(3.238.130.97) 您好!臺灣時間:2021/05/09 03:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳仕彬
研究生(外文):Shih-Bin Chen
論文名稱:基礎認知能力診斷之適性出題系統
論文名稱(外文):Constructing Item Generation System to Diagnose Basic Cognitive Levels
指導教授:賀嘉生賀嘉生引用關係
指導教授(外文):Jia-Sheng Heh
學位類別:碩士
校院名稱:中原大學
系所名稱:資訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:78
中文關鍵詞:知識地圖適性測驗
外文關鍵詞:Computer Adapted TestKnowledge map
相關次數:
  • 被引用被引用:0
  • 點閱點閱:113
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
一般而言,老師要了解學生的在課堂的學習狀況,通常會透過測驗來了解學生的
情況,在傳統的測驗中是以筆和紙來進行考試,本論文利用了電腦化的適性測驗
來取代傳統的考試,並提供了老師有關學生的認知能力診斷,來幫助老師了解學
生的學習狀況。
本論文利用知識地圖來產生語句且設計不同認知階層的題目,這些不同階層的題
目代表的不同的難度。當學生在答題時,系統會依照學生的回答狀況來給予符合
學生程度的題目。
在一個學習環境中,會有著許多的學習物件存在,當學生要開始學習時,學生也
許無法全部學會或者是不知先從哪開始學習,本論文提供了兩種選擇學習物件,
一種是由屬性最普遍的學習物件開始學習,另外一種則是選擇屬性特殊的學習物
件來學習。
本論文設計了一個電腦適性測驗的系統,來診斷學生的認知能力,由老師建立好
知識地圖後,系統會自動產生不同認知能力的題目。系統會配合學生的答題情況
給予合適的題目,當測驗結束後會回饋給老師有關學生的認知能力診斷及分數。
本論文最後有在國小五年級的班級做實驗,以「植物」單元為測驗的範圍,在第
五張有詳細的介紹。
In general, if teacher want to understand learning state of students that usually through
the test to understand. Traditional test use pen and paper to test, but his research use
the Computer Adaptive Test to test students and provide diagnosis result for teacher to
help teacher know learning state of students.
This research use knowledge map to generate sentences and design different items
with cognitive ability. Those items with cognitive ability represent difficulty level.
According to student’s answer state, the system give items appropriate for the
students.
In a learning environment contains various learning objects. Therefore, students may
not able to learn all learning objects. This research proposes a method to select
learning object for students to test. In test, system will select appropriate items for
student according to their answer states.
This research designs an adapted generation system to diagnose student’s learning
state. When teacher construct the knowledge map then system can automatic
generation different item of difficulty level, In test, system will select appropriate
items for student according to their answer states. Finally, this research have a
experiment in Elementary School, There are nineteen students of Dahu Elementary
School (11 years old in five grades) in this experiment and the experimental subject is
plant of science. Chapter 5 will introduce detail of this experiment.
中文摘要............................................................ I
英文摘要........................................................... II
致謝.............................................................. III
目錄............................................................... IV
Figure Index .................................................................................................................. V
Table Index ................................................................................................................. VII
1. Introduction ................................................................................................................ 1
1.1Motivation ................................................................................................. 1
1.2 Contributions and Chapter Description ................................................... 2
2. Problem formulation .................................................................................................. 4
2.1 Knowledge Structure ............................................................................... 4
2.2 Item Generation Strategy ......................................................................... 6
2.3 Item Generation System of Revised Bloom Taxonomy ......................... 10
2.4 Problems ................................................................................................ 16
3. Item Generation Analysis ......................................................................................... 17
3.1 Information of Learning Objects ........................................................... 17
3.2 Item Generation Method in Basic Cognitive Abilities ........................... 21
3.3 Item Generation Method in Higher Cognitive Abilities ........................ 25
3.4 Adaptive Item Selection ......................................................................... 29
3.5 Feedback Generation ............................................................................. 37
4. Automatic Generation Item System Design Method ............................................... 39
4.1 Selection of the Learning Object ........................................................... 39
4.2. Sentence Frame ..................................................................................... 40
4.3 Algorithm of Item in Higher Cognitive Abilities ................................... 44
4.4 Item Selection Algorithm ....................................................................... 46
5. Example/experiment ................................................................................................ 49
5.1 System Architecture ............................................................................... 49
5.2 Experiment design and Hypothesis ........................................................ 50
5.3 Experiment Result .................................................................................. 54
6. Conclusions .............................................................................................................. 60
6.1 Summary ................................................................................................ 60
6.2 Future works .......................................................................................... 60
References .................................................................................................................... 62
Appendix 1. Questionnaire of attitude about computer. .............................................. 66
Appendix 2. Questionnaire of adapted item generation system. ................................. 68
Appendix 3. Questionnaire of item’s difficulty level. .................................................. 69



Figure Index
Figure1.1 Flow diagram of an adaptive test ................................................... 2
Figure2.1 Example of concept map and description of how concept maps
can be structured [Nov 2001]. ................................................................ 4
Figure2.2 Example of Knowledge Space. ...................................................... 5
Figure2.3 Example of Knowledge Map ......................................................... 5
Figure2.4 Example of Knowledge Map’s system interface. .......................... 6
Figure2.5 The structure of an item. ................................................................ 7
Figure2.6 Example of the WordNet ............................................................... 8
Figure2.7 Example of True/False Question ................................................... 8
Figure2.8 Test Ontology (fragments). ............................................................ 9
Figure2.9 Generating Physics item. ............................................................. 10
Figure2.10 The levels of the cognitive domain in Bloom’s Taxonomy. ...... 11
Figure2.11 The comparison between the original Bloom’s Taxonomy and
the Revised Bloom’s Taxonomy. ......................................................... 12
Figure2.12 Example of knowledge map. ..................................................... 14
Figure2.13 Converting two different assertive sentences to negative
sentences. ............................................................................................. 15
Figure2.14 Transforming correct sentence to incorrect one. ....................... 15
Figure3.1 Relation between learning object, concept and attribute. ............ 17
Figure3.2 A learning object (Knowledge Map) ........................................... 18
Figure3.3 Six learning objects in the knowledge map ................................. 19
Figure3.4 Generating sentences using concept hierarchy. ........................... 23
Figure3.5 Using Knowledge Map to generate multiple-choice items with list
cognitive ability. ................................................................................... 23
Figure3.6 Example of multiple-choice item with list cognitive ability ....... 23
Figure3.7 Example of Knowledge Map ....................................................... 24
Figure3.8 Example of multiple-choice item with describe cognitive ability.
.............................................................................................................. 25
Figure3.9 Generated sentences (correct answer) using concept schema. .... 26
Figure3.10 Generated different types of sentence. ...................................... 27
Figure3.11 Simple Knowledge Map. ........................................................... 27
Figure3.12 Multiple-choice item with summarize cognitive ability ............ 28
Figure3.13 Simple Knowledge Map. ........................................................... 29
Figure3.14 Item of classify cognitive ability. .............................................. 29
Figure3.15 Flow diagram of item selection strategy. ................................... 34
Figure3.16 Selection item processing. ......................................................... 35
Figure3.17 Sequence of selection learning object. ...................................... 36
Figure3.18 Selection learning objects has special attribute. ........................ 36
Figure3.19 Different level of learning state according to λlow and λhigh ....... 37
Figure3.20 According to θ to decide the basis grade ................................. 38
Figure4.1 Example of multiple-choice item with list cognitive ability. ...... 42
Figure4.2 Example of multiple-choice item with describe cognitive ability.
.............................................................................................................. 44
Figure4.3 Example of multiple-choice item with summarize cognitive
ability. ................................................................................................... 45
Figure4.4 Example of multiple-choice item with classify cognitive ability.46
Figure5.1 System architecture. .................................................................... 50
Figure5.2 Experiment Flow of adaptive item generation system. ............... 51
Figure5.3 Knowledge map ........................................................................... 52
Figure5.4 This page can edit knowledge map and generate items............... 52
Figure5.5 Example of Performance of each learning object. ....................... 53
Figure5.6 Example of analysis of cognitive ability. .................................... 53
Figure5.7 The sequence of answer items. .................................................... 54
Figure5.8 Compared the result of researcher with difficultyLevelcognitive-ability.
.............................................................................................................. 57
Figure5.9 Compared the result of teacher with difficultyLevelcognitive-ability. 58



Table Index
Table 2. 1 The question types in each cognitive level ................................. 12
Table 2.2 The two-dimensional Taxonomy Table ........................................ 13
Table2.3 Corresponds to the different link types of sentences with cognitive
ability ................................................................................................... 14
Table 3.1 All learning object information in Figure 3.3 .............................. 21
Table3.2 Cognitive ability corresponds to difficulty level. .......................... 30
Table3.3 attribute name has Different attribute value. ................................. 32
Table3.4 Number of items of each cognitive ability(山櫻花) ..................... 32
Table5.1 Information of experiment. ........................................................... 50
Table5.2 The result of questionnaire. ........................................................... 55
Table5.3 Result of the difficulty level of item. ............................................ 56
Table5.4 Result of researcher and teacher selects item’s cognitive ability .. 58
[ACGX 2001] Arroyo, I., Conejo, R., Guzman, E. and Wolf, B.P. (2001). “An
Adaptive Web-based Component for Cognitive Ability
Estimation”. Proceedings of Artificial Intelligence in Education.
Amsterdam:IOS, pp. 456-466
[BEFX 1956] Bloom, B.S., Engelhart M.D., Furst E.J., Hill W.H. and
Krathwohl D.R., Taxonomy of educational objectives: The
classification of educational goals.Handbook 1: Cognitive
domain. New York: David McKay,1956.
[BFE 2005] Brown, J. C., Frishkoff, G., and Eskenazi, M. (2005).
Automatic question generation for vocabulary assessment.
Proceedings of HLT/EMNLP,pp.819-826.
[BrE 2004] Brown, J.C. and Eskenazi, M. (2004). Retrieval of Authentic
Documents for Reader-Specific Lexical Practice. In Proceedings
of InSTIL/ICALL Symposium 2004. Venice, Italy, 2004.
[BEFX 1956] Bloom, B.S. (Ed.), Engelhart, M.D., Furst, E.J., Hill, W.H., &
Krathwohl, D.R. (1956). Taxonomy of educational objectives:
The classification of educational goals. Handbook 1: Cognitive
domain. New York: David McKay.
[BSMX 1991] Burton S. J., Sudweeks R. R., Merrill P. F., and Wood B.(1991).
"How to Prepare Better Multiple-Choice Test Items: Guidelines
for University Faculty".
[CKCX 2008] Chen, S.-B., Kuo, R., Chang, M., Liu T.-C. ,and Heh
J.-S.(2008).”Developing True/False Test Sheet Generating
System with Diagnosing Basic Cognitive Ability” In the
Proceedings of the World Conference on Educational Multimedia,
Hypermedia and Telecommunications (EDMEDIA 2008) January
30, 2008,pp. 5740-5748).
[CoQ 1969] Collins, A. M. and Quillian, M. R. (1969). “Retrieval time from
semantic memory”. Journal of Verbal Learning and Verbal
Behavior, 8, pp.240-248.
63
[Dan 1978] Dansereau, D. F. (1978). The development of a learning
strategies curriculum, In H. F. O’Neil, Jr., (Ed.), Learning
strategies. New York: Academic Press.
[Gre 2000] Green, B.F. (2000). System design and operation. In Wainer, H.
(Ed.) Computerized Adaptive Testing: A Primer. Mahwah, NJ:
Lawrence Erlbaum Associates.
[HaS 1985] Hambleton, R. K. and Swaminathan, H. (1985). Item response
theory: Principles and applications. Boston, MA: Kluwer-Nijhoff.
[KCDX 2002] Kuo, R., Chang M., Dong, D.-X., Yang, K.-Y. and Heh, J.-S.
(2002). “Applying Knowledge Map to Intelligent Agents in
Problem Solving Systems” In the Proceedings of the World
Conference on Educational Multimedia, Hypermedia &
Telecommunications (ED-Media 2002), Denver, Colorado, USA,
24-29 June, 2002,pp. 1053-1054.
[KCH 2003] Kuo, R, Chang, M. and Heh J.-S. (2003),“Problem Model
Analysis in Inter-Correlated Knowledge by Implementing Item
Generating System in Knowledge Map,” World Conference on
Educational Multimedia, Hypermedia & Telecommunications
(ED-Media 2003), Honolulu, Hawaii, USA, Jun. 23-28, 2003
(submitted)
[Kra 2002] Krathwohl, D. R. (2002). “A revision of bloom's taxonomy: An
overview.” Theory into Practice, 41 (4), 212-218.
[KWMX 2007] Kuo, R, Wu M.-C., Chang A., Chang M. and Heh J.-S.
(2007).”Delivering Context-aware Learning Guidance in the
Mobile Learning Environment based on Information
Theory”, In: Proceedings of the 7th IEEE International
Conference on Advanced Learning Technologies (ICALT 2007),
Niigata, Japan, July 18-20, 2007, pp. 362–366.
[Lor 1980] Lord, F. M. (1980).Applications of item response theory to
practical testing problems. Hillsdale, NJ: LEA.
64
[May 2002] Mayer, R. E. (2002). “A taxonomy for computer-based
assessment of problem solving,” Computers in Human Behavior,
vol.18, no.6, pp.623-632.
[Nob 2004] Noble, T. (2004). “Integrating the Revised Bloom’s Taxonomy
with Multiple Intelligences: A Planning Tools for Curriculum
Differentiation.” Teachers College Record, Vol. 106, Issue 1,
p193-211.
[Nov 2001] Novak, J. D. (2001). The Theory Underlying Concept Maps and
How To Construct Them. Retrieved May 10, 2005, from Institute
for Human and Machine Cognition (IHMC):
http://cmap.coginst.uwf.edu/info/printer.html
[Nov 1984] Novak, J. D. (1984).”Applying learning psychology and
philosophy of science to biology teaching”, The American
Biology Teacher,43(1),1981,pp. 12-20.
[Ost 1989] Osterlind, S. J. (1989) Constructing Test Item. Kluwer Academic
Publishers, Norwell MA (1989).
[PIC 2006] Padmaperuma, G., Ilanko, S. and Chen, D. (2006). “Opportunities
and challenges in instructional design for teaching flexure
formula using revised Bloom's Taxonomy,” International Journal
of Engineering Education, 22(1), pp.148-156
[Pep 2000] Pepper, S. (2000). The TAO of Topic Maps - finding the way in
the age of infoglut.
http://www.ontopia.net/topicmaps/materials/tao.html, 2000.
[RuN 1983] Rumelhart E. and Norman D.A. (1983).”Representation in
memory”,In R.C Atkinson,R. J Herrnstein,G. lindzey,and R. D.
Luce(Eds.),Handook of Experimental Psychology,Volume
2,Learning and Cognition,New York,NY:Wiley.
[Sha 1948] Shannon, C. E. (1948).”A Mathematical Theory of
Communication”, The Bell System Technical Journal, 27,
65
pp.379-423, 1948, pp. 623-656.
[Ras 1960] Rasch, G.. (1960). Probabilistic models for some intelligence and
attainment tests. Copenhagen: The Danish Institute for
Educational Research.
[Tuc 1946] Tucker, L. R. (1946). “Maximum validity of a test with
equivalent items”. Psychometrika, 11, pp.1-13.
[Wai 2000] Wainer, H. (2000). Computerized adaptive testing: A primer (2nd
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔