(3.236.122.9) 您好!臺灣時間:2021/05/12 18:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:馮山清
研究生(外文):Son-Thanh Phung
論文名稱:溫度傳感器
論文名稱(外文):Temperature Transducer
指導教授:鍾文耀鍾文耀引用關係
指導教授(外文):Wen-Yaw Chung
學位類別:碩士
校院名稱:中原大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:99
中文關鍵詞:讀出電路溫度感測器CMOS技術pH定量計
外文關鍵詞:pH meterCMOS technologytemperature sensorread-out circuit.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:149
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
一個離子感測場效電晶體的pH計是由離子感測場效電晶體感測器、離子感測場效電晶體讀出電路、溫度讀出電路、微控器所編譯的數位類比轉換器和顯示結果的液晶顯示器所組成。離子感測場效電晶體感測器和溫度感測器可分別地量測液體的pH值及溫度。溫度感測器及溫度讀出電路是基於微控器基礎的pH計的部份系統。在pH計讀取時,兩者提供的溫度感測可根據溫度效應作自動補償。此研究提出基於CMOS技術下所製成的一個具有讀出電路的溫度感測器。
溫度感測器包含了兩個元素,一個和絕對溫度成比例的產生器,和一個緩衝操作放大器。運作在單輸入電源下,實現並且積體化於TSMC 0.35 um 2P4M CMOS製程。晶片面積為 357.3 um 乘上135.05 um,平均功耗在一般狀況下為495.4615 uW。溫度感測器操作的解析度為 5mV/oC為了取得穩定的輸出電壓, 響應時間為10ns。在佈局之前的模擬及佈局之後的模擬顯示在0oC到100oC皆有線性的轉換反應。在此篇論文中已提出CMOS感測器的設計及模擬結果。
溫度讀出電路是由帶差參考電路所組成,利用在0oC時校正為0.25V,介面電路由一個緩衝器和差動放大器所組成。此電路輸出解析度為25mV/oC。
An ISFET pH meter is composed of an ISFET sensor, an ISFET readout circuit, a temperature sensor, a temperature readout circuit, a microcontroller with a built in ADC and a LCD for displaying results. The ISFET sensor and temperature sensor measure the pH and the temperature of the solution respectively. The temperature sensor and temperature readout circuit serve as an integral part of microcontroller-based ISFET pH meter system. Both provide temperature monitoring for the automatic compensation of temperature effects on pH meter readings. This study presents a temperature sensor with a readout circuit using CMOS technology.
The temperature sensor consists of two elements, a Proportional to Absolute Temperature (PTAT) generator, and a buffer operational amplifier. It was implemented in an integrated circuit based on TSMC 0.35 µm 2P4M CMOS technology that operates on a single rail 3.3V power supply. Its core area is 357.3µm by 135.05µm and has an average power dissipation of 495.4614 µW in typical case. The temperature sensor operates with a resolution of 5mV/oC and the response time in order to get a stable output voltage is 10ns. Pre-layout and post-layout simulations showed a linear transfer response from 0oC to 100oC. The CMOS sensor design and simulation results are presented in details in this thesis.
The temperature read-out circuit is composed of a bandgap reference which is used to calibrate the 0oC response to 0.25V, and an interface circuitry composed of buffers and a differential amplifer. The circuit has an output resolution of 25mV/oC.
Table of Contents
摘 要 I
Abstract II
Acknowledgements III
Table of Contents IV
List of Figures VI
List of Tables X
Chapter 1. Introduction 1
1.1 The overview and objective: 1
1.1.1 General objective: 3
1.1.2 Specify objective: 3
To implement the temperature sensor with: 3
To implement the readout circuit with: 3
1.2 The outline: 4
Chapter 2. Literature review 5
2.1 Bipolar Components in CMOS Technology: 5
2.1.1 Introduction: 5
2.1.2 Basic Theory of Bipolar Transistors: 5
2.1.3 Bipolar transistor in CMOS technology: 14
2.1.4 Conclusion 18
2.2 Ion-sensitive field effect transistor: 18
2.3 Related literature: 19
Chapter 3. Experiment with AD590 temperature transducer. 21
Chapter 4. Temperature sensor. 26
4.1 Accuracy of temperature sensor: 26
4.2 Temperature sensor: 26
4.2.1 Temperature design: 26
4.2.2 Pin Assignment and Description: 40
4.2.3 Testing Configuration and Procedures: 42
4.2.4 Conclusion : 44
Chapter 5. Read-out circuit design 45
5.1 Read-out circuit: 45
5.2 Bandgap reference design: 46
5.3 Rail-to-rail op amp design: 50
5.4 The read-out circuit layout and simulation result: 54
Chapter 6. Conclusion & Future work 59
References……………………………………………………………………….. 61
Appendix …………………………………………………………………………63
Research Paper Publications 88
Biography 89
1. Bergveld, ISFET, Theory and Practice. IEEE Sensor Conference Toronto, October 2003.
2.National Semiconductor, “LM135 - Precision Temperature-Sensor”, http://www.national.com, 2004.
3.Timko, M.P., A Two-Terminal IC Temperature Transducer. IEEE Journal of Solid-State
Circuits, Vol. SC-11, December 1976. No. 6, pp. 784-788.
4.Analog Devices, “AD590 is a two-terminal integrated circuit temperature transducer”, http://www.Analogdevice.com, 2004.
5.J.W. Slotboom and H.C. De Graaf, “Measurements of Bandgap Narrowing in Si Bipolar Transistors”, Solid-State Electronics, Vol. 19, pp. 857-862, Oct. 1976.
6.G.C.M. Meijer and K. Vingerling, “Measurement of the Temperature Dependence ofthe IC(VBE) Characteristics of Integrated Bipolar Transistors”, IEEE Journal of Solidstate Circuits, Vol. SC-15, No. 2, pp. 1151-1157, April 1980.
7.Y.P. Tsividis, “Accurate Analysis of Temperature Effects in IC-VBE Characteristics with Application to Bandgap Reference Sources”, IEEE Journal of Solid-state Circuits, Vol. SC-15, No. 6, pp. 1076-1084, Dec. 1980.
8.G.C.M. Meijer, “Concepts for Bandgap-references and Voltage Measurement Systems”, in Analog Circuit Design edited by J.H. Huijsing, R.J. van de Plassche and W.M.C. Sansen, Kluwer Ac. Publ., Dordrecht, pp. 243-268, 1996.
9.M.G.R. Degrauwe, O.N. Leuthold, E.A. Vittoz, H.J. Oguey and A. Descombes, “CMOS Voltage References Using Lateral Bipolar Transistors”, IEEE Journal of Solid-state Circuits, Vol. SC-20, No. 6, pp. 1151-1157, Dec. 1985.
10. R.A. Bianchi, F. Vinci Dos Santos, J.M. Karam, B. Courtois, F. Pressecq and S.Sifflet, “CMOS compatible temperature sensor based on the lateral bipolar transistor for very wide temperature range application”, Sensors and Actuators, A71, pp. 3-9, 1998.
11.Ganesan et al., “CMOS Voltage Reference with Stacked Base-Emitter Voltages”, US.Patent, 5.126.653, June 30, 1992.
12.M. Tuthill, “A Switched-Current, Switched-Capacitor Temperature Sensor in 0.6-um CMOS”, IEEE Journal of Solid-State Circuits, Vol. 33, No. 7, pp. 1117-1122, July 1998.
13.G. Tzanateas, C.A. Salama and Y.P. Tsividis, “A CMOS Bandgap Reference”, IEEE Journal of Solid-State Circuits, Vol. SC-14, No. 3, pp. 655-657, June 1979.
14.Eric A. Vittoz and O. Neyroud, “A Low-Voltage CMOS Bandgap Reference”, IEEE Journal of Solid-state Circuits, Vol. SC-14, No. 3, pp. 573-577, June 1979.
15.Y.P. Tsividis and R. W. Ulmer, “A CMOS Voltage Reference”, IEEE Journal of Solid-state Circuits, Vol. SC-13, No. 6, pp. 774-778, Dec. 1978.
16. Amon, S., et al. PTAT sensors based on SJFETs. in Electrotechnical Conference, 2000. MELECON 2000. 10th Mediterranean. 2000.
17.Meijer, G.C.M., W. Guijie, and F. Fruett, Temperature sensors and voltage references implemented in CMOS technology. Sensors Journal, IEEE, 2001. 1(3): p. 225-234.
18.Pertijs, M.A.P., G.C.M. Meijer, and J.H. Huijsing, Precision temperature measurement using CMOS substrate pnp transistors. Sensors Journal, IEEE, 2004. 4(3): p. 294-300.
19. Songmalai, P., et al. Study on temperature effect on p-n and zener junction for PTAT temperature sensor in Electrical Engineering/Electronics,Computer,Telecommunications and Information Technology, 2008. ECTI-CON 2008. 5th International Conference on. 2008.
20.Allen-Holberg, CMOS Analog Circuit Design. 2002.
21. Bruce Carter, a.T.B., Hand book of operational amplifier applications. Application Report SBOA092A Texas Instruments., October 2001.
22.P.Pertijs, Andrea Niederkorn, Xu Ma, Bill McKillop, Anton Bakker, Johan H.Huijsing” A CMOS Smart Temperature Sensor with a 3σ Inaccuracy of 0.5oC from -50oC to 120oC” IEEE, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔