跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/12 05:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭盈孜
研究生(外文):Ying-Tzu Kuo
論文名稱:含N-(2-嘧啶)甲醯胺配位基與一價銀及二價銅化合物之合成,結構與特性研究
論文名稱(外文):Synthesis, structures and properties of Silver (I) and Copper (II) Complexes Containing N-(2-pyrimidinyl)formamide Ligand
指導教授:陳志德
指導教授(外文):Jyh-Der Chen
學位類別:碩士
校院名稱:中原大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:67
中文關鍵詞:單晶結構銀金屬銅金屬
外文關鍵詞:X-ray crystallographycoppersilver
相關次數:
  • 被引用被引用:0
  • 點閱點閱:204
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要討論含 N-(2-嘧啶)甲醯胺配位基(L)與過渡金屬一價銀和二價銅之化學。將配位基與分別與過渡金屬化合物 AgX (X = ClO4-,BF4-,SO3CF3-,SbF6-) 以及 Cu(BF4)2 • 6H2O、Cu(ClO4)2 • 6H2O、CuCl2反應,可得到一維高分子鏈 {[Ag(L)](ClO4)}∞,1; {[Ag(L)](BF4)}∞,2 和 [Ag(L)(SO3CF3)]∞,3,零維單核化合物 [Ag(L)2](SbF6),4;Cu(L)2(BF4)2,5;Cu(L)2(ClO4)2,6 和Cu(L)Cl2,7,以上七種化合物均可以利用元素分析儀、紅外光光譜儀和熱重分析儀鑑定之。而單晶結構均以單晶 X-ray 繞射儀鑑定之。高分子鏈 1 和 2 中, 主要藉由陰離子的 Ag---O 及Ag---F 作用力及芳香環間π – π作用力將高分子鏈形成三維超分子結構。化合物 3,中心金屬銀形成四配位獨特的扭曲三角錐構型,其高分子鏈間經由 Ag---O 及 F---F 作用力在空間中進行堆疊延伸,形成具有孔道的三維超分子架構。在化合物 4 中,分子內具有特殊的 C-H---Ag 弱作用力,分子間更透過 Ag---F、Ag---O 和氫鍵作用力堆疊形成三維超分子結構。在化合物5和6中,因為分子間的兩組自互補氫鍵 C-H---X,N-H---X (X = O or F) 存在,將分子連結成二維的層狀結構。化合物7,中心金屬銅的構型是一個扭曲的四邊形,分子間透過 C-H---Cl 和 N-H---Cl 氫鍵,形成了一維鏈具有波浪狀的結構。
This thesis discusses the chemistry of silver(I) and copper(II) complexes containing N-(2-pyrimidinyl) formamide (L). The reactions of ligand L with AgX (X = ClO4-, BF4-, SO3CF3-, SbF6-) and Cu(BF4)2 • 6H2O, Cu(ClO4)2 • 6H2O, CuCl2 afforded the 1-D polymeric chains {[Ag(L)](ClO4)}∞, 1, {[Ag(L)](BF4)}∞, 2 and [Ag(L)(SO3CF3)]∞, 3, and the 0-D monomeric complexes [Ag(L)2](SbF6), 4, Cu(L)2(BF4)2, 5, Cu(L)2(ClO4)2, 6 and Cu(L)Cl2, 7. All the complexes have been characterized by EA, IR spectroscopic and TGA methods and structurally characterized by X-ray crystallography. The polymeric chains of 1 and 2 are linked by the anions through Ag---O and Ag---F, and π – π stacking interaction to form a 3-D supramolecular structure. The silver centers in complex 3 form the four coordinated, distorted trigonal pyramidal geometry, and each polymeric chains are linked through Ag---O and F---F interactions, which further extend into a 3-D supramolecular frameworks with channels. Complexes 4 shows a C-H---Ag intramolecular hydrogen bonding, and the molecules pack into a 3-D supramolecular framework through intermolecular Ag---F and Ag---O interactions and hydrogen bonds among mononuclear cationic units and anions. In complexes 5 and 6, a set of interactions involving two self-complementary double C-H---X and N-H---X (X = O or F) hydrogen bonds between molecules were found to link the molecules to form 2-D layers. The Cu centers in complex 7 form a distorted square planar geometry, and its molecules are linked through C-H---Cl and N-H---Cl hydrogen bonds to form a 1-D wave-like chain.
摘要 I
Abstract II
謝誌 III
List of Figures VI
List of Tables X
List of Schemes XI
1. Introduction 1
2. Experimental section 8
2.1. General procedures 8
2.2. Materials 8
2.3. Preparation 8
2.4. X-ray crystallography 11
3. Results and Discussion 19
3.1. Synthesis 19
3.2. Structure of 1. 21
3.3. Structure of 2. 25
3.4. Structure of 3. 29
3.5. Structure of 4. 35
3.6. Structure of 5. 38
3.7. Structure of 6. 41
3.8. Structure of 7. 44
3.9. Conformation and bonding mode of the Ligand 47
3.10. Luminescent Properties 49
3.11. Thermal properties 50
4. Conclusions 52
References 54



List of Figures
Figure 1.1. The structures of the amide ligands. ....................................... 1
Figure 1.2. The structures of the acetamide ligands: (a) N-(2-pyridyl)
acetamide, (b) N-(3-pyridyl) acetamide, (c) N-(4-pyridyl)
acetamide, (d) N-(2-pyrimidinyl) acetamide......................... 2
Figure 1.3. Topologies of 1-D Ag(I) polymers......................................... 3
Figure 1.4. A molecular structure of the {[Ag(4,4′-pytz)]+}∞ cationic
chain....................................................................................... 4
Figure 1.5. A molecular structure of the {[Ag2(3,3′-pytz)3]+}∞ cationic
chain....................................................................................... 4
Figure 1.6. A molecular structure of the [Ag(tmpb)]2
2+ binuclear
metallacycles into infinite chain............................................ 5
Figure 1.7. A molecular structure of the [Ag2(μ-hmt)2(bca)(H2O)2] · H2O
chain....................................................................................... 5
Figure 1.8. Perspective views of topologic structural types of 2-D nets as
(a) three-connected net with (6,3) topology. (b)
four-connected net with (4,4) topology................................. 6
Figure 1.9. The three-dimensional cationic network with two types of
channels [Ag(μ3-hmt)](PF6) · H2O. ....................................... 6
Figure 1.10. The structure of the ligand, N-(2-pyrimidinyl)formamide,
(L). ......................................................................................... 7
Figure 3.1. An ORTEP showing the asymmetric unit of complex 1. ..... 21
Figure 3.2. A view of the 1-D polymeric chain of complex 1. ............... 22
Figure 3.3. (a) A packing diagram showing the Ag---O interactions
among the ClO4
- anions and 1-D cationic chains of complex
1. (b) A schematic drawing showing (4,4) structure
containing different bridging ligands (blue, L and red, ClO4
-)
of complex 1. ....................................................................... 23
Figure 3.4. A view of the C-H---O (pink) and N-H---O (green) hydrogen
bonds among layers forming the 3-D supramolecular
framework of complex 1. .................................................... 24
Figure 3.5. A structure drawing showing the asymmetric unit of complex
2. .......................................................................................... 25
Figure 3.6. A view of the 1-D polymeric chain of complex 2. ............... 26
Figure 3.7. (a) A packing diagram showing the Ag---O interactions and
Ag---F interactions (b) The π – π stacking interaction
between the 1-D chains of complex 2. ................................ 27
Figure 3.8. A schematic drawing showing (4,4) structure containing
different bridging ligands (blue, L and red, BF4
-) of complex
2. .......................................................................................... 27
Figure 3.9. A view of the N-H---F and C-H---F hydrogen bonds among
layers forming the 3-D supramolecular frameworks of
complex 2. ........................................................................... 28
Figure 3.10. An ORTEP showing the asymmetric unit of complex 3. ... 29
Figure 3.11. A view of the 1-D zigzag polymeric chain of complex 3... 30
Figure 3.12. (a) A packing diagram showing the Ag---O interactions
among the 1-D cationic chains and sulfate anions of
complex 3. (b) A schematic drawing showing (6,3) structure
containing different bridging ligands (pink, L and yellow,
SO3CF3
-) of complex 3. ....................................................... 33
Figure 3.13. A view of the F---F interactions among layers forming the
3-D supramolecular frameworks of complex 3................... 34
Figure 3.14. The 3-D network with large cavities and channels of the
hexagonal sections viewed along the c-axis in complex 3.. 34
Figure 3.15. An ORTEP showing the molecular structure of complex 4.
............................................................................................. 36
Figure 3.16. A view of the Ag---O interactions among molecules in
complex 4. ........................................................................... 37
Figure 3.17. A packing diagram showing the interactions among the
mononuclear cations and anions of complex 4. .................. 37
Figure 3.18. An ORTEP showing the molecular structure of complex 5.
............................................................................................. 38
Figure 3.19. A view of the self-complementary double C-H---F
interactions among molecules in complex 5. ...................... 40
Figure 3.20. A packing diagram showing the C-H---F and N-H---F
hydrogen bonds forming the 2-D layers in complex 5........ 40
Figure 3.21. An ORTEP showing the molecular structure of complex 6.
............................................................................................. 42
Figure 3.22. A view of the C-H---O interactions among molecules in
complex 6. ........................................................................... 42
Figure 3.23. A Packing diagram showing the C-H---O, N-H---O
hydrogen bonds forming the 2-D layers in complex 6........ 43
Figure 3.24. An ORTEP showing the molecular structure of complex 7.
............................................................................................. 44
Figure 3.25. (a) A view of the N-H---Cl and C-H---Cl interactions among
molecules in complex 7. (b) A view of the 1-D wave-like
chain of complex 7. ............................................................. 45
Figure 3.26. A view of the Cu---O and Cu---Cl interactions among
molecules in complex 7. ...................................................... 46
Figure 3.27. Possible conformations of ligand L.................................... 47
Figure 3.28. Bonding modes of ligand L. ............................................... 47


List of Tables
Table 1. Crystal data for complex 1......................................................... 12
Table 2. Crystal data for complex 2......................................................... 13
Table 3. Crystal data for complex 3......................................................... 14
Table 4. Crystal data for complex 4......................................................... 15
Table 5. Crystal data for complex 5......................................................... 16
Table 6. Crystal data for complex 6......................................................... 17
Table 7. Crystal data for complex 7......................................................... 18
Table 8. Selected bond distances (Å) and angles (°) for complex 1. ...... 21
Table 9. Selected bond distances (Å) and angles (°) for complex 2. ...... 25
Table 10. Selected bond distances (Å) and angles (°) for complex 3. .... 29
Table 11. Structural comparisons for complexes 3 and Ag(I) complexes.
................................................................................................ 32
Table 12. Structural comparisons for complexes 1 – 3. .......................... 34
Table 13. Selected bond distances (Å) and angles (°) for complex 4. .... 35
Table 14. Selected bond distances (Å) and angles (°) for complex 5. .... 39
Table 15. Selected bond distances (Å) and angles (°) for complex 6. .... 41
Table 16. Selected bond distances (Å) and angles (°) for complex 7. .... 45
Table 17. Comparisons of the ligand conformations for complexes 1 – 7.
................................................................................................ 48
Table 18. The emission and excitation spectra of L and compounds 1 – 7
in the solid state at room temperature. ................................... 49
Table 19. Differential scanning calorimetry (DSC) experiments of the
complexes 1 – 7...................................................................... 51
[1] (a) Bailar, J. C., Jr. Perspective Inorganic Reaction; Interscience: New York, 1964. (b) Desiraju, G. R. Crystal Engineering, the Design of Organic Solids; Elsevier: Amsterdam, 1989. (c) Janiak, C. Angew. Chem., Int. Ed. 1997, 36, 1431. (d) Batten, S. R.; Robson, R. Angew.Chem., Int. Ed. 1998, 37, 1460. (e) Eddaoudi, M.; Moler, D. B.;Li, H.; Chen, B.; Reineke, T. M.; O’Keeffe, M.; Yaghi, O. M. Acc. Chem. Res. 2001, 34, 319.
[2] (a) Zaworotko, M. J. Chem. Soc. Rev. 1994, 23, 283. (b) Moulton, B.; Zaworotko, M. J. Chem. Rev. 2001, 101, 1629. (c) Kitagawa, S.; Kitaura, R.; Noro, S.-I. Angew. Chem., Int. Ed. 2004, 43, 2334. (d) Lee, S.; Mallik, A. B.; Xu, Z.; Lobkovsky, E. B.; Tran, L. Acc. Chem. Res. 2005, 38, 251.
[3] (a) Su, C.-W.; Wu, C.-P.; Chen, J.-D.; Liou, L.-S.; Wang J.-C. Inorg. Chem. Commun. 2002, 5, 215; (b) Liu, S.-H.; Chen, J.-D.; Liou, L.-S.; Wang, J.-C. Inorg. Chem. 2001, 40, 6499; (c) Hsu, Y.-F.; Chen, J.-D. Eur. J. Inorg. Chem. 2004, 6, 1488.
[4] Blake, A. J.; Champness, N. R.; Hubberstey, P.; Li, W.-S.; Withersby, M. A.; Schröder, M. Coord. Chem. Rev. 1999, 183, 117.
[5] (a) Feazell, R. P.; Carson, C. E.; Klausmeyer, K. K. Eur. J. Inorg. Chem. 2005, 8, 3287. (b) Feazell, R. P.; Carson, C. E.; Klausmeyer, K. K. Inorg. Chem. 2006, 45, 935. (c) Feazell, R. P.; Carson, C. E.; Klausmeyer, K. K. Inorg. Chem. 2006, 45, 2627. (d) Feazell, R. P.; Carson, C. E.; Klausmeyer, K. K. Inorg. Chem. 2006, 45, 2635.
[6] (a) Nonoyama, M.; Tomita, S.; Yamasaki, K. Inorg. Chim. Acta 1975, 12 , 33. (b) Bould, J.; Bristol, B. J. Inorg. Chim. Acta 1976, 9, 129. (c) Airoldi, C.; Dias, F. S.; Espnola, J. G.; Sá, G. F. J. Inorg. Nucl. Chem. 1978, 40, 1537.
[7] (a) Aarif, M.; Tariq, R. H.; Shad, M. A. Science. 1995, 7(1), 105-6. (b) Emsley, J; Arif, M; Bates, P. A.; Michael B. J. Chem. Soc., Dalton Trans. 1988, 6, 1493-6.
[8] Sekizaki, M.; Yamasaki, K. Inorg. Chim. Acta 1970, 4, 296.
[9] Nonoyama, M.; Tomita, S.; Yamasaki, K. Inorg. Chim. Acta 1975, 12, 33.
[10] Van Albada, G. A.; Dominicus, I.; Mutikainen, I.; Turpeinen, U.; Reedijk, J. Polyhedron 2007, 26, 3732.
[11] Van Albada, G. A.; Dominicus, I.; Chumillas, M. V.; Mutikainen, I.; Turpeinen, U.; Reedijk, J. Polyhedron 2008, 27, 618.
[12] (a) Vranka, R.G.; Amma, E. L. Inorg. Chem. 1966, 5, 1020. (b) Carlucci, L.; Ciani, G.; Proserpio, D. M.; Sironi, A. J. Am. Chem. Soc., 1995, 117, 4562. (c) Carlucci, L.; Ciani, G.; Proserpio, D. M.; Sironi, A. Angew. Chem., Int. Ed. 1995, 34, 1895. (d) Venkataraman, D.; Lee, S.; Moore, J. S.; Zhang, P.; Hirsch, K. A.; Gardner, G. B.; Covey, A. C.; Prentice, C. L. J. Chem. Mater. 1996, 8, 2030. (e) Blake, A. J.; Champness, N. R.; Crew, M.; Parsons, S. New J. Chem. 1999, 23, 13. (f) Tsuda, T.; Ohba, S.; Takahashi, M.; Ito, M. Acta Crystallogr. 1989, 45, 887.
[13] Zheng, S.-L.; Tong M.-L.; Chen, X.-M. Coord. Chem. Rev. 2003, 246, 185.
[14] Hosmane, R. S.; Burnett, F. N.; Albert, M. S. J. Org. Chem. 1984, 49, 1212.
[15] (a) APEX II 1.08, Bruker AXS, Inc., Madison, WI, USA, 2004; (b) G.M. Sheldrick, SADABS Program for Absorption Correction, version 2.10, Analytical X-ray Systems, Madison, WI, USA, 2001.
[16] SHELXTL 5.10. Bruker Analytical X-ray Instruments Inc., Karlsruhe, Germany, 1997.
[17] (a) Bu, X. H.; Chen, W.; Du, M.; Biradha, K.; Wang W. Z.; Zhang, R. H. Inorg. Chem. 2002, 41, 437. (b) Zhao, B.; Zhao, X.-Q.; Shi, W.; Cheng, P. J. Mol. Struct. 2007, 830, 143. (c) Morgan, G.; McKee, V.; Nelson, J. 1994, 33, 4427. (d) Wang , Y.-H.; Lee, H.-T.; Suen, M.-C. Polyhedron. 2008, 27, 1177.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊