(3.227.0.150) 您好!臺灣時間:2021/05/06 12:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李盛凱
研究生(外文):Sheng-Kai Li
論文名稱:以SnO2/ITO/PET基板為基礎研製電壓式葡萄糖感測器
論文名稱(外文):Study on Potentiometric Glucose Biosensor Based on SnO2/ITO/PET Substrate
指導教授:高慧玲高慧玲引用關係熊慎幹
指導教授(外文):Hui-Ling KaoShen-Kan Hsiung
學位類別:碩士
校院名稱:中原大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:105
中文關鍵詞:二氧化錫/氧化銦錫/聚對苯二甲酸乙二酯結構電化學感測器射頻濺鍍電壓式葡萄糖感測器電壓式酸鹼感測器
外文關鍵詞:potentiometric pH electrodepotentiometric glucose biosensorSnO2/ITO/PET electrodeR. F. sputtering.Electrochemical sensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:230
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
酸鹼感測器為一種量測水溶液中酸度與鹼值之儀器。傳統酸鹼儀表之組成為經過特殊處理之玻璃電極,在接上電子儀表後可以量測與讀出待測液之酸鹼值,為發展成熟之技術,酸鹼感測器對於離子選擇電極與生物感測器皆相當重要,因在加上不同之感測膜後,可感測其他離子與生化待測液。氫離子感測元件有電化學式、光學式、壓電式等,其中以電化學式最為流行,本研究即以電化學方法中之電壓量測方式研製酸鹼感測器。
因時下之糖尿病患者皆相當注重控制血糖,故血糖濃度之監視變得相當重要,以致前端感測器之優劣成為重要的課題。生物感測器為結合生化元素與物理或化學偵測原理之元件。在酸鹼感測元件之架構上,研製電壓式葡萄糖感測器遂為本論文之重點。生物感測器之發展上,電流式之生物感測器具快速反應與準確之優勢,但電壓式在備製與操作上有較簡易之優點。
目前在光電產業上,因氧化銦錫/聚對苯二甲酸乙二酯塑膠基板之可撓性與極佳的透光度,已廣泛取代傳統之玻璃基板。本論文以半導體射頻濺鍍法將二氧化錫感測膜濺鍍在塑膠基板上,製作酸鹼感測元件,此因塑膠基板極薄之厚度在製作元件的過程中有大量製造之優點。由於二氧化錫金屬氧化層之效果,使酸鹼感測元件之感測度增加,亦降低元件之非理想效應。本論文最後以葡萄糖氧化酵素、甲殼素與奈米碳管製作電壓式葡萄糖感測器,其感測度可達0.2443 mV/(mg/dl),輸出電壓響應介於150 mV至200 mV之間,其非理想效應(遲滯與時漂)亦在本論文中作描述。
A pH sensor is an electronic instrument used to measure the pH value that is acidity or alkalinity of a liquid. A typical pH meter consists of a special measuring probe (a glass electrode) connected to an electronic meter that measures and displays the pH reading. The pH sensing electrode has already been a cutting edge technology. A pH sensor is also important for ion-selective electrode (ISE) and biosensor, because pH sensor can be coated with specific sensing membrane to detect other ions and chemical or biochemical solutions, it dose not only limit to detect hydrogen ions. So a pH sensor plays an important role on development of chemical and biochemical science. The hydrogen ions sensing device has several types: electrochemical, optical, piezo-electric and calorimetric, etc.. The most popular form is electrochemical. In this study, we would like to present the potentiometric type.
Up to now, the patients of diabetes mellitus have paid much attention on control of blood sugar. Monitoring the blood sugar concentration becomes regular thing in daily life for diabetes, so the preceding sensing device is vital in medical monitor. A biosensor is a device for the detection of an analyte that combines biological component with a physical or chemical detect component. In this thesis, we fabricated glucose biosensor by potentiometric methods. On the development of biosensor, although the amperometric one has faster response and the accuracy is better, but the potentiometric type is simple in preparation, easy in operation and selective in analytical performance.
Recently, an ITO/PET substrate replaces a glass substrate in photoelectric industries extensively, because the benefits of flexile characteristic and good transmittance. In this article, we utilized R.F. sputter technique to coat SnO2 membrane on ITO/PET substrate and fabricated a potentiometric pH electrode. The ITO/PET substrate make sensor can be fabricated a large amount, due to the thickness of the plastic substrate is thin enough. Finally, we used the sensing characteristic of hydrogen ions sensing electrode to create a glucose biosensor based on chitosan (chi) and carbon nano-tubes (CNTs). The coating of SnO2 thin film makes the basic properties of the hydrogen ions sensing device better, especially in sensitivity and non-ideal effect. Finally, the potentiometric glucose biosensor based on pH sensor is going to be presented and discussed. The sensitivity of the potentiometric glucose biosensor reaches to 0.2443 mV/(mg/dl), because of the effect of mediator of carbon nano-tubes (CNTs), the output response is between 150 mV and 200 mV.
中文摘要 I
英文摘要 VIII
誌謝 X
Contents XI
List of Symbols XV
List of Figures XVI
List of Tables XVIII
Chapter 1 Introduction 1
1.1 From semiconductor to glucose biosensor 1
1.2 What is ITO/PET substrate? 6
1.3 Research objective 8
1.3 Thesis outline 9
Chapter 2 Theory Description 11
2.1 Introduction 11
2.2 The operation principle of ISFET and EGFET 12
2.2.1 The site-dissociation theory 13
2.2.2 Electric double capacitance 15
2.2.3 Nernst equation 16
2.2.4 Equivalent circuit for electrolyte insulator
silicon structure 17
2.2.5 Offset- or extended-gate ISFET 18
2.3 The operation principle of glucose biosensor 20
2.3.1 Introduction 20
2.3.2 Potentiometric biosensor 22
2.3.3 Amperometric biosensor 23
2.4 Immobilization method 24
2.4.1 Absorption 24
2.4.2 Covalent binding 25
2.4.3 Entrapment 25
2.4.4 Crosslinking 26
Chapter 3 Experiment 27
3.1 Material and regents 27
3.2 Fabrication 30
3.2.1 Introduction 30
3.2.2 Potentiometric pH sensors based on SnO2/
ITO/PET 33
3.2.3 Potentiometric glucose biosensors based
on SnO2/ITO/PET 35
3.3 Measurement 37
Chapter 4 Results and Discussion 40
4.1 Basic characteristic of potentiometric pH sensor 40
4.1.1 Voltage response of potentiometric pH sensors
based on ITO/PET 40
4.1.2 Voltage response of potentiometric pH sensors
based on SnO2/ITO/PET 41
4.1.3 Relationship between the area of sensing
window of potentiometric pH sensor based
on SnO2/ITO/PET and sensitivity of sensor 43
4.1.4 Temperature coefficients of potentiometric
pH sensor based on SnO2/ITO/PET 46
4.2 Relationship between the substrate and the potentiometric
pH sensors based on SnO2/ITO/PET 49
4.2.1 Relationship between the thickness of
SnO2 thin film and the position of substrate 49
4.2.2 Relationship between the sensitivity of pH
sensors based on SnO2/ITO/PET and the 50
position of substrate
4.2.3 Relationship between the temperature of
substrate and the sensitivity of pH sensor
based on SnO2/ITO/PET 51
4.3 Drift characteristic of pH sensor 53
4.3.1 Drift characteristic of potentiometric pH
sensor based on ITO/PET 54
4.3.2 Drift characteristic of potentiometric pH
sensor based on SnO2/ITO/PET 55
4.4 Potentiometric glucose biosensor based on SnO2/
ITO/PET 56
4.4.1 Basic voltage response of potentiometric
glucose biosensor 56
4.4.2 Effect of carbon nano-tubes for the potentiometric
glucose biosensor 57
4.4.3 Measurement of potentiometric glucose biosensor
in buffer solution 58
4.4.4 Detection limit of potentiometric glucose
biosensor 60
4.4.5 Operational stability characteristic and life
time of potentiometric glucose biosensor 61
4.4.6 Drift characteristic of potentiometric glucose
biosensor 62
4.4.7 Hysteresis characteristic of potentiometric
glucose biosensor 63
4.5 Comparison of potentiometric glucose biosensor 65
Chapter 5 Conclusions and suggestions for further work 68
5.1 Conclusions 68
5.2 Suggestions for further work 70
References 71
Appendix 77
Biography and list of publications 86



List of Figures
Page
Fig. 1.1 The vertical view of FET-type glucose sensor. 4
Fig. 1.2 The cross section of FET-type glucose sensor. 5
Fig. 1.3 Chemical formula of polyethylene terephthalate (PET). 6
Fig. 1.4 Polyethylene terephthalate (PET) is able to recycle. 7
Fig. 1.5 Outline in this thesis. 10
Fig. 2.1 Structure of ISFET. 12
Fig. 2.2 Schematic representation of site-dissociation model. 13
Fig. 2.3 Equivalent circuit for electrolyte-insulator-silicon structure. 17
Fig. 2.4 Extended-gate ISFET structure. 18
Fig. 2.5 Dual co-axial configuration. 19
Fig. 2.6 Cross section of separative EGFET. 19
Fig. 2.7 “Second-generation” enzyme electrode: sequence of events that
occur in a mediated system.
21
Fig. 2.8 Chemical structure of some common redox mediators: (a)
dimethyl ferrocene; (b) tetrathiafulvalene; (c) teracyanoquinodimethane;
(d) meldola Blue.
22
Fig. 3.1 Rutile unit cell of tin oxide. 27
Fig. 3.2 Structure of 3-GPTS (3-Glycidoxypropyl trimethoxysilane). 28
Fig. 3.3 Structure of chitosan (Poly-(1-4)-2-Amino-2-deoxy-ß-D-Glucan). 29
Fig. 3.4 Structure of carbon nano-tubes. 29
Fig. 3.5 Transmittance of ITO/PET substrate. 31
Fig. 3.6 Structure of pH sensor based on SnO2/ITO/PET. 34
Fig. 3.7 Measurement system of pH sensor. 38
Fig. 3.8 Measurement system of pH sensor for temperature coefficient
(TC) experiment.
39
Fig. 4.1 Voltage response of pH sensor based on ITO/PET. 41
Fig. 4.2 Voltage response of pH sensor based on SnO2/ITO/PET. 42
Fig. 4.3 Sensitivity of pH sensor based on SnO2/ITO/PET. 42
Fig. 4.4 Structure of pH sensor based on SnO2 thin film. 44
Fig. 4.5 pH responses with different sensing areas (SnO2/ITO/PET-based). 44
Fig. 4.6 Temperature coefficients of pH sensor based on SnO2/Al/Si and
SnO2/ITO/PET.
47
Fig. 4.7 Voltage responses of pH sensor based on SnO2/ITO/PET at different
temperatures in pH6 buffer solution.
48
Fig. 4.8 Relationship between the thickness of the SnO2 sensing thin film
and the corresponding position of substrate.
50
Fig. 4.9 Relationship between the sensitivity of pH sensor and the corresponding
position of substrate.
51
Fig. 4.10 Relationship between sensitivity of pH sensor and temperature of
substrate.
52
Fig. 4.11 Drift characteristic of pH sensor based on ITO/PET for 12 hours. 54
Fig. 4.12 Drift characteristic of pH sensor based on SnO2/ITO/PET for 6
hours.
55
Fig. 4.13 Voltage response of glucose biosensor based on SnO2/ITO/PET. 57
Fig. 4.14 Voltage responses of glucose biosensors between without and with
carbon nano-tubes.
58
Fig. 4.15 Responses of glucose biosensor measured in different pH value
buffer solution.
59
Fig. 4.16 Calibration curve of the glucose biosensor based on carbon
nano-tubes (CNTs) in the range of glucose concentration from 50
mg/dl to 450 mg/dl (pH7.5).
60
Fig. 4.17 Operational stability characteristic of glucose biosensor based on
SnO2/ITO/PET.
61
Fig. 4.18 Life time of glucose biosensor based on SnO2/ITO/PET. 62
Fig. 4.19 Drift characteristic of glucose biosensor based on SnO2/ITO/PET. 63
Fig. 4.20 Hysteresis characteristic of potentiometric glucose biosensor based
on SnO2/ITO/PET.
64



List of Tables
Page
Table 3.1 Specification of ITO/PET substrate. 30
Table 3.2 Comparison between ITO/PET substrate and ITO/glass substrate.
32
Table 3.3 R.F. sputter conditions of pH sensor based on SnO2/ITO/PET. 35
Table 4.1 Sensitivity of pH sensors with sensing window area of 3×3mm2,
2×2 mm2, 1×1 mm2.
45
Table 4.2 pH buffer solution at 20 ℃ to 60 ℃. 47
Table 4.3 Comparison of temperature coefficients in this thesis and
previous paper.
48
Table 4.4 Relationship between the pH value of buffer and the temperature.
53
Table 4.5 Specifications of potentiometric glucose biosensor based on the
SnO2/ITO/PET electrode.
65
Table 4.6 Comparison of potentiometric glucose biosensors. 66
Table 4.7 Comparison of glucose biosensors based on carbon nano-tubes. 67
[1]Y. Lin and Y. Kuan, Electronics, 2004.
[2]S. M. Sze, Physics of Semiconductor Device, 1985.
[3]P. Bergveld, "Development of an ion sensitive solid-state device for neurophysiological measurements", IEEE Transactions on Biomedical Engineering, vol. 17, pp. 70-71, 1970.
[4]C. D. Fung, P. W. Cheung, and W. H. Ko, "A generalized theory of an electrolyte-insulator-semiconductor field effect transistor", IEEE Transactions on Electron Devices vol. 33, pp. 8-18, 1986.
[5]S. D. Moss, C. C. Johnson, and Jirijanata, "Hydrogen, calcium and potassium ion sensitive FET transistors a preliminary report", IEEE Transactions on Biomedical Engineering, vol. 25, pp. 49-54, 1978.
[6]P. Gimmel, B. Gompf, D. Schmeiosser, H. D. Weimhofer, W. Gopel, and M. Klein, "Ta2O5 gates of pH sensitive devices comparative spectroscopic and electrical studies", Sensors and Actuators B, vol. 17, pp. 195-202, 1989.
[7]H. K. Liao, J. C. Chou, W. Y. Chung, T. P. Sun, and S. K. Hsiung, "Study on the interface trap density of the Si3N4:SiO2 gate ISFET", in Proceedings of the Third East Asian Conference on Chemical Sensors. vol. 5-6 Seoul, South Korea, 1997, pp. 394-400.
[8]S.-R. Leea, K. Sawada, H. Takao, and M. Ishida, "An enhanced glucose biosensor using charge transfer techniques", Biosensors and Bioelectronics, vol. 24, pp. 650-656, 2008.
[9]S. R. Lee, M. M. Rahman, K. Sawada, and M. Ishida, "Fabrication of a highly sensitive penicillin sensor based on charge transfer techniques", Biosensors and Bioelectronics, vol. 24, pp. 1877-1882, 2009.
[10]J. v. d. spiegel, I. Lauks, P. Chan, and D. Babic, "The extended gate chemically sensitive field effect transistor as multi-species microprobe", Sensors and Actuators, vol. 4, pp. 291-298, 1983.
[11]L. T. Yina, J. C. Choub, W. Y. Chung, T. P. Sun, and S. K. Hsiung, "Separate structure extended gate H+-ion sensitive field effect transistor on a glass substrate", Sensors and Actuators B, vol. 71, pp. 106-111, 2000.
[12]G. H. B. Lakard, S. Lakard, R. Guyetant, and B. Fahys, "Potentiometric pH sensors based on electrodeposited polymers", polymer, vol. 46, pp. 12233-12239, 2005.
[13]C. H. Lee, H. I. Seo, Y. C. Lee, B. W. Cho, H. Jeong, and B. K. Sohn, "All solid type ISFET glucose sensor with fast response and high sensitivity characteristics", Sensors and Actuators B, vol. 64, pp. 37-41, 2000.
[14]L. T. Yin, J. C. Chou, W. Y. Chung, and T. P. Sun, "Glucose ENFET doped with MnO2 power", Sensors and Actuators B, vol. 76, pp. 187-192, 2005.
[15]C. W. Liao, J. C. Choub, T. P. Sun, S. K. Hsiung, and J. H. Hsieh, "Preliminary investigations on a glucose biosensor based on the potentiometric principle", Sensors and Actuators B, vol. 123, pp. 720-726, 2007.
[16]"The Chemical Heritage Foundation " in www.chemheritage.org, 2001.
[17]in http://zh.wikipedia.org.
[18]C. Cane, I. Gracia, and A. Merlos, "Microtechnologies for pH ISFET chemical sensors", Microelectronics Journal, vol. 128, pp. 389-405, 1997.
[19]S. Martinoia, G. Massobrio, and L. Lorenzelli, "Modeling ISFET microsensor and ISFET-based microsystems: a review", Sensors and Actuators B, vol. 105, pp. 14-27, 2005.
[20]P. Bergveld and A. Sibbald, Analytical and biomedical applications of ion se;ective field effect transistors, 1988.
[21]J. Wang, Analytical Electrohemistry, second edition ed., 2000.
[22]T. M. Canh, Biosensors, 1993.
[23]G. F. Bickerstaff, "Immobilization of enzymes and cells", 1997.
[24]in hptt://www.2spi.com/catalog/chem/trimethoxysilane.shtml.
[25]Industrial Technology Research Institute, "Thin film technology of PET、PC and ITO" in http:// www.itri.org.tw/chi/services/transferable/itri_show_print.js
p idx=2126, 2002.
[26]C. J. Lu, in http://tech.digitimes.com.tw/print.aspx?zNotesDocId=0000040096
_A3X1BALR1ALM3875OTKXL, 2007.
[27]M. Boehme and C. Charton, "Properties of ITO on PET film in dependence on the coating conditions and thermal processing", Surface & Coatings Technology, vol. 200, pp. 932-935, 2005.
[28]X. Liu, L. Shia, W. Niu, H. Li, and G. Xu, "Amperometric glucose biosensor based on single-walled carbon nanohorns", Biosensors and Bioelectronics, vol. 23, pp. 1887-1890, 2008.
[29]D. R. S. Jeykumari and S. S. Narayanan, "A novel nanobiocomposite based glucose biosensor using neutral red functionalized carbon nanotubes", Biosensors and Bioelectronics, vol. 23, pp. 1404-1411, 2008.
[30]H. H. Liu, X. J. Huang, B. Gu, and Y. K. Choi, "Alternative route to reconstitute an electrical contact of enzyme on a single-walled carbon nanotube–ferrocene hybrid", Journal of Electroanalytical Chemistry, vol. 621, pp. 38-42, 2008.
[31]T. H. Yang, C. L. Hung, J. H. Ke, and J. M. Zen, "An electrochemically preanodized screen-printed carbon electrode for achieving direct electron transfer to glucose oxidase", Electrochemistry Communications, vol. 10, pp. 1094-1097, 2008.
[32]Y. Wang, W. Wei, X. Liu, and X. Zeng, "Carbon nanotube/chitosan/gold nanoparticles-based glucose biosensor prepared by a layer-by-layer technique", Materials Science and Engineering C, vol. 20, pp. 50-54, 2009.
[33]F. Jia, C. Shana, F. Li, and L. Niu, "Carbon nanotube/gold nanoparticles/polyethylenimine-functionalized ionic liquid thin film composites for glucose biosensing", Biosensors and Bioelectronics, vol. 24, pp. 945-950, 2008.
[34]C. G. Caridade, R. Pauliukaite, and C. M. A. Brett, "Development of electrochemical oxidase biosensors based on carbon nanotube-modified carbon film electrodes for glucose and ethanol", Electrochimica Acta, vol. 53, pp. 6732-6739, 2008.
[35]X. Pang, D. He, S. Luo, and Q. Cai, "An amperometric glucose biosensor fabricated with Pt nanoparticle-decorated carbon nanotubes/TiO2 nanotube arrays composite", Sensors and Actuators B, vol. 137, pp. 134-138, 2009.
[36]Y. T. Wang, L. Yua, Z. Q. Zhu, J. Zhang, J. Z. Zhu, and C. h. Fan, "Improved enzyme immobilization for enhanced bioelectrocatalytic activity of glucose sensor", Sensors and Actuators B, vol. 136, pp. 332-337, 2009.
[37]C. W. Pan, J. C. Chou, T. P. Sun, and S. K. Hsiunga, "Development of the tin oxide pH electrode by the sputtering method", Sensors and Actuators B, vol. 108, pp. 863-869, 2005.
[38]L. L. Chi, "Study and fabrication on novel separative structure of enzyme modified field effect transistor", Christian University of Chung Yuan, Chung Li, Taiwan, pp. 38-42, 1999.
[39]F. S. Ho, "The design of compensation and calibration system for pH ISFET sensor array", Christian University of Chung Yuan, Chung Li, Taiwan, pp. 24-25, 2005.
[40]Y. L. Chin, "Study of the extended gate field effect transistor (EGFET) and signal processing IC using the CMOS technology", Christian University of Chung Yuan, Chung Li, Taiwan, p. 60, 2001.
[41]H. C. Liao, "Novel calibration and compensation technique of circuit design for biosensor", Christian University of Chung Yuan, Chung Li, Taiwan, pp. 81-85, 2004.
[42]L. Bousse, H. H. v. d. Vlekkert, and N. F. d. Rooij, "Hysteresis in Al2O3-gate ISFETs", Sensors and Actuators B, vol. 2, pp. 103-110, 1990.
[43]J.-C. Chou and C.-Y. Weng, "Sensitivity and hysteresis effect in Al2O3 gate pH-ISFET", Materials Chemistry and Physics, vol. 71, pp. 120-124, 2001.
[44]S. D. Cams, J. Janata, D. Saupe, and K. chmitt, "pH-based enzyme potentiometric sensors", Anal. Chem., vol. 57, pp. 1917-1928, 1985.
[45]E. E. Karyakin, L. Neftyakova, and A. A. Karyakin, "A novel potentiometric glucose bioscnsor based on polyanilinc semiconductor films", Anal. Left., vol. 27, pp. 2871-2882, 1994.
[46]A. Sekia, S. i. Ikedaa, I. Kuboa, and I. Karube, "Biosensors based on light-addressable potentiometric sensors for urea, penicillin and glucose", Analytica Chimica Acta, vol. 373, pp. 9-13, 1998.
[47]N. Tinkilic, O. Cubuk, and I. Isildak, "Glucose and urea biosensors based on all solid-state PVC–NH2 membrane electrodes", Analytica Chimica Acta, vol. 452, pp. 29-34, 2002.
[48]S. R. Leea, K. Sawada, H. Takao, and M. Ishida, "An enhanced glucose biosensor using charge transfer techniques", Biosensors and Bioelectronics, vol. 24, pp. 650-656, 2008.
[49]L. T. Yin, "Study of biosensors based on an ion sensitive field effect transistor", Christian University of Chung Yuan, Chung Li, Taiwan, 2001.
[50]C. W. Liao, J. C. Choub, T. P. Sunc, S. K. Hsiung, and J. H. Hsieh, "Preliminary investigations on a glucose biosensor based on the potentiometric principle", Sensors and Actuators B, vol. 123, pp. 720-726, 2007.
[51]Y. TingWang, L. Yua, Z. Q. Zhu, J. Zhang, J. Z. Zhu, and C. h. Fan, "Improved enzyme immobilization for enhanced bioelectrocatalytic activity of glucose sensor", Sensors and Actuators B, vol. 136, pp. 332-337, 2009.
[52]F. Li, ZhonghuaWang, C. Shan, J. Song, D. Hana, and L. Niu, "Preparation of gold nanoparticles/functionalized multiwalled carbon nanotube nanocomposites and its glucose biosensing application", Biosensors and Bioelectronics, vol. 24, pp. 1765-1770, 2009.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔