|
[1]S. Guha and N. Koudas. Data-Streams and Histograms. In Proceedings STOC. 2001. [2]Aggarwal C. C. Data Stream Models and Algorithms. New York: Springer Science. 2007. [3]Gilbert A.C, Kotidis Y, Muthukrishnan S, Strauss M. J. QuickSAND: Quick Summary and Analysis of Network Data. DIMACS Technical Report 2001-43. New Jersey: Center for Discrete Mathematics and Theoretical Computer Science. 2001. [4]Schweller R, Gupta A, Parsons E, Chen Y. Reverse Hashing for Sketch-based Change Detection on High-speed Networks. Proceedings of ACM/USENIX Internet Measurement Conference ’04. Taormina, Sicily, Italy. 25-27 October, 2004. [5]G. Cormode and S. Muthukrishnan. What's New: Finding Significant Differences in Network Data Streams. In Proc. of IEEE Infocom, p: 1534—1545. 2004. [6]G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava. Space- and time-efficient Deterministic Algorithms for Biased Quantiles over Data Streams. PODS ’06: Proceedings of the twenty-fifth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, p: 263-272. 2006. [7]Gao Y, Li Z, Schweller R, Chen Y. Towards a High-speed Router-based Anomaly/ Intrusion Detection System (HRAID). ACM SIGCOMM Conference 2005. Philadelphia, USA. 22-26 August 2005. [8]Flajolet P, Martin G.N. Probabilistic counting algorithms for database applications. Journal of Computer and System Sciences 31(2): p.182-209. 1985. [9]Alon N, Matias Y, Szegedy M. The space complexity of approximating the frequency moments. ACM Symposium on Theory of Computing. pp 20-29. 1996. [10]Charikar M, Chen K, Farach-Colton M. Finding frequent items in data streams. Proceedings of the International Colloqium on Automata, Languages, and Programming (ICALP). Malaga, Spain. 8-13 July 2002. [11]Cormode G, Muthukrishnan S. An improved data stream summary: The count-min sketch and its application. Journal of Algorithms, 55(1): p. 58-75. 2005. [12]Krishnamurty B, Sen S, Zhang Y, Chen Y. Sketch-based Change Detection: Methods, Evaluation, and Applications. Proceedings of ACM Internet Measurement Conference ’03. Miami, Florida, USA. 27-29 October 2003. [PPT : www.imconf.net/imc-2003/slides/zhang.ppt] [13]Barman D, Satapathy P, Ciardo G. Detecting Attacks in Routers using Sketches. Workshop on High Performance Switching and Routing 2007. HPSR '07. New York. 30 May – 1 June 2007. [14]Liu Z., Zheng K., Liu B. Hybrid Cache Architecture for High Speed Packet Processing. 2007. [15]Mudigonda J., Vin H.M., Yavatkar R. Managing Memory Access Latency in Packet Processing. ACM SIGMETRICS’05. Banff, Alberta, Canada. 6-10 June 2005. [16]Comer D. Network Systems Design using Network Processors. New Jersey: Prentice Hall. 2003. [17]Lekkas P.C. Network Processors: Architectures, Protocols and Platforms. USA: McGraw-Hill. 2003. [18]Jacob B, Ng S, Wang D. Memory Systems, Cache, DRAM, Disk. Burlington: Morgan Kaufmann. 2008. [19]Chiueh T, Pradan P. High-Performance IP Routing Table Lookup using CPU Caching. Proceedings of IEEE INFOCOM ’99. New York. 21-25 March 1999. [20]Chiueh T, Pradan P. Cache Memory Design for Network Processors. Proceedings of the Sixth International Symposium on High- Performance Computer Architecture. Toulouse, France. 8-12 January 2000. [21]R. Pass. Memory Hierarchy in Cache-Based Systems. http://www.sun.com/blueprints/1102/817-0742.pdf. 2002. [22]J. Handy. The Cache Memory Book Second Edition. Academic Press. ISBN 0-12-322980-4. 1998. [23]J. Jung, B. Krishnamurthy, and M. Rabinovich. Flash Crowds and Denial of Service Attacks: Characterization and Implications for CDNs and Web Sites. In Proceedings of the World Wide Web Conference. Honolulu, Hawaii. May 2002. [24]K. J. Houle, G. M. Weaver, N. Long, and R. Thomas. Trends in Denial of Service Attack Technology. http://www.cert.org/archive/pdf/DoS trends.pdf. [25]D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver. The Spread of the Sapphire/Slammer Worm. Technical report. February 2003. [26]S. Muthukrishnan. Data Streams: Algorithms and Applications. Manuscript based on invited talk from 14th SODA. 2003. [27]M. Charikar, K. Chen, and M. Farach-Colton. Finding Frequent Items in Data Streams. In Proc. Of ICALP 2002, p. 693-703. 2002. [28]Quittek J, Zseby T, Claise B, Zander S. RFC 3917 Requirements for IP Flow Information Export (IPFIX). The Internet Society. 2004. [29]CAIDA. National Laboratory for Applied Network Research (NLANR) Project traces. Available at ftp://pma.nlanr.net/traces/daily/20060430 [30]Cormode G. Massive Data Analysis Lab. MassDAL Public Code Bank. Available at http://www.cs.rutgers.edu/~muthu/massdal-code-index.html [31]J. Feigenbaum, S. Kannan, M. Strauss, and M. Viswanathan. An approximate L1-difference algorithm for massive data streams. In Proceedings of the 40th Annual Symposium on Foundations of Computer Science, pages 501–511. 1999. [32]P. Indyk. Stable distributions, pseudorandom generators, embeddings and data stream computation. In Proceedings of the 40th Symposium on Foundations of Computer Science, pages 189–197. 2000. [33]P. Gibbons and S. Tirthapura. Estimating simple functions on the union of data streams. In Proceedings of the 13th ACM Symposium on Parallel Algorithms and Architectures, pages 281–290. 2001. [34]G. Cormode, M. Datar, P. Indyk, and S. Muthukrishnan. Comparing data streams using Hamming norms. In Proceedings of 28th International Conference on Very Large Data Bases, pages 335–345. 2002. Journal version in IEEE Transactions on Knowledge and Data Engineering 15(3):529–541. 2003. [35]A. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss. Surfing wavelets on streams: One-pass summaries for approximate aggregate queries. In Proceedings of 27th International Conference on Very Large Data Bases, pages 79–88. 2001. Journal version in IEEE Transactions on Knowledge and Data Engineering, 15(3):541–554. 2003. [36]A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss. How to summarize the universe: Dynamic maintenance of quantiles. In Proceedings of 28th International Conference on Very Large Data Bases, pages 454–465. 2002. [37]N. Thaper, P. Indyk, S. Guha, and N. Koudas. Dynamic multidimensional histograms. In Proceedings of the ACM SIGMOD International Conference on Management of Data, pages 359–366. 2002. [38]D. Burger, T. Austin. The SimpleScalar Tool Set, Version 2.0. University of Wisconsin-Madison Computer Sciences Department Technical Report #1342. June, 1997. [39]M. Thorup and Y. Zhang. Tabulation based 4-universal hashing with applications to second moment estimation. 2003. http://www.cs.utexas.edu/~yzhang/papers/hash-soda04.pdf [40]Abdelsalam "Solom" Heddaya. An Economically Scalable Internet. Computer, vol. 35, no. 9, pp. 93-95. Sept. 2002. [41]Miao Ju, Hao Che, Zhijun Wang. Performance Analysis of Caching Effect on Packet Processing in a Multi-threaded Processor. Communications and Mobile Computing, International Conference on, vol. 2, pp. 412-416. 2009. [42]D. Moore, G. Voelker, and S. Savage. Inferring Internet Denial of Service Activity. Proceeding of the USENIX Security Symposium. Washington D.C. August 2001. http://www.caida.org/publications/papers/2001/BackScatter/usenixsecurity01.pdf [43]V. Paxson. Bro: A System for Detecting Network Intruders in Real-Time. Computer Networks, 31(23–24):2435–2463. December 1999. ftp://ftp.ee.lbl.gov/papers/bro-CN99.ps.gz. [44]M. Roesch. Snort – Lightweight Intrusion Detection for Networks. In Proc. USENIX Lisa ’99. Seattle, WA. November 1999. [45]August, David. Computer Architecture and Organization - Lecture 17: Memory Caching, pp: 3. Princeton University. Fall 2005. http://www.cs.princeton.edu/courses/archive/fall05/cos471/lectures/17-Cache-2x2.pdf [46]Estan, Christian. Comparison between Multistage Filters and Sketches for Finding Heavy Hitters. March 2004. [47]Stokes, Jon. Inside the Machine: An Illustrated Introduction to Microprocessors. 2006 [48]Patterson, David A. and Hennessy, John L. Computer Architecture: A Quantitative Approach. Second Edition. Morgan Kaufmann Publishers, Inc. San Francisco, 1996. [49]CoralReef. Available at http://www.caida.org/tools/measurement/coralreef/
|