(34.226.234.102) 您好!臺灣時間:2021/05/12 11:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊為翔
研究生(外文):Wei-Hsiang Yang
論文名稱:奈米尺寸Silicalite-1與矽酸鎵中孔洞分子篩SBA-15之光激螢光特性研究
論文名稱(外文):Photoluminescent properties of Nanoscale Silicalite-1 and Gallosilicate SBA-15 Mesoporous Molecular Sieves
指導教授:鄭吉豐
指導教授(外文):Chi-Feng Cheng
學位類別:碩士
校院名稱:中原大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:83
中文關鍵詞:中孔洞分子篩光激螢光
外文關鍵詞:photoluminescencemesoporousSBA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:83
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
我們藉由光激螢光光譜及時間鑑別光激螢光光譜來對矽酸鎵中孔洞分子篩SBA-15做光學研究,從中可以發現紅光螢光的強度會隨含鎵量增加而增強,這是因為骨架上的較大鎵金屬導致矽酸鎵鍵Si–O–Ga擁有較大張力及易斷鍵,因此增加非橋氧電洞中心(NBOHCs)的產生。另外,從藍綠光螢光發現該部位的螢光強度沒有太大變化,表示該部位的發光來源與鎵金屬無關,仍來自Si–O–Si斷鍵形成的E’中心。並由此證實矽酸鎵於結構中的斷鍵為Si–O–Ga → Si–O• + •Ga。同時對光激螢光衰減曲線做擬合,當溫度小於50 K時,其螢光生命期無明顯變化,此時為輻射發光過程;當溫度在50 K到300 K時,螢光衰減過程具有熱活化性,且活化能為22 meV,指出其衰減過程逐漸為與聲子有關的非輻射緩解過程所主導。

  我們合成及研究不同尺寸Silicalite-1沸石之光學性質。從其光激螢光光譜發現,光激螢光強度與奈米尺寸效應有關,Silicalite-1沸石粒徑越小,其螢光強度越強。根據光激螢光衰減曲線的擬合,也發現從70 K到300 K,PL的衰減過程是屬於非輻射緩解效應中的熱活化過程,其熱活化能為32.1 meV。此外,在移除激發光源後,Silicalite-1沸石之光激螢光還能殘存數秒,且能清楚目視到其發光情形,這種殘存螢光我們稱之為PPL。從不同發光能量位置之載子生命期的分析中,發現PPL波峰處有侷域化的現象。在70 K到300 K,PPL強度及其生命期都會逐漸減小,顯示PPL的衰減仍由熱活化過程主導,且其熱活化能與侷域深度相當吻合,證實PPL主要是來自侷域態的發光。
The optical studies of mesoporous gallosilicate SBA-15 have been investigated by photoluminescence and time-resolved photoluminescence. It was found that the intensity of the red-PL is linearly enhanced with gallium contents, but blue-green PL intensity remained the same. This case indicated that the incorporation of Ga into the framework to make the structure distortion and the gallosilicate bond strain greatly enhanced the generation of non-bridging oxygen hole centers but not E’ centers. And we used a stretched exponential function to fit PL decay curve. In the temperature range from 0 to 50 K, the PL decay process is a radiative process; In the temperature range from 50 to 300 K, the PL decay lifetime becomes thermally activated by a characteristic energy of 22 meV, which is suggested to be an indication of the phonon-assisted nonradiative process.
We synthesized and studied the optical properties of Silicalite-1 with different particle sizes. Analysis of the PL spectra indicated that the PL intensity is concerned with the size effect. When the particle size is smaller, the PL peak value is bigger. According to fitting PL decay curve, it was found that PL decay process from 70 to 300 K belongs to thermally activated process of nonradiative emission by a characteristic energy of 32.1 meV. In addition, we show that the silicalite-1 particle exhibits an interesting behavior called persistent photoluminescence (PPL), which can be clearly observed by naked eye. From the analysis of energy-dependent carrier lifetime, we observed the carrier localization of the PPL. In the temperature range from 70 to 300 K, the PPL intensity and lifetime both decrease, which indicated that the decay of PPL is still due to the thermally activated process. Because the activation energy and localization depth match well, we can confirm that PPL is emission in localized states.
摘 要....................................................................................................... I
Abstract ......................................................................................................... II
謝 誌.....................................................................................................III
目 錄.....................................................................................................IV
Figure Index .................................................................................................VI
Table Index...................................................................................................IX
第一章 緒 論.................................................................................................1
1.1 前言.................................................................................................1
1.2 中孔洞分子篩SBA-15 之介紹......................................................3
1.3 奈米MFI 沸石Silicalite-1 之介紹................................................4
1.4 多孔矽材料分子篩的發光原理.....................................................6
1.5 鎵金屬的發展歷史及文獻回顧.....................................................9
1.6 研究動機.......................................................................................10
1.6.1 矽酸鎵中孔洞分子篩SBA-15 之光學性質....................10
1.6.2 奈米尺寸Silicalite-1 沸石之光學性質............................10
第二章 實驗部份.........................................................................................11
2.1 實驗藥品.......................................................................................11
2.2 矽酸鎵中孔洞分子篩SBA-15 之合成........................................12
2.3 Silicalite-1 沸石粒子之合成........................................................12
2.4 實驗鑑定儀器架構與原理...........................................................17
2.4.1 X 射線粉末繞射儀.............................................................17
2.4.2 氮氣等溫吸附/脫附儀........................................................17
2.4.3 掃描式電子顯微鏡.............................................................18
2.4.4 感應耦合原子放射光譜分析儀.........................................18
2.4.5 魔角旋轉固態核磁共振光譜儀.........................................18
2.4.6 光激螢光光譜.....................................................................19
2.4.7 時間鑑別光激螢光光譜.....................................................20
第三章 矽酸鎵中孔洞分子篩之光學性質與鑑定.....................................21
3.1 矽酸鎵中孔洞分子篩SBA-15 之材料結構形態鑑定................21
3.2 GaSBA-15 之光激螢光光譜分析................................................27
3.3 GaSBA-15 之時間鑑別光激螢光光譜分析................................34
3.4 小結...............................................................................................39
第四章 Silicalite-1 沸石之光學性質與鑑定..............................................40
4.1 Silicalite-1 沸石之材料結構形態鑑定........................................40
4.2 Silicalite-1 沸石之光激螢光光譜分析........................................47
4.3 Silicalite-1 沸石時間鑑別光激螢光光譜分析............................49
4.4 Silicalite-1 沸石之persistent photoluminescence 現象...............56
4.5 小結...............................................................................................64
第五章 結 論...............................................................................................66
參 考 文 獻...........................................................................................68



Figure Index
Figure 1-1. The diagram of mesoporous molecular sieves. (a) hexagonal, and
(b) cubic.........................................................................................2
Figure 1-2. Schematic representation of the MFI zeolite structure.................5
Figure 1-3. Structure of silanol group on silica surface. ...............................6
Figure 1-4. Reaction of silanol group on silica surface. .................................6
Figure 1-5. Energy bandgap of silica material. ...............................................8
Figure 2-1. The process for the synthesis of gallosilicate SBA-15...............14
Figure 2-2. The process for the synthesis of nanoscale silicalite-1 particles.
.....................................................................................................15
Figure 2-3. The process for the synthesis of microscale silicalite-1 particles.
.....................................................................................................16
Figure 2-4. The apparatus of photoluminecence...........................................19
Figure 2-5. The principle of TCSPC. ............................................................20
Figure 3-1. XRD patterns of calcined GaSBA-15 synthesized at different
Si/Ga molar ratios........................................................................22
Figure 3-2. 71Ga MAS NMR spectra of GaSBA-15 at different Si/Ga molar
ratios. ...........................................................................................23
Figure 3-3. (A) N2 adsorption/desorption isotherms and (B) BJH pore size
distribution of calcined GaSBA-15 at different Si/Ga molar ratios.
.....................................................................................................24
Figure 3-4. SEM images of calcined GaSBA-15 at different Si/Ga molar
ratios. ...........................................................................................26
Figure 3-5. Red-PL spectra of SBA-15. The dashed lines are calculated, fitted
Gaussian components..................................................................28
Figure 3-6. The sources of NBOHCs on porous silica surface. ....................28
Figure 3-7. PL spectra of calcined GaSBA-15 at different Si/Ga molar ratios.
.....................................................................................................29
Figure 3-8. Red-PL spectra of GaSBA-15 at different Si/Ga molar ratios. ..30
Figure 3-9. Experimental (dots) and calculated (dashed line) gallium content
dependence of the PL intensity at 575 nm of GaSBA-15. ..........32
Figure 3-10. Scheme of NBOHCs production from gallosilicate bond........32
Figure 3-11. Blue-green PL spectrum of GaSBA-15 with different Si/Ga
ratios measured under excitation wavelength of 266nm.............33
Figure 3-12. PL decay curves of mesoporous GaSBA-15 at different Si/Ga
molar ratios..................................................................................34
Figure 3-13. PL decay curves of mesoporous GaSBA-15-10 at the indicated
temperatures. ...............................................................................35
Figure 3-14. Experimental (open circles) and calculated (solid line)
temperature dependence of the PL decay time of GaSBA-15-10.
.....................................................................................................37
Figure 3-15. Temperature dependence of the dispersion factor β. The solid
line is a glide for the eye. ............................................................37
Figure 3-16. Experimental (symbol) and calculated (line) temperature
dependence of the PL lifetime (open circles) and dispersion factor
β(open triangles) of mesoporous SBA-15...................................38
Figure 4-1. XRD patterns of silicalite-1 with variable sizes.........................41
Figure 4-2. FWHM of (101) diffraction peaks for silicalite-1 with variable
sizes. ............................................................................................42
Figure 4-3. SEM images of silicalite-1 with variable sizes. .........................43
Figure 4-4. 29Si MAS NMR of silicalite-1 with variable sizes. ....................45
Figure 4-5. Blue-green PL spectra of silicalite-1 with variable sizes. ..........48
Figure 4-6. PL decay curves of silicalite-1 with variable sizes obtained at
room temperature. .......................................................................50
Figure 4-7. PL decay curves of MFI-70 at the indicated temperatures.........51
Figure 4-8. Experimental (open circles) and calculated (solid line)
temperature dependence of the PL decay time of MFI-70..........54
Figure 4-9. Temperature dependence of the dispersion factor β. The solid line
is a glide for the eye. ...................................................................54
Figure 4-10. PL spectra of MFI-70 at different temperatures. ......................55
Figure 4-11. Experimental (open circles) and calculated (solid line)
temperature dependence of the MFI-70 PL intensity. .................55
Figure 4-12. Photograph of MFI-70 PPL emission and PPL decay at different
temperatures. ...............................................................................56
Figure 4-13. PPL spectrum of MFI-70 at 20 K. The open circles display the
emission-energy dependence of lifetime.....................................58
Figure 4-14. PPL decay curves of MFI-70 under different temperatures. ....61
Figure 4-15. PPL decay curves of MFI-70 at the indicated temperatures. ...62
Figure 4-16. Experimental (symbol) temperature dependence of the PPL
lifetime (open circles) and dispersion factor β(open triangles) of
MFI-70.........................................................................................63
Figure 4-17. Experimental (open circles) and calculated (solid line)
temperature dependence of the PPL intensity of MFI-70. ..........63



Table Index
Table 1-1. Classification of pore size according to IUPAC. ...........................5
Table 1-2. PL mechanism, center and emission wavelength of silica material.
..................................................................................................................8
Table 2-1. Chemicals used in experiments....................................................11
Table 3-1. ICP-AES of calcined GaSBA-15 at different Si/Ga molar ratios.
................................................................................................................22
Table 3-2. Physical properties of calcined gallosilicate SBA-15 by using
different Si/Ga molar ratios. ...................................................................25
Table 3-3. P1 and P2 type peak area and the area ratios of GaSBA-15 at
different Si/Ga molar ratios. ...................................................................30
Table 4-1. Q4 FWHM of 29Si MAS NMR spectra of the indicated samples.
................................................................................................................46
Table 4-2. PPL activation energy and localization depth of MFI-70. ...........60
1. Melero, J. A.; Stucky, G. D.; Van Grieken, R.; Morales, G. J. Mater.
Chem., 2002, 12, 1664
2. Li, L.; Shi, J. L.; Zhang, L. X.; Xiong, L. M.; Yan, J. N. Adv. Mater.,
2004, 16, 1079.
3. Grande, C. A.; Araujo, J. D. P.; Cavenati, S.; Norberto, F.; Elena, B.;
Alirio, R. E. Langmuir, 2004, 20, 5291.
4. Yu, C. Z.; Fan, J.; Tian, B. Z.; Zhao, D. Y. Chem. Mater., 2004, 16, 889.
5. McBian, J. W. In The Sorption of Gases and Vapours by Solids:
Rutledge and Sons, London, 1932, chapter 5.
6. Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chemlka,
B. F.; Stucky, G. D. Science, 1998, 279, 548.
7. Zhao, D.; Huo, Q.; Feng, J.; Chemlka, B. F.; Stucky, G. D. J. Am. Chem.
Soc., 1998, 120, 6024.
8. Behrens, P.; Stucky, G. D. Angew. Chem. Int. Ed. Engl., 1993, 32, 696.
9. Go’z’dz’, W.; Holyst, R. Periodic Surfaces in Physics, Chemistry and
Biology; Encyclopedia of Applied Physics, Wiley Verlag: New York,
1999.
10. Kalceff, M.A.S. Phys. Rev., 1998, 57, 5674.
11. Glinka, Yu. D.; Lin, S. H.; Huang L. P.; Chen, Y. T. Appl. Phys. Lett.,
2000, 77, 24.
12. Gimon-Kinsel, M. E.; Kathy Groothuis; Kenneth J. Balkus, Jr.
Microporous Mater., 1998, 20, 67.
13. Shen, J. L.; Chen, P. N.; Lee, Y. C.; Cheng, P. W.; Cheng, C. F. Solid
State Commun., 2002, 122, 65.
14 Glinka, Y. D.; Zyubin, A. S.; Mebel, A. M.; Lin, S. H.; Hwang, L. P.;
Chen, Y. T. Chem. Phys. Lett., 2002, 358, 180.
15. Skuja, L. J. Non-Cryst. Solids, 1998, 239, 16.
16. Gao, F.; Lu, Q. Y.; Zhao, D. Y. Chem. Phys. Lett., 2002, 360, 585.
17. Ooi, Y.S.; Zakaria, R.; Mohamed, A. R.; Bhatia, S. Catal. Commun.,
2004, 5, 441.
18. Jarry, B.; Launay, F.; Nogier, J. P.; Montouillout, V.; Gengembre, L.;
Bonardet, J. L. Apply Catal. A, 2006, 309, 177.
19. Kurmaran G. M.; Garg, S.; Soni, K.; Kumar, M.; Sharma, L. D.; Dhar, G.
M.; Rao K. S. R. Apply Catal. A, 2006, 305, 123.
20. Eswaramoorthi, I.; Dalai, A. K. Micropor. Mesopor. Mater., 2006, 93, 1
21. Wu, S. J.; Huang, J. H.; Wu, T. H.; Ke, S.; Wang, H. S.; Xing, L. H.; Xu,
H. Y.; Xu, L.; Guan, J. Q.; Kan, Q. B. Chin. J. Catal., 2006, 27, 9.
22. Fenelonov, V. B.; Derevyankin, A. Y.; Kirik, S. D.; Solovyov, L. A.;
Shmakov, A. N.; Bonardet, J. L.; Gedeon, A.; Romannikov, V. N.
Micropor. Mesopor. Mater., 2001, 44, 33.
23. Han, Y.; Wu, S.; Sun, Y. Y.; Li, D. S.; Xiao, F. F.; Liu, J.; Zhang, X. Z.
Chem. Mater., 2002, 14, 1144.
24. Du, J. M.; Xu, H. L.; Shen, J.;Huang J. J.;Shen, W.; Zhao D. Y. Apply.
Catal. A, 2005, 296, 186.
25. Dhar, G. M.; Kumaran, G. M.; Kumar, M.;Rawat, K. S.;Sharma, L. D.;
Raju, B. D.; Kao, K. S. R. Catal. Today, 2005, 99, 309.
26. Timofeeva, M. N.; Jhung, S. H.; Hwang, Y. K, et al. Appl. Catal. A,
2007, 314, 1.
27. Timofeeva, M. N.; Jhung, S. H.; Hwang, Y. K,; Kim, D. K.; Panchenko,
V. N.;Meigunov, M. S.; Chesalov, Yu. A.; Chang, J. S. Appl. Catal. A,
2007, 317, 1.
28. Zhu, J. H.; Shen, W.; Xu, H. L.; Zhou, Y. M.; Yu, C. Z.; Zhao, D. Y.
Acta Chim. Sinica, 2003, 61, 202.
29. Li, F. X.; Yu, F.; Li, Y. L.; Li, R. F.; Xie, K. C. Micropor. Mesopor.
Mater., 2007, 101, 250.
30. Nowak, I. Study. Surf. Sci. Catal., 2004, 154, 2936.
31. Han, Y. F.; Chen, F. X.; Zhong, Z. Y.; Ramesh, K.; Chen, L. W.; Widjaja,
E. J. Phys. Chem. B, 2006, 110, 24450.
32. Xu, X. Y.; Li, J. J.; Hao, Z. P.; Zhao, W.; Hu, C. Mater. Res. Bull., 2006,
41, 406.
33. Melero, J. A.; Iglesias, J.; Arsuaga, J. M.; Sainz-Pardo, J.; de Frutos, P.;
Blazquez, S. J. Mater. Chem., 2007, 17, 337.
34. Gomez-Reynoso, R.; Ramirez, J.; Nares, R.; Murrieta, F.; Catal. Today,
2005, 107, 926.
35. Konya, Z.; Molnar, E.; Tasi, G.; Niesz, K.; Somorjai, G. A.; Kiricsi, I.;
Catal. Lett., 2007, 113, 19.
36. Ma, H.; Xu, J.; Chen, C.; Zhang, Q. H.; Ning, J. B.; Miao, H.; Zhou, L.
P.; Li, X. Q. Catal. Lett., 2007, 113, 104.
37. Burri, D. R.; Jun, K. W.; Kim, Y. H.; Kim, J. M.; Park, S. E.; Yoo, J. S.
Chem. Lett., 2002, 2, 212.
38. Gao, F.; Lu, Q. Y.; Liu, X. Y.; Yan, Y. S.; Zhao, D. Y. Nano Letters,
2001, 1, 743.
39. Khodakov, A. Y.; Griboval-Constant, A.; Bechara, R.; Zholobenko, V. L.
J. Catal., 2002, 206, 230.
40. Yang, Y.; Sayari, A. Stud. Surf. Sci. Catal., 2005, 156, 543.
41. Liu, X. Y.; Tian, B. Z.; Yu, C. Z., et al. Chem. Lett., 2003, 32, 824.
42. Sayari, A.; Yang, Y. Chem. Mater., 2005, 17, 6108.
43. Zhu, W. P.; Han, Y. C.; An, L. J. Micropor. Mesopor. Mater., 2005, 80,
221.
44. Zhao, J. W.; Gao, F.; Fu, Y. L.; Jin, W.; Yang, P. Y.; Zhao, D. Y. Chem.
Commun., 2002, 7, 752.
45. Tian, R. J.; Sun, J. M.; Zhang, H, et al. Electrophoresis, 2006, 27, 742.
46. Shen, J. L.; Chen, P. N.; Lee, Y. C.; Cheng, C. F. Solid State comm.,
2002, 122, 65.
47. Shen, J. L.; Lee, Y. C.; Lui, Y. L.; Cheng, P. W.; Cheng, C. F. J. Phys:
Cond. Matter., 2003, 15, 297.
48. Shen, J. L.; Cheng, C. F. Solid State & Material Science, 2003, 7, 427.
49. Shen, J. L.; Lee, Y. C.; Liu, Y. L.; Yu, C. C.; Cheng, P. W.; Cheng, C. F.
Micropor. Mesopor. Mater., 2003, 64, 135.
50. Lee, Y. C.; Liu, Y. L.; Shen, J. L.; Hsu, I. J.; Cheng, P. W.; Chenh, C. F.;
Ko, C. H. J. Non-crystalline Solid, 2004, 341, 16.
51. Liu, Y. L.; Lee, W. Z.; Shen, J. L.; Lee, Y. C.; Cheng, P. W.; Cheng, C. F.
Applied Physics Letters, 2004, 85, 6350.
52. Lee. Y. C.; Shen, J. L.; Liu, Y. L.; Lee, W. Z.; Hu, S. Y. J. Elec. Soc.,
2006, 153, 103.
53. Li, N.; Li, X. T.; Wang, W.; Geng, W. C.; Qiu, S. L. Mater. Chem. Phys.,
2006, 100, 128.
54. Zhao, C. X.; Liu, Q.; Chen, W.; Tian, G.; Xu, L. F. Trans. Nonf. Met.
Soc. China, 2006, 16, 356.
55. Ge, S. X.; He, N. Y.; Yang, C.; Cao, J. M.; Hong, C.; Gu, M. Nanopor.
Mater. IV Stud. Surf. Sci. Catal., 2005, 156, 711.
56. Vansant, E. F.; Van Der Voort, P.; Vrancken, K. C. Studies in Surface
Science and Catalysis, 1995, 93, chapter 3.
57. IUPAC Mannal of Symbols and Terminoligy, Appendix 2, Pt. 1, Collid
and Surface Chemistry, Pure Appl. Chem., 1972, 31, 578.
58. Li, Wei; Lei, X. G.; George Lem; Ann E. McDermott; Nicholas J, Turro;
Nils M. Bottke; Waldermar Adam, Chem. Mater., 2000, 12, 731.
59. Gaynor; Justin, F. United States Patent, 2001, 514996.
60. Sankar Nair; Michael Tsapatsis. Micropor. Mesopor. Mater., 2003, 58,
81.
61. Hyun Sung Kim. J. Am. Chem. Soc., 2004, 126, 673.
62. Feifei, G.; Guangshan, Z.; Yue, C.; Yi, L.; Shilun, Q. J. Phys. Chem. B,
2004, 108, 3426.
63. Feifei, G.; Guangshan, Z.; Xiaotian, L.; Binsong, L.; Osamu, T.; Shilun,
Q. J. Phys. Chem. B, 2004, 105, 12704.
64. Xiaotian, L.; Osamu, T.; Pinliang, Y.; Weitao, Z.; Feng-Shou, X.; Shilun,
Q. Micropor. Mesopor. Mater., 2004, 40, 263.
65. Guido Ihlein. Adv. Mater., 2004, 10(14), 1117.
66. Vansant, E. F.; Van Der Voort, P.; Vrancken, K. C. Studies in Surface
Science and Catalysis, Elsevier, Vol. 93, Chapter 3.
67. Gimon-Kinsel, M. E.; Kathy Groothuis.; Kenneth, J. Balkus, Jr.
Micropor. Mesopor. Mater., 1998, 20, 67.
68. Glinka, Y. D.; Lin, S. H.; Huang, L. P.; Chen, Y. T. A. Phys. Lett., 2000,
77, 24.
69. Glinka, Y. D. Phys. Rev. B, 2000, 62, 4733.
70. Skuja, L. J. Non-cryst. Solids, 1998, 239, 16.
71. Pankove, J. I. “Gallium Nitride (GaN) I” Academic Press, San Diedo,
1998.
72. Nakamura “The Blue Laser Diode” 1997.
73. Liang, C. H.; Wang, G. Z.; Wang, Y. W.; Zhang, L. D.; Zhang, S. Y.
Appl. Phys. Lett., 2001, 78, 3202
74. Zhang, J. G.; Lin, B.; Xia, C. T.; Pei, G. Q.; Deng, Q.; Yang, Z. H.; Xu,
W. S.; Shi, H. S.;Wu, F.; Wu, Y. Q.; Xu, J. J. Phys. Chem. Solids, 2006,
67, 2448
75. Wang, Y. H.; Hou, L.; Qin, X. J.; Ma, S. D.; Zhang, B.; Gou, H. Y.; Gao,
F. M. J. Phys. Chem. C, 2007, 111, 17506.
76. Cheng, C. F.; Cheng, H. H. Studies in Surface Science and catalysis,
2005, 156, 133.
77. Selvaraj, M.; Kawi, S.; Park, D. W.; Ha, C. S. Micropor. Mesopor.
Mater., 2008, 117, 586.
78. Selvaraj, M.; Kawi, S. Catalysis Today, 2008, 131, 82.
79. Jarry, B.; Launay, F.; Nogier, J. P.; Montouillout, V.; Gengembre, L.;
Bonardet, J. L. Applied Catalysis, 2006, 309, 177.
80. Chae, W. S.; Ko, J. H.; Hwang, I. W.; Kim, Y. R. Chem. Phys. Lett.,
2002, 365, 49
81. Chen, H. G.; Shi, J. L.; Chen, H. R.; Yan, J. N.; Li, Y. S.; Hua, Z. L.;
Yang, Y.; Yan, D. S. Opti. Mater., 2004, 25, 79.
82. Hsieh, Y. P.; Chen, J. W.; Liang, C. T.; Chen, Y. F.; Wang, A. Q.; Mou,
C. Y. J. Lumin., 2008, 128, 553.
83. 鄭旭軒,“矽酸鹽、含金屬矽酸鹽SBA-15 及奈米尺寸中孔洞材料之
合成鑑定及應用",中原大學化學所, 博士論文, 民國九十五年.
84. Persson A. E.; Schoeman, B. J.; Sterte, J.; Otterstedt, j. E. Zeolites,
1995, 15, 611.
85. Schoeman, B. J.; Oren Regev. Zeolites, 1996, 17, 447.
86. Cheng, Chil-Hung.; Bae, Tae-Hyun.; McCool, Benjamin A.; Chance,
Ronald R.; Nair Sankar.; Christopher, W. Jones. J. Phys. Chem. C, 2008,
112, 3543.
87. Berenguer-Murcia, A.; Garcia-Martinez, J.; Cazorla-Amoros, D.;
Linares-Solano, A.; Fuertes, A. B. Micropor. Mesopor. Mater., 2003, 59,
147.
88. Stevens Kalceff, H. J.; Phillips, M. R. Phys. Rev. B, 1995, 52, 3122
89. Dzwigaj, S.; Krafft, J. M.; Che, M.; Lim, S.; Haller, G. L. J. Phys.
Chem. B, 2003, 107, 3856.
90. Seol, K. S.; Fujimaki, M.; Ohki, Y. Phys. Rev. B, 1999, 59, 1590
91. Kobitski, A. Yu.; Zhuravlev, K. S.; Wagner, H. P.; Zahn, D. R. T. Phys.
Rev. B, 2001, 63, 115423.
92. Kanemitsu, Y. Phys. Rev. B, 1996, 53, 13515.
93. Suemoto T.; Tanaka, K. Phys. Rev. B, 1994, 49, 11005.
94. John, G. C.; Singh, V. A. Phys. Rev. B, 1996, 54, 4416.
95. Kanemitsu, Y.; Shimizu, N.; Phys. Rev. B, 1996, 54, 14329.
96. John Wiley and Sons Ltd,“High-Resolution Solid-State NMR of
Silicates and Zeolites"1987, Ch3, 302. ISBN 0 471 91597 1
97. Chen, Z.; Wang, Y. X.; He, H. P.; Zou, Y. M.; Wang, J. W.; Li, Y. Solid
state communications, 2005, 135, 247
98. Lambkin, J. D.; Dunstan, D. J.; Homewood, K. P.; Howard, L. K.;
Emeny, M. T. Appl. Phys. Lett., 1990, 57, 1986.
99. Fan, J. C.; Chen, C. H.; Chen, Y. F. Appl. Phys.Lett., 1998, 72, 1605.
100. Chang, H. J.; Chen, Y. F.; Lin, H. P.; Mou, C. Y. Appl. Phys.Lett., 2001,
78, 3791.
101. Yukio Narukawa; Shin Saijou; Shigeo Fujita; Shuji Nakamaru. Appl.
Phys. Lett., 1999, 74, 558.
102. Yukio Narukawa; Yoichi Kawakami; Shigeo Fujita; Shuji Nakamura.
Phys. Rev. B, 1999, 59, 10283.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔