(18.204.227.34) 您好!臺灣時間:2021/05/19 08:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳冠廷
研究生(外文):Kuan-Ting Chen
論文名稱:液相微萃取結合毛細管電泳進行防腐劑之分析與線上濃縮結合毛細管電泳對三聚氰胺衍生物的偵測
論文名稱(外文):Liquid-phase microextraction combined with capillary electrophoresis for preservative analyses, and determination of melamine derivative by on-line concentration coupled to capillary electrophoresis
指導教授:黃悉雅
指導教授(外文):Hsi-Ya Huang
學位類別:碩士
校院名稱:中原大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:169
中文關鍵詞:三聚氰胺反向電極極性堆積陽離子掃略微胞電層析
外文關鍵詞:CSEI-sweeping-MEKCmelamineREPSM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:225
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究第一部份為液相微萃取(Liquid-phase microextraction, LPME)技術結合毛細管電泳進行防腐劑系列化合物的檢測。實驗中以聚丙烯為材質的膜為萃取液膜,實驗過程藉由攪拌速度不同、接受相與供給相的pH值變化、接受相與供給相的種類與濃度變化、萃取溶劑的種類不同以及萃取時間變化,探討萃取效果。由實驗得知,以辛醇作為萃取溶劑,供給相溶液中使分析物不帶電荷,接受相溶液中使分析物帶電荷,有最好的萃取效果,並應用在實際樣品紅酒與醬油,藉此實驗技術可同時達到純化、濃縮等步驟,降低偵測極限。
第二部份則討論線上樣品濃縮技術(on-line sample concentration)結合微胞電層析(micellar electrophoresis capillary chromatography, MEKC)進行三聚氰胺系列化合物檢測。實驗中以反向電極極性堆積模式(reversed electrode polarity stacking mode, REPSM)分析三聚氰胺衍生物,並探討樣品堆積時間、樣品注射時間、樣品基質以及界面活性劑濃度等因素,對分離與堆積效果的影響。再以CSEI-sweeping-MEKC掃略式鹼水段的濃縮技術分析三聚氰胺,探討鹼水段長度、離子濃度等因素,對分離與堆積效果的影響。上述兩種線上濃縮方法可成功將三聚氰胺系列化合物分離與降低偵測極限。
The first part of this research used a liquid-phase microextraction (LPME) technique coupled to capillary electrophoresis (CE) to determine three preservatives. Polypropylene membrane was used as extraction medium in the experiment. Several parameters including stir speed, pH and solution type of donor phase and acceptor phase, and extraction time were examined in order to achieve optimal extraction. Octanol was used as the organic solvent. A basic acceptor phase (100 mMNaOH) should be used to promote dissociation of the acidic analytes, while acidic donor phase (10 mMHCl) could achieve good extraction by neutralizing the analytes. The study demonstrated that this LPME provided efficient preservative extraction in several samples (wine and soy sauce).
In the second part, two on-line sample concentration methods were coupled individually with micellar electrokinetic chromatography (MEKC) for melamine detections. First, a reversed electrode polarity stacking mode (REPSM) was developed. Effect of several factors such as sample stacking time, sample injection length, sample matrix and surfactant concentration on separation and stacking ability were examined. All analytes except for melamine could be detected successfully with the REPSM-MEKC method. Next, a cation-selective exhaustive injection and sweeping (CSEI-sweeping) method was also developed. The composition and length of water plug, and ionic strength of basic plug were optimized. Trace-level melamine (LOD 2.79 ppb) could be detected successfully with CSEI-sweeping MEKC method. Finally, the two on-line concentrations were also applied to determine melamine residual in food container made by melamine resins.
目錄
摘要 I
Abstract II
謝誌....................................................................................................................III
目錄 IV
圖目錄……………………………………………………………………….....IX
表目錄 XII
第一章 緒論 1
1-1. 防腐劑系列化合物介紹 ………….1
1-1-1.文獻回顧及研究動機 2
1-2.三聚氰胺及其衍生物介紹 7
1-2-1.研究動機及文獻回顧 8
1-3. 液相微萃取法介紹 12
1-3-1. 單滴微萃取與頂空式單滴微萃取 12
1-3-2. 動態液相微萃取 13
1-3-4. 液相微萃取法原理 15
1-3-5. 影響液相微萃取的因素 16
1-3-6. 液相微萃取2-phase與3-phase文獻回顧……………………...17
第二章 毛細管電泳簡介 24
2-1. 毛細管電泳歷史沿革與發展 24
2-2. 毛細管電泳系統 25
2-3. 毛細管電泳分離原理 26
2-3-1. 電滲流 27
2-3-2. 樣品注入 31
2-3-3. 偵測方法 32

目錄(續)
2-4. 微胞電層析 33
第三章 線上樣品濃縮 34
3-1. 線上樣品前濃縮技術簡介 ( On-line Sample Concentration ) 34
3-2. 樣品濃縮原理 34
3-3. 樣品濃縮之電滲流性質 35
3-4. 線上樣品濃縮技術之介紹 36
3-4-1. 正常堆積模式( normal stacking mode, NSM ) 36
3-4-2. 大體積樣品堆積( lvss-volume sample stacking, LVSS ) 37
3-4-3. 場放大樣品注射( field-amplified sample injection, FASS ) 37
3-4-4. 掃略式堆積模式 ( sweeping ) 38
3-4-5. 反向電極極性堆積模式 39
4-1. 液相微萃取結合毛細管電泳進行防腐劑之分析 41
4-1-1.實驗儀器設備及裝置 41
4-1-2. 藥品名稱及廠牌介紹 42
4-1-3. 防腐劑液相微萃取之實驗條件 46
4-1-3-1. 毛細管活化與清洗…………………………………………..46
4-1-3-2. 聚丙烯膜之清洗……………………………………………..47
4-1-3-3. 微胞緩衝溶液之製備……………………………………….49
4-1-3-4. 防腐劑標準品之製備………………………………………..49
4-1-3-5. 實際樣品處理步驟…………………………………………..49
4-1-3-6. 磷酸與樣品基質之製備..........................................................51
4-1-3-7. 接受相與供給相溶液之製備………………………………..52
4-1-4. 儀器控制參數 53
4-1-4-1. 自動毛細管電泳儀……………………………………….….53
目錄(續)
4-2. 線上濃縮結合毛細管電泳對三聚氰胺衍生物的偵測之實驗介紹 54
4-2-1. 實驗儀器裝置 54
4-2-2. 藥品名稱及廠牌介紹 55
4-2-3. 微胞電層析分離三聚氰胺之實驗條件 58
4-2-3-1. 新毛細管活化………………………………………………..58
4-2-3-2. 微胞緩衝溶液之製備..............................................................58
4-2-3-3. 三聚氰胺標準品之製備……………………………………..58
4-2-3-4. 實際樣品處理步驟…………………………………………..58

4-2-4. 儀器控制參數 60
4-2-4-1. 自動毛細管電泳儀…………………………………………..60
5-1液相微萃取實驗Ι 61
5-1-1萃取時間對己二烯酸的影響 62
5-1-2 供給相體積對己二烯酸與對羥基苯甲酸甲酯的影響 64
5-2. 液相微萃取實驗II 66
5-2-1. 萃取時間對防腐劑之液相微萃取的影響 67
5-3. 液相微萃取實驗III 69
5-3-1. 攪拌速度對防腐劑之萃取的影響 70
5-3-2. 接受相pH值變化對防腐劑之液相微萃取的影響 73
5-3-3. 接受相種類與離子濃度對防腐劑之液相微萃取的影響 76
5-3-4. 供給相pH值變化對防腐劑之液相微萃取的影響 79
5-3-5. 供給相溶液種類與離子濃度對防腐劑之液相微萃取的影響 82
5-3-6. 萃取溶劑種類對防腐劑之液相微萃取的影響 85
5-3-7. 氯化鈉添加量對防腐劑之液相微萃取的影響 88
5-3-8. 萃取時間對防腐劑之液相微萃取的影響 91
5-4. 液相微萃取法最佳條件 94
目錄(續)
5-5. 正常注射與液相微萃取注射比較……………………………………..95
5-6. 液相微萃取技術之效能評估 97
5-6-1. 遷移時間與注射面積再線性 97
5-6-2. 偵測極限 97
5-6-3. 檢量線與相關係數值 98
5-6-4. 液相微萃取模式袋子回收率之再現性........................................99
5-6-5. 實際樣品檢測...............................................................................100

5-7. 結論……………………………………………………………………105
第六章 線上樣品濃縮實驗之結果與討論 106
6-1. 反向電極極性堆積模式 106
6-1-1. 緩衝溶液之SDS濃度對濃縮效果的影響 107
6-1-2. 在pH10緩衝溶液中樣品堆積時間對濃縮效果的影響...........110

6-1-3. 在pH6緩衝溶液中樣品堆積時間對濃縮效果的影響.............113
6-2.正常注射與反向電極極性堆積模式比較 115
6-3.線上樣品濃縮技術之效能評估 117
6-3-1.遷移時間與注射面積再現性 117
6-3-3.檢量線與線性相關數值 118
6-4.陽離子選擇性徹底注射-掃略式-微胞層層析(CSEI-sweeping-MEKC) 119
6-5.前端溶液對濃縮效果的影響(酸水段) 120
6-5-1.有無水段對濃縮效果影響 120
6-6-1.有無水段對濃縮效果影響 124
6-6-2.水段秒數變化對濃縮效果的影響 127
6-6-3.樣品基質濃度變化對濃縮效果的影響 129
目錄(續)
6-6-4.鹼段秒數變化對濃縮效果的影響 131
6-7.正常堆積模式與線上濃縮注射模式比較 133
6-8. 線上樣品濃縮技術之效能評估 135
6-8-1. 遷移時間與注射面積再現性 135
6-8-2.偵測極限 135
6-8-3. 檢量線與相關數值 136
6-8-4. 實際樣品檢測...............................................................................137
6-9. 結論 142
第七章 總結 143
參考文獻……………………………………………………………………...144













圖目錄
圖1-1. 單滴微萃取 13
圖1-2. 頂空式單滴微萃取……………………………………………………19
圖1-3. 動態液相微萃取 14
圖1-4. 三相液相微萃取 15
圖1-5. 兩相液相微萃取………………………………………………………21
圖2-1. 毛細管電泳儀簡圖 25
圖2-2. 電雙層示意圖 28
圖2-3. (a)平板流型與(b)拋物線流型圖 29
圖2-4. 電滲流與離子遷移之方向及大小 30
圖2-5. 實際離子遷移速度示意圖 30
圖3-1. 正常堆積模式(NSM)流程示意圖 36
圖3-2. 大體積樣品堆積(LVSS)流程示意圖 37
圖3-3. 場放大樣品注射(FASS)流程示意圖 38
圖3-4. 掃略式堆積模式( sweeping )流程示意圖 39
圖3-5. 反向電極極性堆積模式(REPSM)流程示意圖第四章 實驗介紹 40
圖4-1.聚丙烯膜清洗後進行blank的測試 48
圖5-1.液相微萃取實驗Ι示意圖 61
圖 5-2. 不同萃取時間對己二烯酸回收率 62
圖5-3. 萃取時間對己二烯酸的影響 63
圖5-4. 萃取時間對己二烯酸與對羥基苯甲酸甲酯的影響 65
圖5-5.液相微萃取實驗II流程示意圖 66
圖5-6.萃取時間對防腐劑之液相微萃取的影響 68
圖5-7.液相微萃取實驗III流程示意圖 69
圖5-8. 攪拌速度對防腐劑之液相微萃取的影響 71
圖5-9. 攪拌速度對防腐劑的影響 72
圖目錄(續)

圖5-10.接受相pH值變化對防腐劑之液相微萃取的影響 74
圖5-11.接受相溶液pH值變化對防腐劑的影響 75
圖5-12. 接受相種類與離子濃度對防腐劑之液相微萃取的影響 77
圖5-13.接受相種類與離子濃度對防腐劑的影響 78
圖5-14.供給相pH值變化對防腐劑之液相微萃取的影響 80
圖5-15.供給相溶液pH值變化對防腐劑的影響 81
圖5-16.供給相溶液種類與離子濃度對防腐劑之液相微萃取的影響 83
圖5-17.供給相溶液種類與離子濃度對防腐劑的影響 84
圖5-18.萃取溶劑種類對防腐劑之液相微萃取的影響 86
圖5-19.萃取溶劑種類對防腐劑的影響 87
圖5-20.NaCl添加量對防腐劑之液相微萃取的影響 89
圖5-21.NaCl添加量對防腐劑的影響………………………………………..90
圖5-22.萃取時間對防腐劑之液相微萃取的影響 92
圖5-23.萃取時間對防腐劑之回收率的影響 93
圖5-24. (a)正常注射模式與(b)液相微萃取注射模式比較 96
圖5-25. 葡萄紅酒之檢測................................................................................101
圖5-26. 醬油之檢測........................................................................................102
圖5-27. 汽水之檢測........................................................................................103
圖6-1. REPSM流程示意圖 107
圖6-2. 背景溶液之SDS濃度對濃縮效果的影響 108
圖6-3. 不同SDS濃度的SER趨勢圖 109
圖6-4. 在pH10緩衝溶液中樣品堆積時間對濃縮效果的影響與電流圖....111
圖6-5. 在pH10緩衝溶液中樣品堆積時間之SER趨勢圖 112
圖6-6. 在pH6緩衝溶液中樣品堆積時間對濃縮效果的影響REPSM實驗條件 114
圖目錄(續)

圖6-7 正常注射模式與反向電極極性堆積模式………………………...…116
圖6-8. CSEI-Sweeping-MEKC操作流程示意圖(酸水段) 119
圖6-9.有無水段的影響 121
圖6-10. 酸段秒數變化對濃縮效果影響 123
圖6-11. CSEI-Sweeping-MEKC操作流程示意圖(鹼水段) 125
圖6-12. 有無水段對濃縮效果影響 126
圖6-13.水段秒數變化對濃縮效果的影響 128
圖6-14.樣品基質濃度變化對濃縮效果的影響 130
圖6-15. 鹼段秒數變化對濃縮效果的影響 132
圖6-16.正常堆積模式與線上濃縮注射模式比較…………………………..134圖6-17.以CSEI-sweeping-MEKC測定檸檬汁在美耐皿中所含三聚氰胺含 量.......................................................................................................................138
圖6-18. 以CSEI-sweeping-MEKC測定磷酸在美耐皿中所含三聚氰胺含量.......................................................................................................................139
圖6-19.以CSEI-sweeping-MEKC測定4%醋酸在美耐皿中含三聚氰胺的量.......................................................................................................................140





表目錄
表1-1.防腐劑添加於食品中的用量限制 2
表1-2. 檢測防腐劑相關文獻 4
表1-2(續). 檢測防腐劑相關文獻 5
表1-2(續). 檢測防腐劑相關文獻 6
表1-5.檢測三聚氰胺及其衍生物相關文獻 9
表1-5(續).檢測三聚氰胺及其衍生物相關文獻 10
表1-5. HPLC對三聚氰酸偵測的相關文獻 11
表1-3. 液相微萃取膜(2-phase)相關文獻 18
表1-3(續). 液相微萃取膜(2-phase)相關文獻 19
表1-3(續). 液相微萃取膜(2-phase)相關文獻 20
表1-4. 液相微萃取膜(3-phase)相關文獻 21
表1-4(續). 液相微萃取膜(3-phase)相關文獻 22
表1-4(續). 液相微萃取膜(3-phase)相關文獻 23
表4-1. 儀器設備名稱及廠牌規格 41
表4-2.本實驗所用防腐劑標準品 42
表4-3.本實驗所用防腐劑結構及性質 42
表4-4. 液相微萃取所需之萃取溶劑 44
表4-5. 液相微萃取所需之萃取溶劑結構式與性質 45
表4-6. 不同pH值10mM磷酸溶液配製 51
表4-7. 接受相與供給相濃度的配製 52
表4-8. 防腐劑之實驗分離條件 53
表4-9. 儀器設備名稱及廠牌規格 54
表4-10.本實驗中所使用之藥品名稱及廠牌介紹 55
表4-11.本實驗所用之藥品名稱及廠牌介紹 56

表目錄(續)
表4-12.本實驗所用三聚氰胺標準品之結構與性質 56
表4-13. 三聚氰胺之線上濃縮及CE分離條件 60
表5-1.不同萃取時間對己二烯酸回收率 62
表5-2.不同萃取時間對己二烯酸與對羥基苯甲酸甲酯回收率 64
表5-3. 液相微萃取實驗II不同萃取時間之回收率 67
表5-4. 攪拌速度對防腐劑之回收率的影響 72
表5-5.接受相pH值變化對防腐劑回收率的影響 75
表5-6. 接受相種類與離子濃度對防腐劑回收率的影響 78
表5-7.供給相pH值變化對防腐劑回收率的影響 81
表5-8.供給相對防腐劑之回收率的影響 84
表5-9.萃取溶劑種類對防腐劑之回收率的影響 87
表5-10. NaCl添加量對防腐劑之回收率的影響 90
表5-11.萃取時間對防腐劑之回收率的影響 93
表5-12. 最佳條件下之濃縮倍率 95
表5-13. 遷移時間與注射面積再現性 97
表5-14. 正常注射模式與液相微萃取法對防腐劑所得之偵測極限 98
表5-15. 檢量線與相關係數值a 99
表5-16. 液相微萃取模式袋子回收率之再現性..............................................99
表5-17. 添加於葡萄紅酒所測得之回收率....................................................104
表5-18. 添加於醬油所測得之回收率............................................................104
表5-19. 添加於汽水所測得之回收率............................................................104
表6-1. 不同SDS濃度的放大倍率(SER值) 109
表6-2. 在pH10緩衝溶液中樣品堆積時間之放大倍率 112
表6-3.最佳條件之放大倍率 115
表6-4. 遷移時間與注射面積再現性 117
表目錄(續)
表6-5.正常模式與REPSM所得之偵測極限 117
表6-6.檢量線與線性相關數值a 118
表6-7.檢量線與線性相關數值b 118
表6-8.有無水段之放大率 (SER值) 120
表6-9. 酸段秒數變化對濃縮效果影響(SER值) 122
表6-10.有無水段之放大率 (SER值) 125
表6-11.水段秒數變化之放大倍率(SER值) 127
表6-12.樣品基質濃度變化對濃縮效果的影響(SER值) 129
表6-13.鹼段秒數變化對濃縮效果的影響(SER值) 131
表6-14.最佳條件之放大倍率 133
表6-15.遷移時間與注射面積再現性 135
表6-16.正常模式與線上濃縮模式所得之偵測極限………………………..135

表6-17.檢量線與相關數值.............................................................................136
表6-18.檢量線與相關數值 136
表6-19 美耐皿碗中三聚氰胺檢測所得濃度……………………………….141
參考文獻
[1] Q.-C. Chen, J.Wang, J. Chromatogr. A 2001, 937, 57.
[2] Y.-T. Xie, P. Chen,W.-Z.Wei, Microchem. J. 1999, 61, 58.
[3] V. A. Lozano, J. M. Camina, M. S. Boeris, E. J. Marchevsky, Talanta. 2007, 73, 282.
[4] N. R. Marsili, A. Lista, B. S. F. Band, H. C. Goicoechea, A. C. Olivieri, J. Agric. Food Chem. 2004, 52, 2479.
[5] C. Dong,W. Wang, Anal. Chim. Acta 2006, 562, 23.
[6] M. Gonzalez, M. Gallego, M. Valcarcel, J. Chromatogr. A 1998, 823, 321.
[7] M. Kakemoto, J. Chromatogr. A 1992, 594, 253.
[8] Z. Pan, L. Wang, W. Mo, C. Wang, W. Hu, J. Zhang, Anal. Chim. Acta 2005, 545, 218.
[9] I. R. Techakriengkrai, J. Surakarnkul, Food Compos. Anal. 2007, 20, 220.
[10] B. Saad, M. F. Bari, M. I. Saleh, K. Ahmad, M. M. K. Talib, J. Chromatogr. A 2005, 1073, 393.
[11] F. J. M. Mota, I. M. P. L. V. O. Ferreira, S. C. Cunha, M. B. P. P. Oliveira, Food Chem. 2003, 82, 469.
[12] S. A. V. Tfouni, M. C. F. Toledo, Food Control 2002, 13, 117.
[13] M. D. Morales, S. Morante, A. Escarpa, M. C. Gonzalez, A. J. Reviejo, J. M. Pingarron, Talanta 2002, 57, 1189.
[14] I. Pant, V. C. Trenerry, Food Chem. 1995, 53, 219.
[15] C. O. Thompson, V. C. Trenerry, J. Chromatogr. A 1995, 694, 507
[16] Y. Tang,W. Mingjia, Food Chem. 2007, 103, 243.
[17] J. C. Walker, S. E. Zaugg, E. B. Walker, J. Chromatogr. A 1997, 781, 481.
[18] K.-L. Kuo, Y.-Z. Hsieh, J. Chromatogr. A 1997, 768, 334.
[19] I. Mato, J. F. Hidobro, J. Simal-Lozano, M. T. Sancho, Anal. Chim. Acta 2006, 565, 190.
[20] H.-Y. Huang, C.-L. Chuang, C.-W. Chiu, J.-M. Yeh, Food Chem. 2005, 89, 315.
[21] H.-Y. Huang, C.-W. Chiu, I.-Y. Huang, J.-M. Yeh, Electrophoresis 2004, 25, 3237.
[22] D. Flottman, J. Hins, T. Meissner, C. Dietrich, C. Rettenmaier,
Chromatographia S2004, 60, 253.
[23] S. He, Y. Zhao, Z. Zhu, H. Liu, M. Li, Y. Shao, Qiankun Zhuang. Talanta 2006, 69, 166
[24] M. Jaworska, Z. Szulinska, M. Wilk, J. Sep. Sci. 2005, 28, 137.
[25] J. P. Toth, P. C. Bardalaye, J. Chromatogr. 1987, 408, 335.
[26] P. Cabras, M. Meloni, L. Spanedda, J. Chromatogr. 1990, 505, 413
[27] J. Pukkila, K. Peltonen, T. Savolainen, J. Chromatogr. 1987, 411, 409.
[28] T. Sugita, H. Ishiwata, K. Yoshihira, A. Maekawa, Bull. EnViron. Contam. Toxicol. 1990, 44, 567.
[29] R. A. Yokley, L. C. Mayer, R. Rezaaiyan, M. E. Manuli, M. W. Cheung, J. Agric. Food Chem. 2000, 48, 3352.
[30] H. A. Cook, C. W. Klampfl, W. Buchberger, Electrophoresis 2005, 26, 1576.
[31] T. Vail, P. R. Jones, O. D. Sparkman, J. Anal. Toxicol. 2007, 31, 304.
[32] J. V. Sancho, M. Ibanez, S. Grimalt, O. J. Pozo, F. Hernandez, Anal. Chim. Acta 2005, 530, 237.
[33] M. S. Filigenzi, E. R. Tor, R. H. Poppenga, L. A. Aston, B. Puschner Rapid Commun. Mass Spectrom. 2007, 21, 4027.
[34] R. Cantu, O. Evans, F. K. Kawahara, J. A. Shoemaker, A. P. Dufour,. Anal. Chem. 2000, 72, 5820.
[35] R. Cantu, O. Evans, F. K. Kawahara, L. J. Wymer, A. P. Dufour, Anal. Chem. 2001, 73, 3358.
[36] K. Patel, K. Jones, J. Chromatogr. B 2007, 853, 360.
[37] Y. C. Fiamegos, C. N. Konidari, C. D. Stalikas, Anal. Chem. 2003, 75, 4034.
[38] M. Roberto, R. Daniel, G. Raquel, Anal Bioanal Chem. 2008, 392, 523.
[39] S. Ehling, S. Tefera, I. P. HO. Food Additives and Contaminants 2007, 24, 1319.
[40] T. Sugita, H. Ishiwata, K. Yoshihira, A. Maekawa, Bull. Environ. Contam.Toxicol. 1990, 44, 567.
[41] H. Färber, K. Nick, H. F. Schöler, Fresenius J. Anal. Chem. 1994, 350, 145.
[42] S. Guenu, M.-C. Hennion, J. Chromatogr., A 1994, 665, 243.
[43] V. Pichon, L. Chen, S. Guenu, M.-C. Hennion, J. Chromatogr., A 1995,711, 257.
[44] L. M. Allen, T. V. Briggle, C. D. Pfaffenberger, Drug Metab. 1982, 13 (3),499.
[45] T. V. Briggle, L. M. Allen, R. C. Duncan, C. D. Pfaffenberger, J. Assoc. Off. Anal. Chem. 1981, 64 (5), 1222.
[46] A. Ghiorghis, A. H. Talebian, J. Liq. Chromatogr. 1991, 14 (12), 2331.
[47] C. Y. Kontchou, N. Gschwind, Ecotoxicol. Environ. Saf. 1999, 43, 47.
[48] E. Pelizzeti, V. Maurino, C. Minero, V. Carlin, E. Pramauro, O. Zerbinati, M. L. Tosato, Environ. Sci. Technol. 1990, 24, 1559.
[49] M. C. Gonzalez, A. M. Braun, Chemosphere 1994, 28 (12), 2121.
[50] C. J. Downes, J. W. Mitchell, E. S. Viotto, N. J. Eggers, Water Res. 1984, 18 (3), 277.
[51] P. M. Schaber, J. Colson, S. Higgins, E. Dietz, D. Thielen, B. Anspach, J. Brauer. Am. Lab. 1999, 31 (16), 13.
[52]王守堅、勞工安全衛生簡訊第89期
[53] M. A. Jeannot, F. F. Cantwell, Anal. Chem. 1996, 68, 2236
[54] A. Theis, Adam J. Waldack, Susan M. Hansen, M. A. Jeannot., Anal. Chem. 2001, 73, 5651.
[55] Y. He, H. K. Lee, Anal. Chem. 1997, 69, 4634.
[56] K. E. Rasmussen, S. Pedersen-Bjergaard, M. Krogh, H. Grefslie Ugland, T. Grønhaug, Development of a simple in-vial liquid-phase microextraction device for drug analysis compatible with capillary gas chromatography, capillary electrophoresis and high-performance liquid chromatography, J. Chromatogr. A 2000, 873, 3.
[57] H. G. Ugland, M. Krogh, K. E. Rasmussen, Liquid-phase microextraction as a sample preparation technique prior to capillary gas chromatographic-determination of benzodiazepines in biological matrices, J. Chromatogr. B 2000, 749, 85.
[58] K. E. Kramer, A. R. J. Andrews, Screening method for 11-nor-△9 -tetrahydrocannabinol-9-carboxylic acid in urine using hollow fiber membrane solvent microextraction with in-tube derivatization, J. Chromatogr. B 2001 760, 27.
[59] J. A° . Jo¨nsson, L. Mathiasson, J. Sep. Sci. 2001, 24, 495.
[60] L. de Jager, A. J. R. Andrews, Development of a screening method for cocaine and cocaine metabolites in saliva using hollow fiber membrane solvent microextraction, Anal. Chim. Acta 2002, 458, 311.
[61] C. Basheer, H. K. Lee, J. P. Obbard, Determination of organic micropollutants in rainwater using hollow fiber membrane/liquid-phase microextraction combined with gas chromatography–mass spectrometry, J. Chromatogr. A 2002, 968, 191.
[62] L. Zhao, H. K. Lee, Liquid-Phase Microextraction Combined with Hollow Fiber as a Sample Preparation Technique Prior to Gas Chromatography/Mass Spectrometry, Anal. Chem. 2002, 74, 2486.
[63] S. King, J. S. Meyer, A. R. J. Andrews, Screening method for polycyclic aromatic hydrocarbons in soil using hollow fiber membrane solvent microextraction, J. Chromatogr. A 2002, 982, 201.
[64] G. Shen, H. K. Lee, Hollow Fiber-Protected Liquid-Phase Microextraction of Triazine Herbicides, Anal. Chem. 2002, 74, 648.
[65] S. M¨uller, M. M¨oder, S. Schrader, P. Popp, Semi-automated hollow-fibre membrane extraction, a novel enrichment technique for the determination of biologically active compounds in water samples, J. Chromatogr. A 2003, 985, 99.
[66] C. Basheer,R. Balasubramanian, H. K. Lee, Determination of organic micropollutants in rainwater using hollow fiber membrane/liquid-phase microextraction combined with gas chromatography–mass spectrometry, J. Chromatogr.A 2003, 1016, 11.
[67] L. Hou, G. Shen, H. K. Lee, J. Chromatogr. A 2003, 107, 107.
[68] E. Psillakis, N. Kalogerakis, Hollow-fibre liquid-phase microextraction of phthalate esters from water, J. Chromatogr. A 2003, 999, 145.
[69] H.-J. Pan, W.-H. Ho, Determination of fungicides in water using liquid phase microextraction and gas chromatography with electron capture detection, Anal. Chim. Acta 2004, 527, 61.
[70] E. Psillakis, D. Mantzavinos, N. Kalogerakis, Development of a hollow fibre liquid phase microextraction method to monitor the sonochemical degradation of explosives in water, Anal. Chim. Acta 2004, 501, 3.
[71] C. -H. Yan, H. -F. Wu, A liquid-phase microextraction method, combining a dual gauge microsyringe with a hollow fiber membrane, for the determination of organochlorine pesticides in aqueous solution by gas chromatography/ion trap mass spectrometry, Rapid Commun. Mass Spectrom. 2004, 18, 3015.
[72] L. Hou, H. K. Lee, Determination of pesticides in soil by liquid-phase microextraction and gas chromatography–mass spectrometry, J. Chromatogr. A 2004, 1038, 37.
[73] M. Marlow, R. J. Hurtubise, Liquid–liquid–liquid microextraction for the enrichment of polycyclic aromatic hydrocarbon metabolites investigated with fluorescence spectroscopy and capillary electrophoresis, Anal. Chim. Acta 2004, 526, 41.
[74] C. Basheer, H. K. Lee, J. P. Obbard, Application of liquid-phase microextraction and gas chromatography–mass spectrometry for the determination of polychlorinated biphenyls in blood plasma, J. Chromatogr. A 2004, 1022, 161.
[75] D. A. Lambropoulou, T. A. Albanis, Sensitive trace enrichment of environmental andiandrogen vinclozolin from natural waters and sediment samples using hollow-fiber liquid-phase microextraction, J. Chromatogr. A 2004, 1061, 11.
[76] E. Gonz´alez-Penas, C. Leache, M. Viscarret, A. Perez de Obanos, C. Aragu´as, A. L´opez de Cerain, Determination of ochratoxin A in wine using liquid-phase microextraction combined with liquid chromatography with fluorescence detection, J. Chromatogr. A 2004, 1025, 163.
[77] F. J. Malagueno de Santana, A. R. M. de Oliveira, P. S. Bunato, Anal. Chim. Acta 2005, 549, 96.
[78] D. A. Lambropoulou, T. A. Albanis, Application of hollow fiber liquid phase microextraction for the determination of insecticides in water, J. Chromatogr. A 2005, 1072, 55.
[79] C. Basheer, J. P. Obbard, H. K. Lee, Analysis of persistent organic pollutants in marine sediments using a novel microwave assisted solvent extraction and liquid-phase microextraction technique, J. Chromatogr. A 2005, 1068, 221.
[80] X. Jiang, C. Basheer, J. Zhang, H. K. Lee, Dynamic hollow fiber-supported headspace liquid-phase microextraction, J. Chromatogr. A 2005, 1087, 289.
[81] M. Charalabaki, E. Psillakis, D. Mantzavinos, N. Kalogerakis, Analysis of polycyclic aromatic hydrocarbons in wastewater treatment plant effluents using hollow fibre liquid-phase microextraction, Chemosphere 2005, 60, 690.
[82] A. Leinonen, K. Vuorensola, L. -M. Lepola, T. Kuuranne, T. Kotiaho, R. A. Ketola, R. Kostiainen, Liquid-phase microextraction for sample preparation in analysis of unconjugated anabolic steroids in urine, Anal. Chim. Acta 2006, 559, 166.
[83] S. M. Richoll, I. Col´on, Determination of triphenylphosphine oxide in active pharmaceutical ingredients by hollow-fiber liquid-phase microextraction followed by reversed-phase liquid chromatography, J. Chromatogr. A 2006, 1127, 147.
[84] J. Wu, H. K. Lee, Injection Port Derivatization Following Ion-Pair Hollow Fiber-Protected Liquid-Phase Microextraction for Determining Acidic Herbicides by Gas Chromatography/Mass Spectrometry, Anal. Chem. 2006, 78, 7292.
[85] J. Zhang, H. K. Lee, Application of liquid-phase microextraction and on-column derivatization combined with gas chromatography–mass spectrometry to the determination of carbamate pesticides, J. Chromatogr. A 2006, 1117, 31.
[86] B. -W. Lai, B. -M. Liu, P. K. Malik, H. -F.Wu, Combination of liquid-phase hollow fiber membrane microextraction with gas chromatography-negative chemical ionization mass spectrometry for the determination of dichlorophenol isomers in water and urine, Anal. Chim. Acta 2006, 576, 61.
[87] J. Wu, H. K. Lee, Ion-pair dynamic liquid-phase microextraction combined with injection-port derivatization for the determination of long-chain fatty acids in water samples, J. Chromatogr. A 2006, 1133, 13.
[88] L. Xia, B. Hu, Z. Jiang, Y. Wu, R. Chen, L. Li, Hollow fiber liquid phase microextraction combined with electrothermal vaporization ICP-MS for the speciation of inorganic selenium in natural waters, J. Anal. At. Spectrom. 2006, 21, 362.
[89] P. -S. Chen, S. -D. Huang, Determination of ethoprop, diazinon, disulfoton and fenthion using dynamic hollow fiber-protected liquid-phase microextraction coupled with gas chromatography–mass spectrometry, Talanta 2006, 69, 669.
[90] J. Zhang, T. Su, H. K. Lee, Development and application of microporous hollow fiber protected liquid-phase microextraction via gaseous diffusion to the determination of phenols in water, J. Chromatogr. A 2006, 1121, 10.
[91] N. Fontanals, T. Barri, S. Bergstro¨m, J. A° . Jo¨nsson, Determination of polybrominated diphenyl ethers at trace levels in environmental waters using hollow-fiber microporous membrane liquid–liquid extraction and gas chromatography–mass spectrometry, J. Chromatogr. A 2006, 1133, 41.
[92] K. -J. Chia, S. -D. Huang, Simultaneous derivatization and extraction of primary amines in river water with dynamic hollow fiber liquid-phase microextraction followed by gas chromatography–mass spectrometric detection, J. Chromatogr. A 2006, 1103, 158.
[93] N. Vora-adisak, R. Varanusupakul, A simple supported liquid hollow fiber membrane microextraction for sample preparation of trihalomethanes in water samples, J. Chromatogr. A 2006, 1121, 236.
[94] H. S. N. Lee, C. Basheer, H. K. Lee, Determination of trace level chemical warfare agents in water and slurry samples using hollow fibre-protected liquid-phase microextraction followed by gas chromatography–mass spectrometry, J. Chromatogr. A 2006, 1124, 91.
[95] D. K. Dubey, D. Pardasani, A. K. Gupta, M. Palit, P. K. Kanaujia, V. Tak, Hollow fiber-mediated liquid-phase microextraction of chemical warfare agents from water, J. Chromatogr. A 2006, 1107, 29.
[96] G. Ouyang, J. Pawliszyn, Kinetic Calibration for Automated Hollow Fiber-Protected Liquid-Phase Microextraction, Anal. Chem. 2006, 78, 5783.
[97] S. -P. Huang, S. -D. Huang, Dynamic hollow fiber protected liquid phase microextraction and quantification using gas chromatography combined with electron capture detection of organochlorine pesticides in green tea leaves and ready-to-drink tea, J. Chromatogr. A 2006, 1135, 6.
[98] Y. G. Guo, J. Zhang, D. N. Liu, H. F. Fu, Determination of n-octanol–water partition coefficients by hollow-fiber membrane solvent microextraction coupled with HPLC, Anal. Bioanal. Chem. 2006, 386, 2193.
[99] G. Ouyang, W. Zhao, J. Pawliszyn, Automation and optimization of liquid-phase microextraction by gas chromatography, J. Chromatogr. A 2007, 1138, 47.
[100] S. Pedersen-Bjergaard, K. E. Rasmussen, Liquid-Liquid-Liquid Microextraction for Sample Preparation of Biological Fluids Prior to Capillary Electrophoresis, Anal. Chem. 1999, 71, 2650.
[101] S. Pedersen-Bjergaard, K. E. Rasmussen, Liquid-liquid-liquid microextraction of nitrophenols with a hollow fiber membrane prior to capillary liquid chromatography, Electrophoresis 2000, 21, 579.
[102] K. E. Rasmussen, S. Pedersen-Bjergaard, M. Krogh, H. Grefslie Ugland, T. Grønhaug, Development of a simple in-vial liquid-phase microextraction device for drug analysis compatible with capillary gas chromatography, capillary electrophoresis and high-performance liquid chromatography, J. Chromatogr. A 2000, 873, 3.
[103] T. Grønhaug Halvorsen, S. Pedersen-Bjergaard, J. L. E. Reubsaet, K. E. Rasmussen, Liquid-phase microextraction of drugs from human breast milk, J. Sep. Sci. 2001, 24, 615.
[104] T. Grønhaug Halvorsen, S. Pedersen-Bjergaard, K. E. Rasmussen, J. Chromatogr.B 2001, 760, 219.
[105] T. Grønhaug Halvorsen, S. Pedersen-Bjergaard, K. E. Rasmussen, Stereospecific determination of citalopram and desmethylcitalopram by capillary electrophoresis and liquidphase microextraction, J. Chromatogr. A 2001, 909, 87.
[106] L. Zhu, L. Zhu, H. K. Lee, Liquid–liquid–liquid microextraction of nitrophenols with a hollow fiber membrane prior to capillary liquid chromatography, J. Chromatogr. A 2001, 924, 407.
[107] L. Zhu, C. Tu, H. K. Lee, Liquid-Phase Microextraction of Phenolic Compounds Combined with On-Line Preconcentration by Field-Amplified Sample Injection at Low pH in Micellar Electrokinetic Chromatography, Anal. Chem. 2001, 73, 5655.
[108] L. Hou, X. Wen, C. Tu, H. K. Lee, Combination of liquid-phase microextraction and on-column stacking for trace analysis of amino alcohols by capillary electrophoresis, J. Chromatogr. A 2002, 979, 163.
[109] T. S. Ho, S. Pedersen-Bjergaard, K. E. Rasmussen, Analyst 2002, 127, 608.
[110] S. Pedersen-Bjergaard, T. S. Ho, K. E. Rasmussen, Fundamental studies on selectivity in 3-phase liquid-phase microextraction (LPME) of basic drugs, J. Sep. Sci. 2002, 25, 141.
[111] S. Andersen, T. Grønhaug Halvorsen, S. Pedersen-Bjergaard, K.E. Rasmussen, Liquid-phase microextraction combined with capillary electrophoresis, a promising tool for the determination of chiral drugs in biological matrices, J. Chromatogr. A 2002, 963, 303.
[112] L. Zhao, L. Zhu, H. K. Lee, A nalysis of aromatic amines in water samples by liquid–liquid–liquid microextraction with hollow fibers and high-performance liquid chromatography, J. Chromatogr. A 2002, 963, 239.
[113] L. Zhu, K. Huey, L. Zhao, H. K. Lee, Analysis of phenoxy herbicides in bovine milk by means of liquid–liquid–liquid microextraction with a hollow-fiber membrane, J. Chromatogr. A 2002, 963, 335.
[114] A. Bjørhovde, T. Grønhaug Halvorsen, K. E. Rasmussen, S.
Pedersen-Bjergaard, Liquid-phase microextraction of drugs from human breast milk, Anal. Chim. Acta 2003, 491, 155.
[115] T. Grønhaug Halvorsen, S. Pedersen-Bjergaard, J. L. E. Reubsaet, K. E. Rasmussen, Liquid-phase microextraction combined with liquid chromatography-mass spectrometry. Extraction from small volumes of biological samples, J. Sep. Sci. 2003, 26, 1520.
[116] T. S. Ho,T. Grønhaug Halvorsen, S. Pedersen-Bjergaard, K. E. Rasmussen, Liquid-phase microextraction of hydrophilic drugs by carrier-mediated transport, J. Chromatogr. A 2003, 998, 61.
[117] H. Grefslie Ugland, M. Krogh, J. L. E. Reubsaet, Three-phase liquid-phase microextraction of weakly basic drugs from whole blood, J. Chromatogr. B 2003, 798, 127.
[118] S. Andersen, T. Grønhaug Halvorsen, S. Pedersen-Bjergaard, K. E. Rasmussen, L. Tanum, H. Refsum, Liquid-phase microextraction and capillary electrophoresis of citalopram, an antidepressant drug, J. Pharm. Biomed. Anal. 2003, 33, 263.
[119] T. Kuuranne, T. Kotiaho, S. Pedersen-Bjergaard, K. E. Rasmussen, A. Leinonen, S. Westwood, R. Kostiainen, Feasibility of a liquid-phase microextraction sample clean-up and liquid chromatographic/mass spectrometric screening method for selected anabolic steroid glucuronides in biological samples, J. Mass Spectrom. 2003, 38, 16.
[120] L. Hou, H. K. Lee, Dynamic Three-Phase Microextraction as a Sample Preparation Technique Prior to Capillary Electrophoresis, Anal. Chem. 2003, 75, 2784.
[121] J. Benito Quintana, R. Rodil, T. Reemtsma, Suitability of hollow fibre liquid-phase microextraction for the determination of acidic pharmaceuticals in wastewater by liquid chromatography–electrospray tandem mass spectrometry without matrix effects, J. Chromatogr.A 2004, 1061, 19.
[122] X. Wen, C. Tu, H. K. Lee, Two-Step Liquid-Liquid-Liquid Microextraction of Nonsteroidal Antiinflammatory Drugs in Wastewater, Anal. Chem. 2004, 76, 228
[123] D. Kou, X. Wang, S. Mitra, Supported liquid membrane microextraction with high-performance liquid chromatography–UV detection for monitoring trace haloacetic acids in water, J. Chromatogr. A 2004, 1055, 63.
[124] S. Pedersen-Bjergaard, K. E. Rasmussen, A. Brekke, T. S. Ho, T. Grønhaug Halvorsen, Liquid-phase microextraction of basic drugs –Selection of extraction mode based on computer calculated solubility data, J. Sep. Sci. 2005, 28, 1195.
[125] A. Sarafraz Yazdi, Z. Es‘haghi, J. Chromatogr. A 2005, 1094, 1.
[126] T. S. Ho, J. L .E. Reubsaet, H. S. Anthonsen, S. Pedersen-Bjergaard, K. E. Rasmussen, Liquid-phase microextraction based on carrier mediated transport combined with liquid chromatography–mass spectrometry New concept for the determination of polar drugs in a single drop of human plasma, J. Chromatogr. A 2005, 1072, 29.
[127] J. Wu, H. K. Lee, Orthogonal array designs for the optimization of liquid–liquid–liquid microextraction of nonsteroidal anti-inflammatory drugs combined with high-performance liquid chromatography-ultraviolet detection, J. Chromatogr. A 2005, 1092, 182.
[128] A. Sarafraz Yazdi, Z. Es‘haghi, Dynamic Three-Phase Microextraction as a Sample Preparation Technique Prior to Capillary Electrophoresis, J. Chromatogr. A 2005, 1082, 136.
[129] X. Jiang, S. Y. Oh, H. K. Lee, Dynamic Liquid-Liquid-Liquid Microextraction with Automated Movement of the Acceptor Phase, Anal. Chem. 2005, 77, 1689.
[130] J. Wu, K. H. Ee, H. K. Lee, Automated dynamic liquid–liquid–liquid microextraction followed by high-performance liquid chromatography-ultraviolet detection for the determination of phenoxy acid herbicides in environmental waters, J. Chromatogr. A 2005, 1082, 121
[131] J. L. E. Reubsaet, H. Loftheim, A. Gjelstad, Ion-pair mediated transport of angiotensin, neurotensin, and their metabolites in liquid phase microextraction under acidic conditions, J. Sep. Sci. 2005, 28, 1204.
[132] J. L. E. Reubsaet, J. V. Paulsen, Ion-pair mediated transport of small model peptides in liquid phase micro extraction under acidic conditions, J. Sep. Sci. 2005, 28, 295.
[133] T. S. Ho, S. Pedersen-Bjergaard, K. E. Rasmussen, J. Chromatogr. Sci. 2006, 44, 308.
[134] Y. Yamini, C. T. Reimann, A. Vatanara, J. A° Jo¨nsson, Extraction and preconcentration of salbutamol and terbutaline from aqueous samples using hollow fiber supported liquid membrane containing anionic carrier, J. Chromatogr. A 2006, 1124, 57.
[135] T. Berhanu, J.-f. Liu, R. Romero, N. Megersa, J. A° . Jo¨nsson, Determination of trace levels of dinitrophenolic compounds in environmental water samples using hollow fiber supported liquid membrane extraction and high performance liquid chromatography, J. Chromatogr. A 2006, 1103, 1.
[136] M. B. Melwanki, S.-D. Huang, Extraction of hydroxyaromatic compounds in river water by liquid–liquid–liquid microextraction with automated movement of the acceptor and the donor phase, J. Sep. Sci. 2006, 29, 2078.
[137] C. -C. Chen, M. B. Melwanki, S. -D. Huang, Liquid–liquid–liquid microextraction with automated movement of the acceptor and the donor phase for the extraction of phenoxyacetic acids prior to liquid chromatography detection, J. Chromatogr. A 2006, 1104, 33.
[138] X. Wang, S. Mitra, Enhancing micro-scale membrane extraction by implementing a barrier film, J. Chromatogr. A 2006, 1122, 1.
[139] Y. Yamini, C. T. Reimann, A. Vatanara, J. A° Jo¨nsson, Extraction and preconcentration of salbutamol and terbutaline from aqueous samples using hollow fiber supported liquid membrane containing anionic carrier, J. Chromatogr. A 2006, 1124, 57.
[140] R. Romero-Gonz´alez, E. Pastor-Montoro, J. L. Martinez-Vidal, A.
Garrido-Frenich, Application of hollow fiber supported liquid membrane extraction to the simultaneous determination of pesticide residues in vegetables by liquid chromatography/mass spectrometry, Rapid Commun. Mass Spectrom. 2006, 20, 2701.
[141] J. -F. Peng, J. -F. Liu, X. -L. Hu, G. -B. Jiang, Direct determination of chlorophenols in environmental water samples by hollow fiber supported ionic liquid membrane extraction coupled with high-performance liquid chromatography, J. Chromatogr. A 2007, 1139, 165.
[142]丁望賢,劉學穎;國立中央大學化學研究所碩士論文,九十二年六月
[143] A. Tiselius, Transactions of the Faraday Society, 1937, 33, 524.
[144] S. Hjerten, Chmatographic review, 1967, 9, 122.
[145] A. G. Ewing, R. A. Wallingford, T. M. Olefirowicz, Analytical Chemistry, 1989, 66, 292A.
[146] F. E. P. Mikkers, F. M. Everaerts, T. P. E. M. Verheggen, J Chromatogr A, 1999, 169, 11.
[147] J. W. Jorgenson, K. D. Lukacs, J Chromatogr A, 1981, 218, 209.
[148] J. W. Jorgenson, K. D. Lukacs, nalytical Chemistry 1981, 53, 1298.
[149] J. W. Jorgenson, K. D. Lukacs, Science 1983, 222, 266.
[150] S. Terabe, K. Otsuka, K. Ichikawa, A. Tsuchiya, T. Ando, Analytical Chemistry 1984, 56, 111.
[151] S. Hjerten, J. L. Liao, K. O. Yao, Journal of chromatography 1987, 387, 127.
[152] 黃悉雅,邱貞文;中原大學化學系博士論文,九十五年五月
[153] 黃悉雅,黃意雲;中原大學化學系碩士論文,九十一年七月
[154] A. Weston, P. R. Brown, HPLC and CE: Principle and Practice, San Diego, 1997.
[155]丁望賢,吳斯燻;中央大學化學研究所碩士論文,九十四年六月
[156] K.D.Altria, Journal of Chromatography A 2000, 892, 171.
[157] 黃悉雅,石瑩潔;中原大學化學系博士論文,九十一年七月
[158] J. W. Jorgenson, K. D. Lukacs, Science. 1983, 222, 266.
[159] Z. Lin, P. Sam, S. R. Sirimanne, P. C. McClure, J. Grainger, D. Patterson, J.Chromatogr.A 1994, 673, 125.
[160] R.-L. Chien, D. S. Burgi, Anal.Chem. 1992, 64, 1046.
[161] R.-L. Chien, S. Dean, Anal. Chem. 1992, 64, 489.
[162] M. Damon, D. Osbourn, J. Weiss, C. E. Lunte, Electrophoresis, 2000, 21, 2768.
[163] http://www.ncbi.nlm.nih.gov/pubmed/2307262
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
1. 毛細管電泳之方法開發與應用:利用線上樣品濃縮技術偵測對苯二甲酸產品中之不純物與毛細管電泳結合質譜儀分析盤尼西林
2. 95-97年度中部五縣市衛生局抽查食品中添加防腐劑結果
3. 以毛細管電泳分析食品中的防腐劑
4. 線上濃縮技術在非水相毛細管電泳與毛細管電泳/表面增強拉曼法上的應用
5. 1.毛細管電泳法對八種抗憂鬱藥物之同時分析與應用2.電場加強樣品堆積之毛細管電泳法對血漿中Amitriptyline及Nortriptyline之分析研究
6. 利用實驗設計搭配毛細管電泳線上濃縮技術進行化粧品中常用防腐劑之檢測分析
7. 以HPLC檢測南投地區市售麵濕製品、米濕製品防腐劑含量研究
8. 香豆素在毛細管電泳與毛細管液相層析之分離機制探討
9. 市售食品中防腐劑含量調查及分析研究
10. 金棗製品中防腐劑和人工甜味劑 HPLC 多重檢驗方法探討與含量調查
11. 以氣相層析儀火焰離子化偵測器同時檢測12種食品添加物防腐劑探討
12. 第一部份:藉場放大樣品堆積技術以提高黃連生物鹼毛細管電泳檢測之靈敏度第二部分:藉掃集技術以提高黃連生物鹼毛細管電泳檢測之靈敏度
13. Ⅰ.利用毛細管電泳法對支氣管擴張劑藥物theophylline和dyphylline之同時分析研究Ⅱ.電場加強樣品堆積之毛細管電泳法對血漿中zotepine及norzotepine之分析研究
14. 以液相層析串聯質譜法同時分析食品中防腐劑與人工甜味劑
15. 臺北地區市售米濕製品(米粉、蘿蔔糕、碗粿、米苔目、粄條)中防腐劑與微生物含量調查