(3.227.249.155) 您好!臺灣時間:2021/05/07 06:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳志文
研究生(外文):Zhi-Wen Chen
論文名稱:以流線電位法分析薄膜過濾程序之結垢
論文名稱(外文):Membrane Fouling Analysis Using Streaming potential Method
指導教授:莊清榮莊清榮引用關係
指導教授(外文):Ching-Jung Chuang
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:132
中文關鍵詞:流線電位薄膜結垢
外文關鍵詞:Streaming potentialMembrane Fouling
相關次數:
  • 被引用被引用:3
  • 點閱點閱:365
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在薄膜過濾程序中所形成之膜結垢,會造成濾速嚴重衰減及選擇穿透性下降,而在密閉過濾系統中,以往僅能由濾速之衰減幅度判定膜結垢阻力,但膜結垢變化是連續的,如何於過濾程序中即時監控膜結垢程度是主要探討之課題。
目前欲藉由電動量測監控膜結垢已有數位學者提出,本研究以電動現象之量測,探討薄膜表面有濾餅附著及膜孔內有結垢發生時之垂直膜面流線電位與膜結垢之關係,並理論分析過濾過程中,其電動現象與濾餅成長及膜孔內結垢程度之關係。
結果指出,當濾餅過濾之操作條件為粒子電性較低之pH值,由於濾餅形成速度較快,可降低較小粒子進入膜材內部之機率,避免膜材阻塞,因此過濾初期,低pH值操作條件之通量衰減幅度較低。
當溶液pH值調整至接近粒子等電點進行過濾時,濾餅對整體流線電位之影響較小,整體之流線電位會隨著濾餅厚度增加,造成膜材之透膜壓差下降,而使流線電位呈現不斷遞減趨勢。提高粒子帶電性時,當過濾初期開始有濾餅附著時,流線電位會隨著濾餅層厚度增加而大幅度遞增或遞減,等濾餅層堆積至一定厚度時,流線電位變化幅度下降,並趨近於一定值,以理論進行解析時也有相同趨勢,但定量上則略有差異,其適用之範圍為濾餅厚度小於0.8 mm。
此外過濾時之粒子電性大小會影響膜內結垢程度,接近等電點之粒子容易吸附於膜孔壁上,並造成通量大幅下降,當提高pH值使粒子電性上升時,粒子較不易吸附於孔壁上,因此通量衰減幅度較低。在接近粒子等電點時進行過濾,所得之膜材阻力變化幅度較大,其後隨著pH值上升膜材阻力變化幅度漸小;而MCE膜材為網狀交錯結構,所補捉到之粒子數量大於直通狀PC膜材,因此所捕捉到之粒子量較多,MCE膜材過濾所造成之膜阻變化量較大。’
以垂直膜面流線電位偵測膜孔中結垢情形,所得到的流線電位變化和膜材與粒子的帶電性有關,當粒子帶電性與膜材相比之下較偏向負值,不論膜材與粒子電性帶負電性或正電性,過濾時之流線電位變化將呈現遞減趨勢,若粒子電性與膜膜材電性相比之下偏向正值,流線電位變化會有遞增趨勢。另外在膜孔過濾時,低pH值容易形成濾餅,使整體流線電位便會受到較大影響而與理論產生不同之趨勢,除此之外,高濃度過濾時所得之流線電位變化與理論差異較大,故此法僅適用於濃度極低之稀薄溶液。
以垂直膜面流線電位法分析膜結垢時,不論是膜面結垢或膜孔中結垢,所得到的流線電位變化大小,會受膜材與粒子所帶電性的差距影響,若膜材與粒子電性接近,則所得的流線電位變化極小,不易觀測。
Membrane fouling is a important factors that limiting the application of membrane filtration. Membrane fouling usually lead to a decrease tendency of filtration rate and sometime also leads an decrease tendency rejection of targeted component in selective separation. In a closed filtration chamber, the degree of fouling is generally determined based on the decline of the permeate flux. Since the rate of fouling is time dependent, how to on-line monitoring the fouling is very important for membrane processes.

Several studies have applied the electrokinetic method to characterize membrane fouling. The aim of this study is use electrokinetic method to analysis the relationship between streaming potential and membrane fouling. Theoretical models to relate the streaming potential to the degree of fouling and filtration rate in the membrane filtration process are developed and compared with the experimental data.

  The result of constant pressure cake filtration is the growth rate of cake is more fast, when the zeta potential of particle is closed isoelectric point. The cake is reduce probability of the smaller particle into membrane pore. That will avoid obstruct on membrane pore. The decline of flux on low pH value condition is smaller at initial filtration.

  When the pH value adjusted to isoelectric point of particle. The effect of cake on total streaming potential is smaller. Total streaming potential value will increase with thickness of cake increase. That lead to transmembrane pressure decrease and let streaming potential show a continuously decrease tendency. When rise the zeta potential of particle and cake start growth at initial filtration, streaming potential show a decrease or increase tendency with thickness of cake increase. When the thickness of cake growth to 0.8 mm, the range for change of streaming potential is reduce and trend to a value. Theoretical prediction under the conditions is obtain same result. But there are some difference exist between theoretical prediction and experiment in quantitative analysis. The limit of use streaming potential method to analysis thickness of cake is thickness of cake under 0.8 mm.

When we use streaming potential method to detect degree of fouling in membrane pore. The change of streaming potential is related to zeta potential of membrane and particle. If the zeta potential of particle is tend to negative value then membrane, the change of streaming potential is tend to decrease no matter the zeta potential of membrane and particle is negative positive value. The cake easy to produce on membrane surface when the pH value is lower and high concentration under membrane pore filtration. That will effect tendency of streaming potential lead to make some difference between experiment and theoretical. The streaming potential method is suitable for use diluted solution filtration.

As we use streaming potential method to detect membrane cake fouling or membrane pore fouling. The difference of zeta potential between membrane and particle will effect the value of streaming potential. If the zeta potential of membrane is closed to the zeta potential particle, the change of streaming potential will very smaller that is difficulty observe.
目錄

中文摘要 …………………………………………………………………… Ⅰ
英文摘要 …………………………………………………………………… Ⅲ
誌謝 ………………………………………………………………………… Ⅴ
目錄 ………………………………………………………………………… Ⅵ
圖表索引 …………………………………………………………………… Ⅸ
圖目錄 ……………………………………………………………………… Ⅸ
表目錄 ……………………………………………………………………… XI

第一章 緒論………………………………………………………………… 1
第二章 文獻回顧…………………………………………………………… 4
2-1 通量法………………………………………………………… 4
2-2 光學法………………………………………………………… 4
2-3 聲波法………………………………………………………… 6
2-4 電動法………………………………………………………… 8
2-4-1 電滲透原理………………………………………… 10
2-4-2 流線電位原理……………………………………… 11
2-4-3 電動現象應用於偵測膜結垢……………………… 12
2-4-4 電動現象應用於膜結垢之清洗程序……………… 15
第三章 理論背景 ………………………………………………………… 18
3-1 電滲透………………………………………………………… 18
3-2 流線電位……………………………………………………… 24
3-2-1 膜孔(孔徑均一)之流線電位 ……………………… 24
3-2-2 膜面有濾餅附著時之電動關係式………………… 25
3-3 膜阻之計算…………………………………………………… 30
3-4 膜內結垢之界達電位與膜阻關係式………………………… 31
3-4-1膜孔壁完全被粒子覆蓋之電動關係式…………… 31
3-4-2膜孔壁上部分被粒子均勻覆蓋之電動關係式…… 33
第四章 實驗設備及步驟…………………………………………………… 38
4-1 實驗材料……………………………………………………… 38
4-2 實驗裝置……………………………………………………… 40
4-2-1 膜過濾系統………………………………………… 40
4-2-2 膜孔流線電位量測系統…………………………… 40
4-2-3 膜阻量測系統……………………………………… 41
4-3 實驗儀器……………………………………………………… 42
4-4 實驗步驟……………………………………………………… 50
4-4-1 膜過濾實驗………………………………………… 50
4-4-2 膜內結垢之流線電位實驗………………………… 51
4-4-3 膜孔流線電位之量測……………………………… 52
4-4-3 膜阻量測實驗……………………………………… 53
第五章 結果討論…………………………………………………………… 54
5-1膜面結垢與流線電位之關係………………………………… 54
5-1-1 進料溶液pH值對其通量衰減率之影響………… 54
5-1-2 進料溶液pH值對濾餅層成長速率之影響……… 62
5-1-3 進料pH值與流線電位值之關…………………… 65
5-2膜內結垢與流線電位之關係………………………………… 76
5-2-1 通量隨膜內結垢率之變化………………………… 76
5-2-2 過濾後膜材阻力之比較…………………………… 84
5-2-3 過濾程序後膜材電性之變化……………………… 92
5-2-4 流線電位隨膜內結垢之變化……………………… 96
第六章 結論………………………………………………………………… 106
符號說明 …………………………………………………………………… 109
參考文獻 …………………………………………………………………… 114
附錄 A ……………………………………………………………………… 117
附錄 B ……………………………………………………………………… 119
附錄 C ……………………………………………………………………… 120
自述………………………………………………………………………… 121










圖表索引

圖目錄
Fig. 2-1 Schematic diagram of cake thickness measurement by a
photointerrupter sensor.…………………………………………… 5
Fig. 2-2 Schematic representation of the principle of UTDR measurement
in a membrane module.…………………………………………… 7
Fig. 2-3 Schematic diagram of the electrical double layer.………………… 9
Fig. 3-1 Schematic diagram of potential distribution in a capillary in 20
cylindrical coordinates(r,θ,z). …………………………………
Fig. 3-2 Effect of κR on the value of corrected factor F.………………… 23
Fig. 3-3 Schematic diagram of the cake on isopore membrane.…………… 26
Fig. 3-4 Schematic diagram of decrease of membrane pore diameter due
to internal fouling.………………………………………………… 32
Fig. 3-5 Schematic diagram of the particle partial adsorb on membrane
pore wall.………………………………………………………… 34
Fig. 4-1 Schematic diagram of the membrane filtration measurement.…… 44
Fig. 4-2 Details of the chamber for membrane filtration.………………… 45
Fig. 4-3 Schematic diagram of the streaming potential measurement.…… 46
Fig. 4-4 Details of the chamber for measuring streaming potential through
membrane pores.………………………………………………… 47
Fig. 4-5 Experimental device for measuring membrane resistance.……… 48
Fig. 4-6 Details of the chamber for measuring membrane resistance.…… 49
Fig. 5-1 The normalized flux of 0.22μm MCE membrane after filtering
various pH of MP-1600 suspension. (a) low pH (b)high pH
(10-3M KCl solution, ΔP=0.5kg/cm2)……………………… 57
Fig. 5-2 The normalized flux of 0.2μm PC membrane after filtering
various pH of MP-1600 suspension. (a) low pH (b)high pH(10-3
M KCl solution, ΔP=0.5kg/cm2)……………………………… 58
Fig. 5-3 Cross-section of 0.22μm MCE membranes after filtration of
MP-1600 suspension. (Particle size=0.97 μm by size
measurer)………………………………………………………… 60
Fig. 5-4 Thickness of cake for MP-1600 suspension. (a) 0.22μm MCE (b)
0.2μm PC(10-3M KCl solution, Time =2 hours, ΔP=0.5kg/cm2) 63
Fig. 5-5 Flux decline of pure water permeation through membrane
(ΔP=0.5kg/cm2)………………………………………………… 66
Fig. 5-6 Simulated and experiment results of the change of streaming
potential for constant pressure filtration of PMMA suspension (a)
0.2μm PC (b)0.22μm MCE(10-3M KCl solution, Time =2 hours,
pH=3, ΔP=0.5kg/cm2)…………………………………………… 68
Fig. 5-7 Simulated and experiment results of the change of streaming
potential for constant pressure filtration of PMMA suspension (a)
pH=4 (b) pH=5 (c) pH=6 (d) pH=7 (e) pH=8(10-3M KCl solution,
Time =2 hours, pH=3, ΔP=0.5kg/cm2)…………………………… 72
Fig. 5-8 The normalized flux of 0.8μm PC membrane filtering 0.05 wt. %
SiO2 suspension.(a)low pH (b)high pH(10-3M KCl solution,
ΔP=0.5kg/cm2)…………………………………………………… 78
Fig. 5-9 The normalized flux of 0.65μm MCE membrane filtering 0.05 wt.
% SiO2 suspension.(a)low pH (b)high pH(10-3M KCl solution,
ΔP=0.5kg/cm2)…………………………………………………… 80
Fig. 5-10 The membrane resistance after filtering various pH of 0.05 wt. %
SiO2 suspension.(a)0.8μm PC (b)0.65μm MCE(10-3M KCl
solution, time =2 hours, ΔP=0.5kg/cm2)………………………… 82
Fig. 5-11 Cross-section of 0.8μm PC membranes after filtration of various
pH of SiO2 suspension.…………………………………………… 89
Fig. 5-12 Cross-section of 0.65 μm MCE membranes after filtration of
various pH of SiO2 suspension.…………………………………… 91
¯³M KCl solution)………………………………………… 95
Fig. 5-13 Streaming potential of 0.65μm MCE membrane filtering SiO2
solution at low pH (a) pH3 (b) pH4 (c) pH5(10-3M KCl solution,
Time =2 hours, ΔP=0.5kg/cm2)………………………………… 97
Fig. 5-14 Streaming potential of 0.65μm MCE membrane filtering SiO2
solution at high pH (a) pH6 (b) pH7 (c) pH8(10-3M KCl solution,
Time =2 hours, ΔP=0.5kg/cm2)…………………………………… 99
Fig. 5-15 Streaming potential of 0.8μm PC membrane filtering SiO2
solution at low pH (a) pH3 (b) pH4 (c) pH5(10-3M KCl solution,
Time =2 hours, ΔP=0.5kg/cm2)…………………………………… 102
Fig. 5-16 Streaming potential of 0.8μm PC membrane filtering SiO2
solution at high pH (a) pH6 (b) pH7 (c) pH8(10-3M KCl solution,
Time =2 hours, ΔP=0.5kg/cm2) 104


















表目錄
Table 4-1 SiO2研磨液基本性質………………………………………… 38
Table 5-1 Property of membrane(0.22μm MCE、0.2μm PC)and PMMA
MP-1600 for various pH.(10-3 M KCl solution, ΔP=0.5kg/cm2) 55
Table 5-2 Membrane resistance of 0.22μm MCE and 0.2μm PC
membrane after filtering various pH of MP-1600 suspension.
(10-3M KCl solution, Time =2 hours, ΔP=0.5kg/cm2)……… 61
Table 5-3 Zeta potential of membranes(0.65μm MCE、0.8μm PC) and
SiO2 solution various pH.(10-3M KCl solution)……………… 77
Table 5-4 Membrane resistance of 0.8μm PC membrane after filtering
various pH of SiO2 suspension.(10-3M KCl solution, Time =2
hours, ΔP=0.5kg/cm2)………………………………………… 85
Table 5-5 Membrane resistance of 0.65μm MCE membrane after filtering
various pH of SiO2 suspension.(10-3M KCl solution, Time =2
hours, ΔP=0.5kg/cm2)………………………………………… 87
Table 5-6 Zeta potential of 0.65μm MCE membrane after filtering SiO2
suspension.(10-3M KCl solution, time =2 hours, ΔP=0.5kg/cm2) 93
Table 5-7 Zeta potential of 0.8μm PC membrane after filtering SiO2
suspension.(10-3M KCl solution, time =2 hours, ΔP=0.5kg/cm2) 95
Benavente, J., Jonsson, G. (1998). Effect of Adsorbed Protein on the Hydraulic Permeability, Membrane and Streaming Potential Values Measured across a Microporous Membrane. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 138, 255-264.

Bowen, W. R., and Cao, X. (1998). Electrokinetic Effects in Membrane Poresand the Determination of Zeta Potential. J. Membrane Sci., 140, 267-273

Chong, T.H., Wong, F.S., Fane, A.G. (2007). Fouling in reverse osmosis: Detection by non-invasive techniques. Desalination, 204, 148-154.

Chun, Myung-Suk, Cho, Hong Il, Song, In Kyu (2002). Electrokinetic Behavior of Membrane Zeta Potential During the Filtration of Colloidal Suspensions. Desalination, 148, 363-367.

Happel, J., Brenner, H. (1965). Low Reynolds Number Hydrodynamics with Special Applications to Particulate Media. (2nd ed). New Jersey: Prentice Hall.

Kobayashi, K., Yukawa, H., Iwata, M., Hosoda, T. (1979). Fundamental Study of Electroosmotic Flow Through Perforated Membrane. J. Chem. Eng. Japan, 12, 466-471.

Lawrence, Nicole D., Perera, Jilska M., Iyer, Mani, Hickey, Malcolm W., Stevens, Geoff W. (2006). The use of streaming potential measurements to study the fouling and cleaning of ultrafiltration membranes. Separation and Purification Technology, 48, 106-112.

Li, Jianxin, Sanderson, R.D. (2002a). In situ measurement of particle deposition and its removal in microfiltration by ultrasonic time-domain reflectometry. Desalination, 146, 169-175.

Li, Jianxin, Sanderson, R.D., Hallbauer, D.K.,Hallbauer-Zadorozhnaya, V.Y. (2002b). Measurement and modelling of organic fouling deposition in ultrafiltraion by ultrasonic transfer signals and reflections. Desalination, 146, 177-185.

Mänttäri, Mika; Pihlajamäki, Arto; Nyström, Marianne (2006). Effect of pH on hydrophilicity and charge and their effect on the filtration efficiency of NF membranes at different pH. Journal of Membrane Science, 280, 311-320.

O'Neill, M. E.(1968). A Sphere in Contact with a Plane Wall in a Slow Linear Shear Flow. Chemical Engineering Science, 23, 1293

Philip J. Evans, Michael R. Bird , Arto Pihlajam¨aki, Marianne Nystr¨om(2008). The influence of hydrophobicity, roughness and charge upon ultrafiltration membranes for black tea liquor clarification. Journal of Membrane Science, 313, 250-262.

Pontie, M. (1999). Effect of Aging on UF Membranes by a Streaming Potential(SP) Method. J. Membrane Sci.154, 213-220.

Pontié, M., Durand-Bourlier, L., Lemordant, D., Lainé, J.M. (1998). Control fouling and cleaning procedures of UF membranes by a streaming potential method. Separation and Purification Technology, 14, 1-11.

Rice, C. L., Whitehead, R. (1965). Electrokinetic Flow in a Narrow Cylindrical Capillary. J. Phys. Chem., 69, 4017-4024.

Ricq, L., Pieere, A., Reggiani, J. C., Pagetti, J. (1997a). Electrokinetic Characterization of Polyethersulfone UF Membranes. Desalination, 109, 253-261.

Ricq, Laurence, Pierre, André, Reggiani, Jean-Claude, Zaragoza-Piqueras, Serge, Pagetti, Jacques, Daufin, Georges (1996). Effects of proteins on electrokinetic properties of inorganic membranes during ultra- and micro-filtration. Journal of Membrane Science, 114, 27-38.

Soffer, Y., Adin, A., Gilron, J. (2004). Threshold flux in fouling of UF membranes by colloidal iron. Desalination, 161, 207-221.

Tung, Kuo-Lun, Wang, Sherjing, Lu, Wei-Ming, Pan, Chun-Hsi (2001). In situ measurement of cake thickness distribution by a photointerrupt sensor. Journal of Membrane Science, 190, 57-67.

Zeng, Jianxian; Ye, Hongqi; Liu, Hui; Xie, Huiling (2006). Characterization of a hollow-fiber ultrafiltration membrane and control of cleaning procedures by a streaming potential method. Desalination, 195, 226-234.

Weis, Andreas; Bird, Michael R.; Nyström, Marianne; Wright, Christopher. (2005). The influence of morphology, hydrophobicity and charge upon the long-term performance of ultrafiltration membranes fouled with spent sulphite liquor. Desalination, 175,73-85.

蔡宗諺(民96)。薄膜結垢與流線電位關係之探討。私立中原大學化學工程學系碩士學位論文,桃園縣。

江宜蓁 (民92)。薄膜電荷量測與膜過濾電動現象分析。私立中原大學化學工程學系碩士學位論文,桃園縣。

連俊旭 (民87)。電滲透脫水床脫水速率及含水率分佈的探討。私立中原大學化學工程學系碩士學位論文,桃園縣。

曾盈崇 (民85)。電場濾餅過濾特性之研究。私立中原大學化學工程學系碩士學位論文,桃園縣。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔