(3.236.214.19) 您好!臺灣時間:2021/05/09 21:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:戴嵐影
研究生(外文):LAN-YING TAI
論文名稱:輪胎用橡膠與天然黏土奈米混成化研究
論文名稱(外文):Study on the Rubber/Caly Nanocomposites for Tire Application
指導教授:蔡宗燕
指導教授(外文):Tsung-Yen Tsai
學位類別:碩士
校院名稱:中原大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:116
中文關鍵詞:有機/無機奈米混成材料有機化改質黏土橡膠.
外文關鍵詞:TanδPolymer-Organoclay Nanocompositesrubber.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:209
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
本研究將有機黏土添加於苯乙烯丁二基橡膠製得之複合材料,雖然降低了機械性、0℃~20℃之Tanδ、和磨耗性,但是提高了乾抓地性能與降低了滾動阻力,也將以往在輪胎胎面膠中添加於高分子複材之親水性添加物(如:長纖、短纖、雞蛋殼粉、核桃殼粉、高嶺土或未改質之蒙脫土等….)來增加有限的輪胎抓地與抓冰性能,在本研究中探討將無機黏土改質為親油性有機黏土,取代一般高嶺土使增加其特性。
由於有機化黏土可以增加高分子複合材料的疏水性,應用於特殊輪胎雪地胎是可以幫助水分子的排除,或減少大面積水膜覆蓋、增加輪胎的排水性能,未來也可能提供更好、更安全的輪胎。

未來希望能將天然的蒙脫土或有機化改質型蒙脫土運用在輪胎領域,減少地球能源的損耗降低石油產物的使用,利用奈米級複合材料之耐久、耐熱、耐磨耗、抗老化等特性...,使高分子奈米級複合材料特性達到,結合綠色環保與節能的共同方向與目標。
Abstract
In this experiment, although adding Styrene Monomer into Organoclay reduces the mechanical effect, Tanδ between 0℃and 20℃and wearing, it elevates the tread handling on dry ground and reduces rolling resistance. Moreover, it replaces the traditional tread compound which is added with high polymer hydrophilic additive, for example, ling fiber, short fiber, egg shell powder, walnut shell powder, Kaolin clay, or natural Na+-montmorillonite, to enhance limited gripping on icy or dry road condition. In the research, the clay is changed to Organoclay to replace Kaolin clay for quality improvement.

Since such clay could escalate the hydrophobic of Polymer Nanocomposites, it is also helpful for enhancement of water draining while applied on special summer tires or winter tires. This could bring a better and safer tire compound in the near future.

In the future, we hope to apply natural Montmorillonite and modified Montmo-rillonite on tire technology to decrease the wastage of natural resources and reduce the usage of petroleum. Meantime, utilizing the characteristics of macromolecule nanopolymer composites, like the endurance, heat tolerance, anti-wearing and anti-aging, to approach the goal of fuel saving and eco-friendliness.
中文摘要...............................................................................................................I
Abstract .............................................................................................................. II
謝誌....................................................................................................................III
目錄....................................................................................................................IV
圖目錄.............................................................................................................VIII
表目錄................................................................................................................XI
第一章 緒論...................................................................................................... 1
1.1 黏土的概論............................................................................................. 1
1.2 黏土種類及結構的介紹......................................................................... 2
1.2.1 黏土的種類................................................................................... 2
1.2.2 黏土的帶電性............................................................................... 4
1.2.3 黏土的分離純化........................................................................... 5
1.2.4 離子交換理論............................................................................... 6
1.2.5 黏土的其他特性........................................................................... 7
1.3 黏土的有機化改質................................................................................. 8
1.3.1 改質劑的分類............................................................................... 8
1.3.2 有機化改質黏土........................................................................... 9
1.4 有機/無機奈米混成材料....................................................................... 10
1.4.1 有機/無機奈米混成材料技術原理............................................ 10
1.4.2 高分子-黏土奈米級複合材料之介紹....................................... 11
1.4.3 高分子-黏土奈米複合材料之製備方法................................... 13
1.4.4 高分子-黏土奈米級複合材料之特性....................................... 14
1.4.5 有機/無機奈米混成材料之研究現況與應用............................ 15
1.5 橡膠的簡介............................................................................................ 16
1.5.1 天然橡膠..................................................................................... 17
1.5.2 人造合成橡膠............................................................................. 17
1.5.3 輪胎胎面膠料基礎橡膠組成..................................................... 18
1.5.4 常用橡膠相關名詞解釋............................................................. 19
1.6 輪胎的簡介........................................................................................... 23
1.6.1 充氣輪胎歷史介紹..................................................................... 23
1.6.2 輪胎製程..................................................................................... 23
1.6.3 輪胎結構組成及名稱................................................................. 25
1.6.4 輪胎速度標示............................................................................. 27
1.6.5 輪胎性能要求............................................................................. 27
1.6.6 車輛的運動與輪胎作用力......................................................... 28
1.6.7 滾動阻力..................................................................................... 30
1.6.8 遲滯現象輪胎與滾動阻力......................................................... 33
1.6.9 駐波現象..................................................................................... 34
1.6.10 制動力與驅動力....................................................................... 35
1.6.12 輪胎性能相互影響之特性分類表格如下表示....................... 37
1.6.13 輪胎胎面橡膠之tanδ判斷特性............................................... 38
1.7 相關專利及文獻回顧........................................................................... 38
1.8 研究動機與目的................................................................................... 48
第二章 實驗藥品與儀器設備........................................................................ 49
2.1 實驗藥品............................................................................................... 49
2.2 實驗儀器設備....................................................................................... 51
第三章 實驗部份............................................................................................ 59
3.1 黏土之純化步驟................................................................................... 59
3.2 有機黏土之製備................................................................................... 60
3.3 高嶺土(Kaolin)、蒙脫土(CL-088-C50)、蒙脫土(CL-120-C50)
2.5phr、5phr Rubber/複合材料之製備................................................... 62
第四章 試驗結果與討論................................................................................ 64
4.1 X-光繞射儀的鑑定與分析.................................................................... 64
4.1.1 橡膠/奈米黏土複合材之X-光繞射儀鑑定與分析................... 68
4.2 橡膠無轉子硫化儀硫化分析............................................................... 70
4.2.1 焦燒時間試驗.............................................................................. 70
4.2.2 木尼黏度試驗.............................................................................. 73
4.2.3 無轉子硫變儀分析...................................................................... 75
4-3 熱重分析儀器分析............................................................................... 76
4.3.1 無機層狀黏土有機化改質與鑑定............................................. 76
4.3.2 有機高分子黏土插層量的分析................................................. 77
4.4 穿透式電子顯微鏡分析........................................................................ 80
4.5 動態機械分析....................................................................................... 83
4.6 阿克隆磨耗試驗.................................................................................... 88
4.7 物理性分析........................................................................................... 91
第五章 結論.................................................................................................... 95
第六章 參考文獻............................................................................................ 97




圖目錄
圖1- 1 蒙脫土的層狀結構................................................................................. 5
圖1- 2 黏土-高分子複合材料之分散型態示意圖......................................... 12
圖1- 3 輪胎製造流程........................................................................................ 24
圖1- 4 輪胎結構組成及名稱.......................................................................... 25
圖1- 5 作用於輪胎之力、力矩與角度分別依照座標系統.......................... 28
圖1- 6 滾動阻力示意圖.................................................................................. 30
圖1- 7 輻射層輪胎與交叉層輪胎不同荷重滾動阻力.................................. 31
圖1- 8 滾動阻力係數與不同路面之關係圖.................................................. 32
圖1- 9 輻射層輪胎、交叉層輪胎之滾動阻力係數關係圖.......................... 32
圖1- 10 滾動阻力係數與輪胎直徑之關係圖................................................ 33
圖1- 11 應力與遲滯現象之關係圖................................................................. 34
圖1- 12 駐波現象示意圖................................................................................ 34
圖1- 13 輪胎力學對輪胎接地面與彈性係數之關係.................................... 36
圖1- 14 輪胎胎面橡膠之tanδ判斷特性圖...................................................... 38
圖3- 1 無機黏土純化流程圖........................................................................... 59
圖3- 2 黏土有機改質流程圖........................................................................... 61
圖3- 3 高嶺土(Kaolin)、蒙脫土(CL-088-C50)、蒙脫土(CL-120-C50)
2.5phr、5phr Rubber /複合材料之製備流程圖.................................. 63
圖4- 1 有機改質型蒙脫土CL-088-C50 X光繞射圖譜................................... 66
圖4- 2 有機改質型蒙脫土CL-120-C50 X光繞射圖譜圖.............................. 67
圖4- 3(CL-088-C50-2.5phr)、(CL-088-C50-5phr)Rubber/複材 XRD圖譜
.................................................................................................................... 69
圖4- 4(CL-120-C50-2.5phr)、(CL-120-C50-5phr)Rubber/複材 XRD圖譜
.................................................................................................................... 69
圖4- 5 高嶺土(Kaolin 2.5phr)、高嶺土(Kaolin 5phr)Rubber/複材 XRD
圖譜............................................................................................................ 70
圖4- 6 高嶺土(Kaolin)、蒙脫土(CL-088-C50)、蒙脫土(CL-120-C50)
.................................................................................................................... 71
圖4- 7 高嶺土(Kaolin)、蒙脫土(CL-088-C50)、蒙脫土(CL-120-C50)
Rubber/複材ML125℃Ts 35 (木尼黏度)圖............................................... 72
圖4- 8 高嶺土(Kaolin)、蒙脫土(CL-088-C50)、蒙脫土(CL-120-C50)
Rubber/複材ML1+4',100℃(木尼黏度)圖................................................ 74
圖4- 9 純化級黏土CL-88 與有機改質黏土CL88-C50 TGA 圖................. 78
圖4- 10 純化級黏土CL120 與有機改質黏土CL120-C50 TGA圖............... 78
圖4- 11 有機改質劑C50 之TGA 圖譜......................................................... 79
圖4- 12 不同純化級黏土之TGA 比較圖譜.................................................. 79
圖4- 13 不同有機改質黏土之TGA 比較圖譜.............................................. 80
圖4- 14 蒙脫土CL-120-C50- 2.5phr Rubber/複合材料之TEM x15K 100nm圖
.................................................................................................................... 81

圖4- 15 蒙脫土CL-120-C50- 2.5phr Rubber/複合材料之TEM x15K 100nm圖 81
圖4- 16 高嶺土(Kaolin) 2.5phr Rubber/複合材料之TEM x15K 500nm圖 82
圖4- 17 高嶺土(Kaolin) 2.5phr Rubber/複合材料之TEM x25K 200nm圖 82
圖4- 18 儲存能與損失能關係圖.................................................................... 83
圖4- 19 高嶺土(Kaolin 2.5 phr)、蒙脫土(CL-088-C50-2.5 phr)、蒙脫土
(CL-120-C50-2.5 phr)之Rubber/複材DMA圖....................................... 84
圖4- 20 高嶺土(Kaolin 5phr)、蒙脫土(CL-088-C50 5phr)、蒙脫土
(CL-120-C50 5phr)之Rubber/複材DMA圖............................................ 85
圖4- 21 高嶺土(Kaolin)、蒙脫土(CL-088-C50)、蒙脫土(CL-120-C50)
之Rubber/複材G’@-20℃分析DMA圖.................................................... 86
圖4- 22 高嶺土 (Kaolin)、(CL-088-C50)、(CL-120-C50)之Rubber/複
材E*at30℃分析DMA圖........................................................................... 87
圖4- 23 高嶺土、蒙脫土CL-088、蒙脫土CL-120Rubber/複合材料Akron(165
℃×15'試片)磨耗試驗圖............................................................................ 90
圖4- 24 Rubber/複材之抗張物性(Tensile Strength,T.S)2.5phr ................... 93
圖4- 25 Rubber/複材之抗張物性(Tensile Strength,T.S) 5phr ..................... 93
圖4- 26 Rubber/複材之拉伸率(Elongation,E%) 2.5phr ............................... 94
圖4- 27 Rubber/複材之拉伸率(Elongation,E%) 5phr.................................. 94




表目錄
表1- 1 黏土的分類與種類................................................................................. 3
表1- 2 輪胎速度標示....................................................................................... 27
表1- 3 輪胎性能相互影響之特性分類........................................................... 37
表3- 1 高嶺土(Kaolin)、蒙脫土(CL-088-C50)、蒙脫土(CL-120-C50)
2.5phr、5phr Rubber複合材料組成配方表....................................... 62
表4- 1 不同改質黏土層間距(d-spacing)變化................................................. 68
表4- 2 MS125℃Ts 5、Ts 35 ............................................................................ 71
表4- 3 ML1+4',100℃(木尼黏度)..................................................................... 74
表4- 4 165℃Rheometer Test ............................................................................ 75
表4- 5 改質型黏土中插層量計算結果.......................................................... 80
表4- 6 高嶺土(Kaolin)、蒙脫土(CL-088-C50)、蒙脫土(CL-120-C50)
之Rubber/複材 DMA試驗.................................................................. 84
表4- 7 高嶺土、蒙脫土CL-088、蒙脫土CL-120 ......................................... 90
表4- 8 高嶺土、蒙脫土CL-088、蒙脫土CL-120 ......................................... 90
表4- 9 複材之抗張強度165℃×10'試驗........................................................ 92
表4- 10 複材之抗張強度165℃×15'試驗...................................................... 92
表4- 11 複材之拉力強度165℃×30'試驗...................................................... 92
第六章 參考文獻
[1]吳東印,衛敏,楊康平,王建業,礦場保護與利用,3,14,2000.
[2]C. E Wearer et al, eds by D. Y. Zhang., Clay Minerals. Geology Press., 1973.
[3]A.Usuki, M. Kawasumi, Y. Kojima, A. Okada, T. Kurauchi., J. Mater.Res. 8, 1174,1993.
[4]L. B. James, Clays Clay Miner., 50, 11, 2005.
[5]H.V.Olphen, Clay colloid Chemistry, Chapter V, Wiley-Interface publication , 1997.
[6]P. Mati, Langmuir, 19, 5502,2003.
[7]S. Emanuela, Clays Clay Miner. , 53, 179 , 2005.
[8]F. J. Hingston , A review of anion adsorption. In .Adsorption of Inorganics at Solid-Liquid Interfaces., Ann Arbor Sci., 1981.
[9]洪昆煌,土壤化學,國立編譯館, 1996.
[10]黃怡禎,礦物學,地球科學文教基金會, 2000.
[11]C. Kexue, Diqiu Huaxue, 35, 295,2006.
[12]王守明,膨礦物及其加工技術,礦產保護與利用,2, 21, 1996.
[13]D. H.Solomon, D.G.Eds Hawthorne, Chemistry of pigments and Fillers, John Wiley&Sons, 1983, New York
[14] A. Usuki, M. Kawasumi, Y. Kojima, A. Okada, T. Kurauchi., J. Mater. Res., 8, 1174,1993.
[15]張培萍, “膨潤土加工與應用” ,化學工業出版社,2005.
[16]A. Usuki, Y. Kojima, M. Kawasumi, A. Okada,Y. Fukushima,
T. Kurauchi, O. Kamigaito, “Synthesis of nylon6-clay hybrid ”, Journal of Materials Research, Vol. 8, p 1179, 1993.
[17]C. Kato, K. Kuroda and H. Takahara, “Preparation andElectrical Properties of Quaternary Ammonium Montmorillonite-Polystyrene102Complexes”, Clays and Clay Minerals, Vol. 29, p 294, 1981.
[18]A. Akelah, N. Salah El-Deen, A. Hiltner, E. Baer, A. Moet, “Organophilicrubber-montmorillonite nanocomposites”, Materials Letters, Vol. 22, p 97, 1995.
[19]Richard A. Vaia, Klaus D. Jandt, Edward J. Kramer, and Emmanuel P.Giannelis, “ Microstructural Evolution of Melt Intercalated Polymer-OrganicallyModified Layered Silicates Nanocomposites”, Chemistry of Materials, Vol. 8, p 2628, 1996.
[20]H. Shi, T. Lan, and T. J. Pinnavaia, “Interfacial Effects onthe Reinforcement Properties of Polymer-Organoclay Nanocomposites”,Chemistry of Materials, Vol. 8, p 1584, 1996.
[21]C. C. Riccardi, R. J. J. Williams, “A kinetic scheme for anamine-epoxy reaction with simultaneous etherification ”, Journal of AppliedPolymer Science, Vol. 32, p 3445, 1986.
[22]Y. Kojima, A. Usuki, M. Kawasumi, A. Okada,T. Kurauchi, O. Kamigaito, “One-pot synthesis of nylon 6-clay hybrid ”,Journal of Polymer Science Part A: Polymer Chemistry, Vol. 31, p 1755, 1993.
[23]G. Lagaly, “Editorial(s)”, Applied Clay Science, Vol. 15, p 1, 1999.
[24]Eastman, M.P.; Bain, E.; Porter, T.L.; Manygoats, K.; Whitehorse, R.;Parnell, R.A.; Hagerman, M.E., “The formation of poly(methyl-methacrylate)on transition metal-exchanged hectorite”, Appl. Clay Sci., Vol. 15, p 173, 1999.


[25]Y. Fukushima, A. Okada, M. Kawasumi, T. Kurauchi, and O. Kamigaito,“Swelling behaviour of montmorillonite by poly-6-amide”, Clay Minerals, Vol.23, p 27, 1998.
[26]A. Usuki, Y. Kojima, M. Kawasumi, A. Okada,Y. Fukushima, T. Kurauchi, O. Kamigaito, “Synthesis of nylon6-clay hybrid ”, Journal of Materials Research, Vol. 8, p 1179, 1993.
[27]A.Usuki, M. Kawasumi, Y. Kojima, A. Okada,T. Kurauchi, O. Kamigaito, “Swelling behavior of montmorillonitecation exchanged for ω-amino acids by ε-caprolactam”, Journal of MaterialsResearch, Vol. 8, p 1174, 1993.
[28]Y. Kojima, A. Usuki, M. Kawasumi, A. Okada,T. Kurauchi, O. Kamigaito, “Synthesis of nylon 6-clay hybrid bymontmorillonite intercalated withε-caprolactam”, Journal of Polymer SciencePart A: Polymer Chemistry, Vol. 31, p 983, 1993.
[29]P. Dubois, M. Alexandre, F. Hindryckx, R. Jerome, “Homogeneous104polyolefin-based composites”, J. Macromol. Sci., Rev. Macromol. Chem. Phys.,Vol. 38, p 511, 1998.
[30]Richard A. Vaia and Emmanuel P. Giannelis, “Polymer Melt Intercalation inOrganically-Modified Layered Silicates: Model Predictions and Experiment”,Macromolecules, Vol. 30, p 8000, 1997.
[31]M. Kato, A. Usuki, A. Okada, “Synthesis of polypropyleneoligomer - clay intercalation compounds”, Journal of Applied Polymer Science,Vol. 66, p 1781, 1997.




[32]M. Kawasumi, N. Hasegawa, M. Kato, A. Usuki, andA. Okada, “Preparation and Mechanical Properties of Polypropylene-ClayHybrids”, Macromolecules, Vol. 30, p 6333, 1997.
[33]N. Hasegawa, M. Kawasumi, M. Kato, A. Usuki, A. Okada, “Preparation and mechanical properties of polypropylene-clay hybridsusing a maleic anhydride-modified polypropylene oligomer”, Journal of AppliedPolymer Science, Vol. 67, p 87, 1998.
[34]H. G. Jeon, H.-T. Jung, S. W. Lee and S. D. Hudson, “Morphology ofpolymer/silicate nanocomposites High density polyethylene and a nitrilecopolymer”, Parpaillon, M.; Engsorm, G.; Pettersson, I.; Fineman, I. andSvason, S. E., J. Appli. Polymer bulletin ISSN 0170-0839 coden poburd, Vol. 41, p 107, 1998.
[35]M.Ajbani,W.-l.Hsu, A.F.Halasa, G..C. Lee, E. Sean,“ Light weight rubber composition containing clay”, United States Patent 7055566 Republic of The Goodyear Tire & Rubber Company (Akron, OH, US) Received 08,20,2004 accepted 06,06,2006.
[36]M.S.Richard, H. S.Wayne, “Tire with tread rubber containing medium vinyl polybutadiene with clay and carbon black”, United States Patent 4522970 Republic of The Goodyear Tire & Rubber Company(Akron,OH) Received 06,25,1984;accepted 06,11,1985 .
[37]Y.Liu,Z .Wan, “Progress on fatigue properties of rubber” China Synthtic Rubber Industry 2000 Vol.23 No.2P.128-131 Received 12,20,1999.
[38]T.M.Stuhldreher,“Kaolin clay in silica tread compounds technical field” United States Patent 6080809, Republic of Bridgestone/Firestone, Inc. (Akron, OH) Received 07,30,1997; accepted 06,27,2000 . Available online 12,19 , 2008.
[39]X.Yang, J. J.Kulig, D.K.Parker, “Pneumatic tire” United States Patent Application 20080142131,Republic of US Received 06,19,2008; accepted 12,19, 2008.
[40]T.Fukumoto,Y.Nakada,Y.Mizuno,K.Kadomaru, “Tread rubber composition and tire using the composition” Sumitomo Rubber Industries Limited (Hyogo, JP) United States Patent6147151, Republic of China Received 11,21,1994; accepted 11,14,2000.
[41]H. Zheng, Y. Zhang , Z. Peng, Y. Zhang “Influence of clay modification on the structure andmechanical properties of EPDM/montmorillonitenanocomposites ” Polymer Testing 23 (2004) 217–223,Republic of China Received 05,02, 2003; accepted 07,16 , 2003.
[42]L.szlo,S.zdi, A. Pozsgay, B.nszky “Factors and processes influencing the reinforcing effect of layered silicates in polymer nanocomposites” European Polymer Journal 43 (2007) 345–359,Received 06,07, 2006; received in revised form 10,26, 2006; accepted 11,05,2006 Available online 12,28 , 2006.
[43]Y.C.Ahn, D.R. Paul, “Rubber toughening of nylon 6 nanocomposites ” Polymer 47 (2006) 2830–2838 Received 12, 20,2005; received in revised form 02,14,2006; accepted 02,15,2006 Available online 03, 13,2006.
[44] Q.X.Jia,Y.P.Wu,Y.Q.Wang,M.Lu,L.Q.Zhang, “Enhanced interfacial interaction of rubber/clay nanocomposites bya novel two-step method” Composites Science and Technology 68 (2008) 1050–1056 Received 03,06 ,2007; received in revised form06, 22, 2007; accepted 07,03,2007Available online07, 2, 2007.
[45]J.Sharifa,W.M.Z.W.Yunusa, K.Z.H.M.Dahlanb,M.H.Ahmada, “Preparation and properties of radiation crosslinkednatural rubber/clay nanocomposites” Polymer Testing 24 (2005) 211–217 Received 06,03, 2004; accepted 08,12,2004.
[46]P.C. LeBaron, Z.Wang, T. J. Pinnavaia, “Polymer-layered silicate nanocomposites: an overview ”Applied Clay Science 15 1999.11–29 Received 12,12,1998; accepted 04,12,1999.
[47]H. Essawy , D. E.Nashar, “The use of montmorillonite as a reinforcing andcompatibilizing filler for NBR/SBR rubber blend”Polymer Testing 23 (2004) 803–807 Received 02,09,2004; accepted 03,14,2004.
[48]M.Arroyo,M.A.L.Manchado, B.Herrero Organo-montmorillonite as substitute of carbon black innatural rubber compounds ” Polymer 44 (2003) 2447–2453 Received 07,15,2002; received in revised form 12,18,2002; accepted 01, 28,2003.
[49]S.Varghese, J. K.Kocsis,“Natural rubber-based nanocomposites by latex compoundingwith layered silicates”Polymer 44 (2003) 4921–4927 Received 11,26,2002; received in revised form 03,26 ,2003; accepted 05,30,2003.
[50]G.Mathewa,J.M.Rhee,Y.S.Lee,D.H.Park,C.Nah,“Cure kinetics of ethylene acrylate rubber/clay nanocomposites”Journal of Industrial and Engineering Chemistry 14 (2008) 60–65 Received 04,18,2007; accepted 07, 11,2007.
[51]Y.Lianga,Y.Wanga,Y.Wua,Y.Lub,H.Zhanga, .Zhang,“Preparation and properties of isobutylene–isoprenerubber (IIR)/clay nanocomposites” Polymer Testing 24 (2005) 12–17 Received 07,07, 2004; accepted 08,11,2004

[52]M.Arroyo,M.A.Lo,p.Manchado,J.L.Valentı’n, .Carretero,“Morphology/behaviour relationship of nanocomposites based on natural rubber/epoxidized natural rubber blends”Composites Science and Technology 67 (2007) 1330–1339 Received 01,11,2006; received in revised form 08,04,2006; accepted 09, 08,2006 Available online 11,14,2006.
[53]S.Balakrishnan,P.R. Start,D. Raghavan, S.D. Hudson,“The influence of clay and elastomer concentration on the morphologyand fracture energy of preformed acrylic rubber dispersed clayfilled epoxy nanocomposites”Polymer 46 (2005) 11255–11262 Received 07,15,2005; received in revised form 09,30,2005; accepted 10,10,2005.
[54]B.N.Jang, C.A.Wilkie“The effects of clay on the thermal degradation behavior of poly(styrene-co-acrylonitirile) ” Polymer 46 (2005) 9702–9713 Received 05,05,2005; received in revised form 07, 21, 2005; accepted 07,26,2005 Available online 08,10, 2005.
[55]W.Dong, X.Zhang, Y.Liu,Q.Wang, H.Gui, J.Gao,Z.Song,J. Lai, F. Huang, J.Qiao“ Flame retardant nanocomposites of polyamide 6/clay/silicone rubberwith high toughness and good flowability ” Polymer 47 (2006) 6874-6879 Received 03,22,2006; received in revised form 07,03,2006; accepted 07,05,2006 Available online 08,08,2006.




[56]W.Dong, X.Zhang,Y.Liu, H.Gui,Q.Wang,J.Gao, Z.Song, J.Lai, F. Huang, J. Qiao, “Effect of rubber on properties of nylon-6/unmodified clay/rubber nanocomposites” European Polymer Journal 42 (2006) 2515–2522 Received 03,11,2006; received in revised form 04, 14,2006; accepted 04,27, 2006Available online 06,19,2006.
[57]M.Alexandre, P.Dubois,“Polymer-layered silicate nanocomposites: preparation, propertiesand uses of a new class of materials” Materials Science and Engineering, 28 (2000) 1-63 Accepted 03,20,2000.
[58]Z.F. Wanga, B. Wanga, N. Qia, H.F. Zhangb, L.Q. Zhangb “Influence of fillers on free volume and gas barrier properties instyrene-butadiene rubber studied by positrons” Polymer 46 (2005) 719–724 Received 08,29,2004; received in revised form 11,18,2004; accepted 12,01, 2004Available online 12,18,2004.
[59]R.Stephen,C. Ranganathaiah, S.Varghese, K.Joseph,S.Thomas, “Gas transport through nano and micro composites of natural rubber (NR)and their blends with carboxylated styrene butadiene rubber (XSBR) latex membranes” Polymer 47 (2006) 858–870 Received 04,19,2005; received in revised form 11,25,2005; accepted 12,08, 2005.
[60]Y.L.Lu, Z.Li , Z.Z.Yu, M.Tian, L.Q.Zhang,Y.W. Mai , “Microstructure and properties of highly filled rubber/clay nanocomposites prepared by melt blending”Composites Science and Technology 67 (2007) 2903–2913Available online 05,18,2007.


[61]S. S. Ray, M. Okamoto “Polymer/layered silicate nanocomposites: a review from preparation to processing”Prog. Polym. Sci. 28 (2003) 1539–1641 Received 05,22,2003; revised 08,18, 2003; accepted 08,22,2003.
[62]J. C. Dai, J. T. Huang “Surface modification of clays and clay–rubber composite” Applied Clay Science 15 1999.51–65 Received 09,04,1998; accepted 04,12,1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔