effect examinations of the coded factors for the mean freeboard temperature……………………………………………………68
Table 4-7 Analysis of variance for the whole quadratic model for the mean freeboard temperature(Modified)……………………………….69
Table 4-8 Effect examinations of the coded factors for the mean freeboard temperature(Modified)…………………………………………69
Table 4-9 Analysis of variance for the whole quadratic model for the mean CO emission.…..…………….…………………………..………..74
Table 4-10 Effect examinations of the coded factors for the mean CO emission………………..……………...………………………….75
Table 4-11 Analysis of variance for the whole quadratic model for the mean CO emission(Modified)………………………………..…………76
Table 4-12 Effect examinations of the coded factors for the outlet mean CO concentration(Modification)……………….……………………..76
Table 4-13 Analysis of variance for the whole quadratic model for the outlet mean NOx concentration…………………….…………………...89
Table 4-14 Effect examinations of the coded factors for the outlet mean NOx concentration……………………………...………………………89
Table 4-15 Analysis of variance for the whole quadratic model for the mean amplitude of bed temperature…………………………………….97
Table 4-16 Effect examinations of the coded factors for the mean amplitude of bed temperature………………………………….………………..97
Table 4-17 Analysis of variance for the whole quadratic model for the mean amplitude of bed temperature(Modified)…………………...…….98
Table 4-18 Effect examinations of the coded factors for the mean amplitude of bed temperature(Modified)……………………………….………99
Table 4-19 Analysis of variance for the whole quadratic model for the mean amplitude of freeboard temperature……..………….…………104
Table 4-20 Effect examinations of the coded factors for the mean amplitude of freeboard temperature……………………………….…………..105
Table 4-21 Analysis of variance for the whole quadratic model for the mean amplitude of freeboard temperature(Modified)………………....106
Table 4-22 Effect examinations of the coded factors for the mean amplitude of freeboard temperature(Modified)……………………………......106
Table 4-23 Analysis of variance for the whole quadratic model for the mean amplitude of CO emission.……………………………….……...111
Table 4-24 Effect examinations of the coded factors for the mean amplitude of CO emission.………………..…………..……………………….111
Table 4-25 Analysis of variance for the whole quadratic model for the mean amplitude of NOx emission.…………………………………….117
Table 4-26 Effect examinations of the coded factors for the mean amplitude of NOx emission.……………………………………………..…117
Table 4-27 The optimum operation conditions of mean COmin emission..….123
參考文獻
Anthony, E. J., “Fluidized Bed Combustion of Alternative Solid Fuels; Status Successes and Problems of the Technology,” Progr. Energy Combust. Sci. 21, 239-268 (1995).
Atimtay , T. Aysel and H. Topal, “Co-combustion of olive cake with lignite coal in a circulating fluidized bed,’’ Fuel 83, 859-867 (2004)
Affolter, J., “Batch Pyrolysis of Small Pieces of Organic Material and Solid Wastes inRotating-Drum Fluidized-Bed Pyrolysis Reactor,”. Eur. Pat. Appl. EP 1314770 A1 20030528, 14 pp (2003).
Atimtay , T. Aysel and K. Burçak,“ Co-combustion of peach and apricot stone with coal in a bubbling fluidized bed,’’ Fuel Process. Technol. 89, 183-197 (2008)
Abelha, P., I. Gulyurtlu and I. Carbrita, “Release of nitrogen precursors from coal and biomass residues in a bubbling fluidized bed,” Energy and Fuels 22, 363-371 (2008).
Bowman, C. T., “Kinetics of Pollutant Formation and Destruction in Combustion,” Pro. Energy. Combust. Sci. 1 ,33-45 (1975).
Beer, J. M. and G. B. Martin, “Application of Advanced Technology for NO Control: Alternate Fuels and Fluidized Bed Coal Combustion,” AIChE Sym. Ser. 74(175), 93-114 (1978).
Broughton, J. and J. R. Howard, “Combustion of Coal in Fluidized Beds,” in “Fluidized Beds Combustion and Applications,” J. R. Howard, Ed. Applied Sci. Publishers, 37-77 (1983).
Bruce, St. J., “Analysis and Comparison of Five Generic FBC Systems,” in “Evaluating the Fluidized Bed Combustion Option,” T. S. Richard, Ed., Government Inst. Inc., Maryland., 67-80 (1984).
Bergsma F., “Abatement of NO from coal combustion. Chemical Background and Prisent State of Technical Development,” Ind. Eng.Chem. Process 24(1), 1-7 (1985)
Bergsma, F., “Abatement of NOx from Coal Combustion. Chemical Background and Present State of Technical Development,” Ind. Eng. Chem. Process Des. Dev. 24(1), 1-7 (1985).
Boateng, A. A., L. T. Fan, W. P. Walawender, C. S. Chee and S. M. Chern, “Kinetics of Rice Hull Char Burnout in a bench-Scale Fluidized Bed Reactor,” Chem. Eng. Comm. 113, 117-131 (1992).
Berger, A. and G. Rotzoll, “Kinetics of NO Reduction by CO on Quartz Glass Surface,” Fuel 74(3), 452-455 (1995).
Baron, J., E. M. Bulewicz, S. Kandefer, M. Pilawska, W. Zukowski and A. N. Hayhurst, “The combustion of polymer pellets in a bubbling fluidised bed,” Fuel 85, 2494-2508 (2006).
Borah R.C., P. Ghosh and P. G. Rao, “Devolatilization of coals of North-Eastern India under fluidized bed conditions in oxygen-enriched air,” Fuel Process. Technol. 89, 1470-1478 (2008).
Chirone , R., L. Massimilla and Salatino P., “Comminution of carbons in fluidized bed combustion,” Pro. Energy. Combust. Sci. 17, 297-326 (1991)
Chirone ,R. and L. Massimilla, “Primary fragmentation in fluidized bed combustion of anthracites, ” Powder Technology 64, 249-258 (1991)
Chan, Y. M., “Effect of Incineration Temperature on CO Emission during Sludge Incineration in CFBI,” Journal of the Chinese Institute of Environmental Engineering 4, 267-274 (1994).
Courtemanche B. and Y. A. Levendis ,“A laboratory study on the NO, NO2,SO2,CO and CO2 emission from the combustion of pulverized coal, municipal waste plastics and tires,” Fuel 77, 183-196 (1998)
Clzhang, D., B. Tmi , X. Shen and B. Feng, “Refuction of N2O and NO emissions by co-combustion of coal and biomass,” Journal of the Institute of Energy 75, 81-84 (2002)
Demirbas, A., “Biomass co-firing for coal-fired boilers,” Energy Exploration and Exploitation 21, 269-278 (2003)
Fenimore, C. P. and J. Moore, “Quenched Carbon Monoxide in Fuel-Lean Flame Gased,” Combust. Flame. 22, 343-351 (1974).
Furusawa, T., T. Honda, J. Takano and D. Kunii, “Abatement of Nitric Oxide Emission in Fluidized Bed Combustion of Coal,” Jpn. J. Chem. Eng. 11(5), 377-384 (1978).
Flagan, R. C. ,and J. H. Seinfeld, “Fundamentals of Air Pollation Engineering,” Prentice-Hall, Englewood Cliffs, N.J. (1998)
Griwatz, I. and G. Rotzoll, “Intrinsic Fractional Conversion of Char-Nitrogin into NO in Fluidized Bed Combustion of Coal Char,” Proc. 2nd Inter. Symp. on Coal Combust. Sci. Tech, 409-416 (1991).
Haynes, B. S., D. Iverach and N. Y. Kirov, “The Behavior of Nitrogen Species in Fuel Rich Hydrocarbon Flames,” in 15th Symposium (International) on Combust., The Combust. Institute, Pittsburgh, PA, 1103-1112 (1975).
Highley, J., “The Development of Fluidized Bed Combustion”, Environ. Sci. Trchnol. 14(3), 270-275 (1980).
Highley, J., “Development of Fluidized-Bed Combustion for Industry”, Fluid. Bed Combust. Appl. Technol. Int. Symp. 1st, I/21-I/61 (1984).
Houser, T. J., M. E. Mcarville and Gu. Z. Ying, “Nitric-Oxide Formation from Fuel Nitrogen Model-Compound,” Fuel, 67, 642-650 (1988).
Hayhurst, A. N. and R. F. Tucker, “The Combustion of Carbon Monoxide in a two-Zone Fluidized Bed,” Combust. Flame. 79, 175-189 (1990).
Hart, J. R., “Transient Puffs of Trace Organic Emissions from a Batch-fed Waste Propellant Incineration,” Chemosphere 42, 559-569 (2001).
Jung, K. and R. D. La Nauza, “Particle Size and Density Changes During Fluidized-Bed Combustion,” Can. J. Chem. Eng. 61, 262-264 (1983).
Jangsawng, W., B. Fungtammasan and S. Kerdsuwan, “Effect of Operating Parameters on the Combustion of Medical Waste in a Controlled Air Incineration,” Energy Convers. Manage. 46, 3137-3149 (2005)
Jangsawng, W., B. Fungtammasan and S. Kerdsuwan, “Effect of secondary air supply rate on the combustion of volatile gas in a controlled-air incineration,” Int. J. Energy Res. 29,549-556 (2005)
Jozef, M., J. Annus, K. Holikova and L. Jelemensky, “Investigation of tyres and coal combustion in a laboratory scale fluidized bed combustor, ” Petroleum and Coal 47, 10-25 (2005)
Juma, M., Z. Korenova, J. Marjos, L. Jelemensky and M. Bafrnec, “Experimental study of pyrolysis and combustion of scrap tire, ” Polym. Adv. Technol. 18, 144-148 (2007)
Kobayashi N., Y. Hu, S. Naito and M. Hasatani, “CO2 NOx and SO2 emission from the combustion of coal with high oxygen concentration gases, ” Fuel 79, 1925-1932 (2000)
La Nauze, R. D., “Combustion in Fluidized Beds”, in Advanced Combustion Methods, F. J. Weinberg., Ed., Academic Press: London, Ch.1 (1986).
Lohuis, J. A. O., P. J. J. Tromp and J. A. Moulijn, “Parametric Study of N2O Formation in Coal Combustion,” Fuel 71, 9-13 (1992).
Leckner, B. and M. Karlsson, “Gaseous emission from circulating fluidized bed combustion of wood, ” Biomass and Bioenerg. 14(5) , 379-389 (1993)
Levendis Y. and A. B. Courtemanche, “A laboratory study on the NO,NO2,SO2,COandCO2 emission from the combustion of pulverized coal, municipal waste plastics and tires, ” Fuel 77,183-196(1998)
Liu, D.C., T. Mi, Shen B.X. and B. Feng, “Reducing N2O Emission by Co-Combustion of Coal and Biomass,” Energy and Fuels 16, 525-526 (2002)
Matsui, K. and H. Tsuji, “An Aerothermochemical analysis of solid carbon combustion in the stagnation flow accompanied by homogeneous CO oxidation,” Combustion and Flame. 70, 79-99 (1987).
Miller, J. A. and C. T. Bowman, “Mechanism and Modeling of Nitrogen Chemistry in Combustion,” Prog. Energy Combust. Sci. 15, 287-338 (1989).
Mastral A. M., M. S. Callen and T. Garcia, “Polyaromatic environmental impact in coal-tire blend atmospheric fluidized bed (AFB) combustion,” Energy and Fuels 14, 164-168 (2000)
Ming-Yen Wey, Chiou-Liang Lin and Shr-Da You, “Effect of concentration of bed material on combustion efficiency during incineration,” Energy 29, 125-136 (2004)
McIlveen-Wright D. R., Y. Huang, S. Rezvani and Y. Wang, “A technical and environmental analysis of co-combustion of coal and biomass in fluidized bed technologies,” Fuel 86, 2032-2042 (2007)
Nack, H., K. D. Kiang, K. T. Liu, K. S. Murthy, G. R. Smithson, J. R. and J. H. Oxley, “Fluidized-Bed Combustion Review,” in “Fluidization Technology,” D. L. Keairns, Ed., 2, 339-378(1976).
Nelson, P. F. , M. S. Kelly and M. J. Wornat, “Conversion of Fuel Nitrogen in Coal Volatiles to NOx Precursors under Rapid Heating Conditions,” Fuel 70, 403-407 (1991).
Niessen, W. R., “Combustion and Incineration Processes,” Marcel Dekker. inc., Monticello, New york (1994)
Ngo S. P. and M. Rozainee, “Effect of static bed height on the combustion of rice husk in a fluidized bed combustor,” Proceeding of 18th International Conference on fluidized bed combustion (2005)
Okasha, F. M., S. H. El-Emam and H. K. Mostafa, “The Fluidized Combustion of a Heavy Liquid Fuel,” Exp. Therm. Fluid Sci. 27, 473-480 (2003).
Oka, S. N. and E. J. Anthony, “Fluidized Bed Combustion,” Marcle Dekker, Inc. 318-319 (2004)
Pillai, K. K. “Burning Rates of Coal in Fluidized-Bed Combustion,” Fuel 60, 163-164 (1981a)
Pillai. K. K. “The Influnce of Coal Type on Devolatilization and Combustion in Fluidized Beds,” J. Inst. Energy 54, 142-150 (1981b).
Richard, T. S. and P. E. President, “Fundamentals of FBC Utilization Including Cogeneration”, in “Evaluating the Fluidized Bed Combustion Option,” T. S. Richard, Ed., Government Inst. Inc., Maryland., 12-29 (1984).
Stubington, J. F., “The Role of Coal Volatiles in Fluidized Bed Combustion,” J. Inst. Energy 53, 191-195 (1980).
Shaw, J. T., “Emissions of Nitrogen Oxides in Fluidized-Bed Combustion and Applications,” J. R. Howard, Applied Science Publishers, London and New York, Chap. 6, 227-260 (1983).
Svoboda, K. and M. Hartman, “Formation of NOx in Fluidized Bed Combustion of Model Mixtures of Liquid Organic Compounds Containing Nitrogen,” Fuel 70, 865-871 (1991).
Safey, H. M. and I. S. Taha, “Experimental Study on a Bench-Scale, Batch-type fluidized-bed combustion for energy production from waste-derived fuels,” Energy 17(4), 331-338 (1992)
Song, X., A. Hase and A. Laukkarinen, “The Effect of Oxygen Enriched Burning Hazardous Waste Incineration,” Chemosphere 24, No.3, 249-259 (1992).
Sang Done Kim, J. R. Jim and J. S. Lee, “Combustion characteristics of shredded waste tires in a fluidized bed combustor, ” Energy 19, 845-854 (1994)
Skreiberg Ø., P. Glarborgb, J. Anker and D. Kim,” Kinetic NO, modeling and experimental results from single wood particle combustion,” Fuel 76(7), 671-682 (1997).
Sanger, M., J. Werther and T. Ogada, “NOx and N2O emission characteristics from fluidized bed combustion of semi-dried municipal sewage sludge,” Fuel 80, 167-177 (2000)
Shimizu, T., M. Satoh, K. Sato, M. T., and M. Inagaki, “Reduction of SO2 and N2O Emissions without Increasing NOx Emission from a Fluidized Bed Combustor by Using Fine Limestone Particles,” Energy Fuels 16 (1), 161 -165 (2002).
Shen, B. X., T. Mi, D.C. Liu, B. Feng, Q. Yao and F. Winter, “N2O emission under fluidized bed combustion condition,” Fuel Process. Technol. 84, 13-21 (2003)
Shin, D., S. Jang and J. Hwang, “Combustion characteristics of paper mill sludge in a lab-scal combustor with internally cycloned circulating fluidized bed,” Waste Management 25, 680-685 (2005)
Turner, D. W. and C. W. Siegmund, “Influence of Combustion Modification and Fuel Nitrogen Content on Nitrogen Oxides Emissions from Fuel Oil Combustion,” Combustion 44, 21-30 (1973)
Turnbull, E. and J. F. Davidson, “Fluidized Combustion of Char and Volatiles form Coal,” AIChe J. 30, 881-889 (1984).
Topal H., T. A. Aysel and A. Durmaz, “Olive cake combustion in a circulating fluidized bed,” Fuel 23, 1049-1056 (2003)
Wark, K. and C. F. Warner, “Air Pollution: Its Origin and Control,” 2nd edition, Harper Collins Publishers, USA (1981)
Wood, Steohen C., “Select the right NOx control technology,” Chem. Eng. Pro., 32-38 (1994)
Yates, J. G. , M. MacGillivray and D. J. Cheesman, “Coal Devolatilization in a Fluidized Bed Combustors,” Chem. Eng. Sci. 35, 2360-2361 (1980).
Yates, J. G., “Fundamentals of Fluidized-bed Chemical Process,” Thetford Press, Norfolk (1983).
Yahya H. K., “Batch Combustion of Oil Shale Particles in a Fluidized Bed Reactor,” Fuel Process. Technol. 86, 691-706 (2005).
Zelodvich, Y. B., P. Y Sadovinikov and D. A. Frank-Kamenetskii, “Oxidation of Nitrogen in Combustion,” M. Shelef, Tran., Academy of USSR, Institute of Chemical Phsics. Moscow-Leningrad (1947).
Zhu S. and S. W. Lee, “Co-combustion performance of poultry wastes and Natural Gas in the Advance Swirling Fluidized Bed Combustion,” Waste Manag. 25, 511-518 (2005).
王國樑,《渦旋式流體化床燃燒爐之性能測試》,私立中原大學化學工程學系碩士論文,(1997)。
古正彬,《大型物於流體化床焚化爐中之燃燒特性》,私立中原大學化學工程學系碩士論文,(2007)。
李祿興,《高揮發性物質於流體化床燃燒爐中之燃燒:一氧化氮與氧化亞氮排放》,私立中原大學化學工程學系碩士論文,(2000)。
陳文輝,《流體化床燃燒廢輪胎之研究》私立中原大學化學工程學系碩士論文,(1988)。
章裕民,《焚化處理技術》文京圖書有限公司,(1990)
許銘章,《渦旋式流體化床燃燒廢輪胎之研究》私立中原大學化學工程學系碩士論文,(1988)。
卿山,王華,吳楨芬,胡建杭,王世博,《醫療廢棄物燃燒動力學研究》,燃料科學與技術,第12卷,第5卷,457-462,(2006)。
張君正、張木彬,《氮氧化物生成機制與控制技術之探討》,工業污染防治,第50期,(1994)。
張東平、李曉東、嚴建華、池涌、岑可法,《垃圾在流化床中焚燒NO排放特性研究》,燃料化學學報,第31卷,第4期,322-327,(2008)
顏維生,《流體化床燃燒爐中醋酸對氮氧化物排放之效應》,私立中原大學化學工程學系碩士論文,(2008)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔