(3.238.96.184) 您好!臺灣時間:2021/05/08 20:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:江昌霖
研究生(外文):Chang-Lin Chiang
論文名稱:氣體對平面電子發射光源元件影響之研究
論文名稱(外文):The Influence of Gas on Flat Electron Emission Lamp Device
指導教授:鄭慧愷
指導教授(外文):Hui-Kai Zeng
學位類別:碩士
校院名稱:中原大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:70
中文關鍵詞:平面電子發射光源氣體放電
外文關鍵詞:Gas DischargeFlat Electron Emission Lamp
相關次數:
  • 被引用被引用:0
  • 點閱點閱:92
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
平面電子發射光源(Flat Electron Emission Lamp, FEEL)為原創之新型發光源,其工作原理是利用外加電場加速電子激發螢光粉之方式發光,因此不會有紫外光的產生。而電子主要有兩種來源:一為氣體游離產生自由電子;二為離子化氣體原子撞擊陰極材料後發射二次電子。經實驗發現,FEEL除了擁有雙面均勻發光之特色外,適當的調配不同條件的螢光粉,還可設計出透明、灰階或彩色圖案之平面光源與應用。
本論文將針對FEEL元件在不同製程與氣體條件下,設計一系列實驗瞭解它們對FEEL元件壽命的影響,包括不同氣體電漿前處理條件與不同工作氣體下之影響研究,進而提昇FEEL元件之效率。
Flat Electronic Emission Lamp (FEEL) is a new pattern of light source with the theory of luminescence utilizing electrons being accelerated by external electronic field to excite the phosphor powders without having UV light emitted. The above mentioned electrons can be generated from two different sources, one is the free electrons from gas ionization, and another source is the secondary electrons generated from the bombardment of ionized gases to the cathode material. It was found by our team that there are advantages of utilizing FEEL: generate uniform double-side lighting, and, with the proper formulation of phosphor slurry, can create transparency, gray-scale, or color image, as well as for further relevant applications.
Purpose of this thesis is to identify the factors that can affect FEEL device’s lifetime and efficiency under different process and gas condition, which include the treatment of gas plasma condition, and the influence of different working gases. After the identification of influential factors, the lifetime and efficiency of FEEL devices can be upgraded accordingly.
目錄
中文摘要.....................................................................................................................Ⅰ
英文摘要.................................................................................................................... Ⅱ
致謝............................................................................................................................ Ⅲ
目錄.............................................................................................................................Ⅳ
圖目錄.........................................................................................................................Ⅵ
表目錄.........................................................................................................................Ⅷ
第一章 序論.................................................................................................................1
1-1 前言.......................................................................................................................1
1-2 研究動機...............................................................................................................4
第二章 文獻回顧與基本理論.....................................................................................5
2-1 顯示器...................................................................................................................5
2-2 低壓螢光粉.........................................................................................................15
2-3 氣體放電原理.....................................................................................................22
2-4 FEEL發光機制....................................................................................................27
第三章 實驗...............................................................................................................28
3-1 實驗流程.............................................................................................................29
3-2 元件製作.............................................................................................................30
3-3 封裝前處理.........................................................................................................33
3-4 設備與儀器.........................................................................................................37
第四章 結果與討論...................................................................................................39
4-1 電極特性分析.....................................................................................................39
4-2 電極電漿處理之影響.........................................................................................43
4-3 填充氣體對電流下降之影響.............................................................................47
4-4 陽極螢光粉電荷累積對電流下降之影響.........................................................52
4-5 元件結構對電流下降之影響…….....................................................................55
第五章 總結...............................................................................................................59
參考文獻....................................................................................................................60

圖目錄
圖1-1-1 FEEL元件的基本結構...................................................................................3
圖2-1-1 場發射顯示器工作原理示意圖....................................................................5
圖2-1-2 場發射顯示器結構示意圖............................................................................6
圖2-1-3 金屬表面附近電子能階與狀態密度分佈示意圖........................................8
圖2-1-4 AC-PDP結構示意圖....................................................................................10
圖2-1-5 交流電漿顯示器面板結構剖面圖..............................................................11
圖2-1-6 重要氣體放電反應能階示意圖..................................................................13
圖2-2-1 在電子激發中,螢光粉的逸出氣體吸附在FEA上...................................17
圖2-2-2 ZnS : Ag在加速電壓5kV電子激發下,螢光粉所逸出氣體的成分..........17
圖2-2-3 YAG : Eu螢光粉在電子激發中,逸出氣體在不同時間下的情形...........19
圖2-3-1 低氣壓的直流氣體放電電壓與電流關係圖..............................................23
圖2-3-2 電子雪崩示意圖..........................................................................................24
圖2-4-1 FEEL元件發光機制.....................................................................................27
圖3-1 影響FEEL元件內部電流下降之因素............................................................28
圖3-1-1 實驗流程圖..................................................................................................29
圖3-2-1 FTO導電玻璃與間隔物的清洗步驟...........................................................31
圖3-2-2 FEEL元件之組成材料.................................................................................32
圖3-2-3 FEEL元件俯視與側視圖.............................................................................32
圖3-3-1 FEEL元件電漿處理實驗的裝置圖.............................................................34
圖3-3-2 熱處理封裝機..............................................................................................35
圖3-3-3 FEEL元件熱處理實驗的裝置圖.................................................................36
圖4-1-1 FEEL陰極之FTO熱處理之放大五萬倍的SEM圖.....................................39
圖4-1-2 FEEL陰極之FTO未熱處理之放大五萬倍的SEM圖.................................39
圖4-1-3 FEEL陰極FTO熱處理前(a)與後(b)之AFM圖.......................................40
圖4-1-4 FEEL陰極之FTO薄膜在熱處理前後之穿透率與波長之關係圖.............40
圖4-1-5 FEEL陰極之FTO導電薄膜在夾合前各區域之電阻值(Ω/cm2)...........41
圖4-1-6 FEEL陰極之FTO導電薄膜在夾合後各區域之電阻值(Ω/cm2)...........41
圖4-1-7 FEEL陰極之FTO導電薄膜夾合前後之穿透率與波長之關係圖.............42
圖4-2-1 FEEL元件組成示意圖.................................................................................43
圖4-2-2 FEEL元件與真空系統配置圖.....................................................................44
圖4-2-3 FEEL電漿處理實驗之架構圖.....................................................................44
圖4-2-4 單一氣體電漿處理後之光譜分析..............................................................45
圖4-2-5 FEEL陰極FTO導電薄膜在不同氣體電漿處理後之SEM分析圖.............46
圖4-3-1 FEEL元件填充氣體實驗之架構圖.............................................................47
圖4-3-2 氮氣、氬氣與氖氣電漿處理電流變化......................................................48
圖4-3-3 氧氣及氖氣混合氣體為工作氣體於元件發光過程之電流變化..............49
圖4-3-4 氧氣及氬氣混合氣體為工作氣體於元件發光過程之電流變化..............50
圖4-3-5 氧氣及氬氣混合氣體為工作氣體於元件發光後之光譜變化..................51
圖4-4-1 FEEL陽極螢光粉電荷累積對電流下降之影響實驗架構圖.....................52
圖4-4-2 FEEL元件驅動後的電流變化圖.................................................................52
圖4-4-3 FEEL元件重新填充氣體的電流變化圖.....................................................52
圖4-4-4 不同陽極材料的電流回升關係圖..............................................................54
圖4-5-1 FEEL元件的發光圖.....................................................................................56
圖4-5-2 FEEL元件操作一段時間後的陰極膜面情況.............................................56
圖4-5-3 陰極FTO之SEM...........................................................................................57
圖4-5-4 陰極FTO實驗五小後之SEM.......................................................................57
圖4-5-5 FEEL陰極之FTO導電薄膜在實驗前各區域之面電阻值(Ω/cm2).......58
圖4-5-6 FEEL陰極之FTO導電膜在五小時實驗後之面電阻值(Ω/cm2)...........58

表目錄
表2-1 不同氣體的氣體放電參數值.........................................................................14
表2-2 不同電極材料在氖氣為主體氣體的二次電子放射係數.............................14
表2-3 ZnO螢光粉所含的雜質..................................................................................18
表2-4 影響交流電漿顯示器使用壽命之因素.........................................................20
[1] T. Jüstel, H. Nikol, C. Ronda, Angew. Chem. Int. Ed. 37, 3084 (1998).
[2] M. IImer, R. Lecheler, H. Schweizer, M. Seibold, SID International Symposium, Digest of Technical Papers, 931 (2000).
[3] U. Kogelschatz, Proceedings of SPIE 5483, 272 (2004).
[4] A. A. Talin, K. A. Dean, J. E. Jaskie, Solid-State Electronics 45, 963 (2001).
[5] G. G. Lister, J. E. Lawler, W. P. Lapatovich, V. A. Godyak, Review of Modern Physics 76, 541 (2004).
[6] K. W. Park, H. S. Hwang, M. H. Han, H. K. Baik, K. M. Song, Appl. Phys. Lett. 92 (2008).
[7] J. P. Boeuf, J. Phys. D: Appl. Phys. 36, 53 (2003).
[8] M. Itoh, L. Ozawa, Annu. Rep. Prog. Chem., Sect. C, 102, 12 (2006).
[9] L. Ozawa, M. Itoh, Chem. Reviews 103, 3835 (2003).
[10] 藍永強, 鍾岳宏, 徐兆鋐, 張德安, 柳克強, 物理雙月刊, 28 (2006).
[11] Kazuyuki Hasegawa, Kaname Mizokami, Yoshinao Oe, Masaki Aoki, United States Patent, 7391156 (2008).
[12] R. Meyer, Eurodisplay Workshop Digest, 56 (1993).
[13] C. A. Spindt, Journal of Applied Physics, 39, 3504-3505 (1968).
[14] Y. Saito, S. Uemura and K. Hamaguchi, Jap. J. Appl. Physics, 37, 346-348 (1998).
[15] 關旻宗, 電子與材料雜誌, 27, 37-44.
[16] Jung-Yu Li, Shih-Pu Chen, Chia-Hung Li, Yi-Ping Lin, Yen-I Chou, Ming-Chung Liu, Po-Hung Wang, Hui-Kai Zeng, Tai-Chiung Hsieh, Jenh-Yih Juang, “A lighting mechanism for flat electron emission lamp”, Appl. Phys. Lett. 94 (2009).
[17] W. Zhu, Vacuum Microelectronics, John Wiley & Sons, Inc. (2001).
[18] Y. C. Lan et al., J. Vac. Sci. Technol. B 22, 1244 (2006).
[19] R. Shankar, Principles of Quantum Mechanics 2nd Ed., Plenum, (1994).
[20] J. A. Nation et al., Proceeding IEEE 87, 865 (1999).
[21] Hirohito Kuriyama et al., SID 04 DIGEST (2004).
[22] 吳智瑋, 國立清華大學工程與系統科學研究所碩士論文 (2005).
[23] Y. Ikeda et al., J. Appl. Phys., 86, 2431-2441 (1999).
[24] Y. P. Raizer, Gas Discharge Physics, Springer-Verlag, Berlin Heidelberg (1991)
[25] T. N. Criscimagna, P. Pleshko, and J. I. Pankove et al,. Ed.,
Spring-Verlag, Berlin Heidelberg, New York, 91-150 (1980).
[26] C. Stotters, S. Yang, F. Zhang, S. M. Jacobsen, B. K. Wagner and C. J. Summers, Appl. Phys. Lett.71, 1759-1761 (1997).
[27] S. Kuboniwa, H. Kawai and T. Hoshina, Jap. J. Appl. Phys.19, 1647-1653 (1980).
[28] J. R. Mccoll, Solid State Science and Technology, 129, 1546-1551 (1982).
[29] K. Vanheusden, W. L. Warren, J. A. Volgt, C. H. Seager and D.Tallant , Appl. Phys. Lett.67, 1280-1282 (1995).
[30] K. Vanheuder, C. H. Seager, W. L. Warrer, D. R. Tallant and J. A. Voigt, , Appl. Phys. Lett.68, 403-405 (1996).
[31] C. E. Hunt and A. G. Chakhorskoi, J. Vac. Sci. Technol., 15, 516-519 (1997).
[32] J. A. Trottier, B. R. Chalamala, R. O. Petersen and M. S. Motorola, 11th International Vacuum Microelectronics erence, Asheville, 75-76 (1998).
[33] A. Vecht, D. W. Smith, S.S. Chadha and C. S. Gibbons, J. Vac. Sci. Technol., 12, 781-784 (1994).
[34] A. G. Chakhovskoi and C. E. Hunt, J. Vac. Sci. Technol., 15, 507-511 (1997).
[35] C. H. Seager, D. R. Tallant and W. L. Warren, J. Appl. Phys.82, 4515-4519 (1997).
[36] Chung-Hoo Park, Joon-Young Choi, Min-Suk Choi, Young-Kee Kim, Ho-Jun Lee, Surface & Coatings Technology 197, 223–228 (2005).
[37] J Reece Roth, IOP Publishing Ltd (1995).
[38] 康仕政,成功大學碩士論文 (2003).
[39] J. S. Townsend, Glarendon Press, Oxford (1915).
[40] Essmaer Nasser, Wiley-Interscience, New York (1971).
[41] Rakhwan Kim, Younghyun Kim, Jinhui Cho, and Jong-Wan Park, J. Vac. Sci. Technol. A 18, 2493-2496 (2000).
[42] H. Uchiike, K. Miura, N. Nakamura, T. Shinoda, and Y. Fukushima, IEEE Trans. Electron Devices 23, 1211 (1976).
[43] N. Keishi, J. Tadanori, T. Toshio, J. Mater. Sci., 31, 1761 (1996).
[44] T. Furusaki, J. Takahashi, K. Kodaira, J. Ceram. Soc. Japan, 102, 202 (1994).
[45] T. H. B. Radhouane, B. Takayuki, O. Yutaka, T. Yasutaka, J. Appl. Phys., 83, 2139 (1998).
[46] M. Yamamoto, T. Furusaki, K. Kodaira, S. Shimada, T. Matsushita, Mat. Res. Bull., 21, 803 (1986).
[47] Sang Jik Kwon and Chan Kyu Jang, Japanese Journal of Applied Physics, 45, 804-809 (2006).
[48] Z. Wron’ ski, Vacuum 78, 641-647 (2005).
[49] da Silva Sobrinho AS, et al. J Vac Sci Technol (1998).
[50] Walkowicz J. Surf Coat Technol, 174-175 (2003).
[51] Matsuzuki Y, Suzuki N, Hirayama T, Jpn J Appl. Phys. (1986).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔