|
Reference Chapter 1. [1.1] BBC (Business Communications Co.) Research, “GB-316 Non-Volatile Memory Markets ”, BBC Inc. , July, 2005. [1.2] T. Hagiwara, Y. Tatsuda, R. Kondo, S. Minami, T. Aoto, and Y. Itoh, ”A new electrically alterable, non-destructive read-only storage device,” IEEE IEDM Tech. Dig., Washington, D.C., 1967. [1.3] W. Johnson, G. Perlegos, A. Renninger, G. Kuhn, and T. Ranganath, “A 16Kb electrically erasable nonvolatile memory,” IEEE ISSCC Dig. Tech. Pap., p.152, 1980. [1.4] H. C. Pao and O’Connell, “Memory Behavior of an MNS Capacitor”, Appl. Phys. Lett., Vol. 12, pp. 260, 1968 [1.5] H. A. R. Wegener, A. J. Lincoln, H. C. Pao, M. R. O’Connel, and R. E. Oleksiak, “The Variable Threshold Transistor, A New Electrically-Alterable, Non-destructive Read-only storage Device”, IEEE IEDM Abstract, pp. 420, 1967. [1.6] L. A. Kasprzak, R. B. Laibowitz, and M. Ohring, “Dependence of the Si-SiO2 Barrier Height on SiO2 Thickness in MOS Tunnel Structures”, J. Appl. Phys., Vol. 48, pp. 4281, 1977. [1.7] S. Lai, “Flash Memories: Where we are and where we are going”, IEDM Tech. Dig., pp. 971-973, 1988. [1.8] M. L. French and M. H. White, “Scaling of multidielectric nonvolatile SONOS memory structures”, Solid State Electron, Vol. 37, pp. 1913, 1995. [1.9] Y. L. Yang, A. Purwar, and M. H. White, “Reliabilityconsiderations in scaled SONOS nonvolatile memory devices”, Solid State Electron, Vol. 43, pp. 2025, 1999. [1.10] M. H. White, Y. L. Yang, A. Purwar and M. L. French, “A Low Voltage SONOS Nonvolatile Semiconductor Memory Technology”, NVSM, pp. 52, 1996. [1.11] Y. L. Yang, M. H. White, “Charge retention of scaled SONOS nonvolatile memory devices at elevated temperatures”, Solid State Electron, Vol. 44, pp. 949, 2000. [1.12] J. Bu and M. H. White, “Effects of Two-Step High Temperature Deuterium Anneals on SONOS Nonvolatile Memory Devices”, IEEE Elect. Dev. Lett., Vol. 22, pp. 17, 2001. [1.13] D. Kahng and S. M. Sze, “A floating gate and its application to memory devices”, Bell Syst. Tech. J., vol. 46, p.1288, 1967. [1.14] Frohman-Bentchkowsky D., “Memory behavior in a floating-gate avalanche-injection MOS (FAMOS) structure”, Applied Physics Letters, 18, pp. 332-334, 1971. [1.15] Frohman-Bentchkowsky D., “FAMOS – a new semiconductor charge storage device”, Solid-State Electronics, 17, p. 517, 1974. [1.16] G. Samachisa, C. S. Su, Y. S. Kao, G. Smarandoiu, C. Y. M. Wang, T. Wang and C. Hu, “A 128K Flash EEPROM using double-polysilicon technology”, IEEE J. Solid-State Circuit, Vol. SC-22, No. 5, pp. 676-682, 1987. [1.17] Sohrab Kianian, Amitay Levi, Dana Lee, Yaw-Wen Hu, “A novel 3 volts-only, small sector erase, high density flash EEPROM”, Symposium of VLSI Technology Digest of Technical Papers, p. 71, 1994. [1-18] W. D. Brown, and J. E. Brewer, Nonvolatile Semiconductor Memory Technology, IEEE Press, 1998. [1-19] H. A. R. Wegener, A. J. Lincoln, H. C. Pao, M. R. O’Connell, and R. E. Oleksiak, “The variable threshold transistor, a new electrically-alterable, non-destructive read-only storage device,” IEDM Tech. Dig., pp. 70, 1967. [1-20] Y. Kamigaki and S. Minami, “MNOS Nonvolatile Semiconductor Memory Technology: Present and Future,” IEICE Trans. Electron, Vol. E84-C, No. 6, pp. 713-723, 1984. [1-21] H. C. Pao and M. O’Connell, “Memory behavior of a MNS capacitor,” Appl. Phys. Lett., Vol.12, No.8, pp. 260-263, April 1968. [1-22] D. Frohman-bentchkowsky and M. Lenzlinger, “Charge transport and storage in Metal-Nitride-Oxide-Silicon (MNOS) structure,” J. Appl. Phys., Vol. 40, pp. 3307-3319, July 1969. [1-23] J. J. Chang, “Nonvolatile semiconductor memory device,” IEEE Trans. Electron Devices, Vol. 64, No. 7, pp. 1039-1059, July 1976. [1-24] J. J. Chang, “Theory of MNOS memory transistor,” IEEE Trans. Electron Devices, Vol. ED-24, No. 5, pp. 511-518, May 1977. [1-25] L. Lukndkvist, I. Lundstrom, and C. Svensson, “Discharge of MNOS structures,” Solid-State Electron., Vol. 16, pp. 811-818, July 1973. [1-26] S. Minami and Y. Kamigaki, “New scaling guidelines for MNOS nonvolatile memory devices,” IEEE Trans. Electron Devices, Vol. 38, No. 11, pp. 2519-2526, Nov. 1991. [1-27] Y. Yatsuda, T. Hagiwara, S. Minami, R. Kondo, and K. Uchida, “Scaling down MNOS nonvolatile memory device,” Japan J. Appl. Phys., Vol. 21, 1982. [1-28] P. C. Chen, “Threshold-alterable Si gate MOS devices,” IEEE Trans. Electron Devices, ED-24, pp. 584-586, 1977. [1-29] B. Eitan, P. Pavan, I. Bloom, E. Aloni, A. Frommer, and D. Finzi, ”NROM: A novel localized trapping, two-bit nonvolatile memorycell,” IEEE Electron Device Lett., Vol. 21, pp.543-545, Nov. 2000. [1-30] I. Bloom, P. Pavan and B. Eitan, “NROMTM-a new technology for nonvolatile memory products”, Solid-State Electronics, Vol.46, No.7, pp.1753-1763, 2002. [1-31] E. Lusky, I. Bloom, and B. Eitan, “Investigation of the Spatial Distribution of CHE Injection Utilizing the Subthreshold Slope and the Gate Induced Drain Leakage (GIDL) Characteristics of the NROMTM Device”, IEEE NVSMW, Session #3, 2003. [1-32] Y. Shin, C. Lee, S. Hur, J. Choi, and K. Kim, “High Reliable SONOS-type NAND Flash Memory Cell with Al2O3 for Top Oxide”, IEEE NVSMW, pp. 58-59, 2003. [1-33] T. Sugizaki, M. Kobayashi, H. Minakata, M. Yamaguchi, Y. Tamura, Y. Sugiyama, H. Tanaka, T. Nakanishi, and Y. Nara, “New 2-bit/Tr MONOS Type Flash Memory using Al2O3 as Charge Trapping Layer”, IEEE NVSMW, pp. 60-61, 2003. [1-34] Y. Hayashi, S. Ogura, T. Saito, and T. Ogura, “Twin MONOS Cell with Dual Control Gates”, VLSI Technology Symposium, pp. 122-123, 2000. Chapter 2. [2.1] T. Y. Chan, K. K. Young, C. Hu,” A true Single Transistor Oxide-Nitride-Oxide EEPROM”, IEEE Electron Device Letters, EDL-8, No. 3, pp. 93-95, March, 1987. [2.2] H. Lee, S. Chang, J. Lee and H. Shin, “Characteristics of MOSFET with Non-overlapped Source-drain to Gate”, IEICE Trans. Electron., Vol. E85-C, No. 5, pp. 1079-1085, 2002. [2.3] T. Y. Chan, K. K. Young, C. Hu,” A true Single Transistor Oxide-Nitride-Oxide EEPROM”, IEEE Electron Device Letters, EDL-8, No. 3, pp. 93-95, March, 1987. [2.4] Y. Taur and T. H. Ning, “Fundamentals of Modern VLSI Devices”, pp. 97, 1998. [2.5] T. Vogelsang and W. Hansch, “The electron High-Energy Distribution Function: A comparison of Analytical Models with Monte Carlo Calculations”, J. Appl. Phys., Vol. 69, pp. 3592, 1991. [2.6] T. Ning, C. Osburn and H. Yu, “Emission probability of Hot Electrons from Silicon into Silicon Dioxide”, J. Appl. Phys., Vol. 48, pp. 286, 1977. [2.7] C. Hu, S. Tam, F. Hsu, P. Ko, T. Chan and K. Terrill, “Hot-Electron-Induced MOSFET Degradation-Model, Monitor and Improvement”, IEEE Trans. Electron Devices, ED-32, pp. 375, 1985. [2.8] M. S. Liang, C. Chang, W. Yang, C. Hu and R. W. Brodersen, “Hot Carriers Induces Degradation in Thin Gate Oxide MOSFETs”, Int. Electron Devices Meeting, pp. 186, 1983. [2.9] C. Y. Chang and S. M. Sze, “ULSI Devices”, pp.111. [2.10] G. Groeseneken, R. Degraeve, T. Nigam, G. Van den bosch, H. E. Maes, “Hot carrier degradation and time-dependent dielectric breakdown in oxides”, Microelectronic Engineering 49, pp. 27, 1999. [2.11] Medici Manual pp.2-101, 1999. [2-12] Jao-Hsian Shiue, Joseph Ya-min Lee, and Tien-Sheng Chao, “A Study of Interface Trap Generation by Fowler–Nordheim and Substrate-Hot-Carrier Stresses for 4-nm Thick Gate Oxides,” IEEE TRANSACTIONS ON ELECTRON DEVICES, Vol. 46, NO. 8, pp. 1705-1710, AUGUST 1999. [2-13] Cheng T. Wang, Hot Carrier Design Considerations for MOS Devices and Circuits, Van Nostrand Reinhold, 1990. [2-14] K. Hasnat, C.-F. Yeap, S. Jallepalli, W.-K. Shin, S. A. Hareland, V. M. Agostinelli, A. F. Tasch and C. M. Maziar, “A Pseudo-Lucky electron model for simulation of electron fate current in submicron NMOSFET’s”, IEEE TRANSACTION on Electron Devices, VOL.43, NO.8, pp.1264-1273, August 1996. [2-15] Simon Tam, Ping-Keung Ko, Cheming Hu, and Richard S. Muller, “Correlation between substrate and gate currents in MOSFET,” IEEE Transactions on Electron Devices, VOL. ED-29, NO. 11, pp. 1740-1744, NOVEMBER, 1982. [2-16] Chenming Hu, “Lucky-electron model of channel hot electron emission,” International Electron Devices Meeting, VOL. 25, pp. 22-25, 1979. [2-17] P. E. Cotrell, R. R. Troutman, and T. H. Ning, “Hot Electron Emission inN-Channel IGFET’s,” IEEE Journal of Solid State Circuits, Vol. 14, p.442, 1979. [2-18] Luca Selmi and David Esseni, “A Better Understanding of Substrate Enhanced Gate Current in VLSI MOSFET’s and Flash Cells-Part II: Physical Analysis”, IEEE TRANSACTION on Electron Devices, VOL.46, NO.2, pp.376-381, February 1999. [2-19] Souvik Mahapatra, S. Shukuri, and Jeff Bude, “CHISEL Flash EEPROM—Part I: Performance and Scaling,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 49, NO. 7, pp. 1296-1301, JULY 2002. [2-20] David Esseni, Luca Selmi, Andrea Ghetti, and Enrico Sangiorgi, “Injection Efficiency of CHISEL Gate Currents in Short MOS Devices: Physical Mechanisms, Device Implications, and Sensitivity to Technological Parameters,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 47, NO. 11, pp. 2194-2200, NOVEMBER 2000. [2-21] Lei Sun, Liyang Pan, Ying Zeng, John Chen, Huiqing Pang, Xiyou Li, and Jun Zhu, “Effects of CHE and CHISEL Programming Operation on the Characteristics of SONOS Memory,” Solid-State and Integrated Circuits Technology, Vol. 1, pp. 695-698, October 2004. [2-22] KARL R. HOFMANN, CHRISTOPH WERNER, WERNER WEBER, AND GERHARD DORDA, “ Hot-Electron and Hole-Emission Effects in Short n-Channel MOSFET‘s,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. ED-32, NO. 3, pp. 691-699, MARCH 1985. [2-23] Oleg Semenov, Andrzej Pradzynski, and Manoj Sachdev, “Impact of Gate Induced Drain Leakage on Overall Leakage of Submicrometer CMOS VLSI Circuits,” IEEE TRANSACTION on SEMICONDUCTOR MANUFACTURING, Vol. 15, pp. 9, FEBRUARY 2002. [2-24] T. Y. Chan, J. Chan, P. K. Ko, and C. Hu, “The Impact of Gate-Induced Drain Leakage Current on MOSFET Scaling,” IEEE IEDM, Vol. 33, pp. 718-721, 1987. [2.25] L. Selimi and D. Esseni, "A better understanding of substrate enhanced gate current in VLSI MOSFET's and flash cells - Part II: Physical analysis", IEEE Trans. Electron Devices, vol. 40, pp.137-145, 1995. [2.26] J. J. Ellis-Monaghan, R. B. Hulfachor, K. W. Kim, and M. A. Little-John, "Ensemble Monte Carlo study of interface-state generation in low voltage scaled silicon MOS devices", IEEE Trans. Electron Devices, vol. 43, pp. 1123-1131, 1996. [2.27] I. Bloom, P. Pavan, and B. Eitan, “NROM – a new technology for nonvolatile memory products”, Solid State Electron., vol. 46, pp.1757-1763, 2002. Chapter 3. [3.1] W. D. Brown and J. E. Brewer, “Nonvolatile Semiconductor Memory Technology: a Comprehensive Guide to Understanding and Using NVSM Devices”, IEEE, vol. 58, p.1207, 1970. [3.2] P. Cappelletti, C. Golla, P. Olivio, and E. Zanoni, “Flash Memories”, Kluwer Academic Publishers, 2000. [3.3] J. S. Brugler and P. G. A. Jaspers, “Charge pumping in MOS Devices”, IEEE Trans. Electron Dev. ED-16, 297-302, 1969. [3.4] M. Tsuchiaki, H. Hara, T.Morimoto, and H. Iwai, “A new charge pumping method for determining the spatial distribution of hot-carrier-induced fixed charge in p-MOSFETs,” IEEE Trans. Electron Devices, vol. 40, no. 10, pp. 1768–1779, Oct. 1993. [3.5] R. Giahn-Horng Lee, J.-S. Su, and S. S. Chung, “A new method for characterizing the spatial distributions of interface states and oxide-trapped charges in LDD n-MOSFETs,” IEEE Trans. Electron Devices, vol. 43, no. 1, pp. 81–89, Jan. 1996. [3.6] W. Chen, A. Balasinski, and T.-P. Ma, “Lateral profiling of oxide charge and interface traps near MOSFET junctions,” IEEE Trans. Electron Devices, vol. 40, no. 1, pp. 187–196, Jan. 1993. [3.7] Y.-L. Chu, D.-W. Lin, and C.-Y. Wu, “A new charge-pumping technique for profiling the interface-states and oxide-trapped charges in MOSFET’s,” IEEE Trans. Electron Devices, vol. 47, no. 2, pp. 348–353, Feb. 2000. [3.8] E. Lusky, Y. Shacham-Diamand, G. Mitenberg, A. Shappir, I. Bloom, and B. Eitan, “Investigation of channel hot electron injection by localized charge-trapping nonvolatile memory devices,” IEEE Trans. Electron Devices, vol. 51, no. 3, pp. 444–451, Mar. 2004. [3.9] M. Tsuchiaki, H. Hara, T. Morimoto, and H. Iwai, “A new charge pumping method for determining the spatial distribution of hot-carrier-induced fixed charge in p-MOSFET’s,” IEEE Trans. Electron Devices, vol. 40, no. 10, pp. 1768–1779, Oct. 1993. [3.10] S. Mahapatra, V. R. Rao, J. Vasi, B. Cheng, and J. C. S. Woo, “A study of hot-carrier induced interface-trap profiles in lateral asymmetric channel MOSFETs using a novel charge pumping technique,” Solid State Electron., vol. 45, no. 10, pp. 1717–1723, Oct. 2001. [3.11] K. Suzuki, “Parasitic capacitance of submicrometer MOSFET’s,” IEEE Trans. Electron Devices, vol. 46, no. 9, pp. 1895–1900, Sep. 1999. [3.12] N. Wakita and N. Shigyo, “Verification of overlap and fringing capacitance models for MOSFETs,” Solid State Electron., vol. 44, no. 6, pp. 1105–1109, Jun. 2000. [3.13] C. H. Wang, “Identification and measurement of scaling-dependent parasitic capacitances of small-geometry MOSFET’s,” IEEE Trans. Electron Devices, vol. 43, no. 6, pp. 965–972, Jun. 1996. [3.14] E. Lusky, Y. Shacham-Diamand, I. Bloom, and B. Eitan, “Characterization of channel hot electron injection by the subthreshold slope of NROMTM device,” IEEE Electron Device Lett., vol. 22, no. 11, pp. 556–558, Nov. 2001 Chapter 4. [4-1] MEDICI Users Manual, TMA Associates, 2003. [4.2] E. Lusky, Y. Shacham-Diamand, I. Bloom, and B. Eitan, “Characterization of channel hot electron injection by the subthreshold slope of NROMTM device,” IEEE Electron Device Lett., vol. 22, no. 11, pp. 556–558, Nov. 2001 [4-3] C.-S. Hsieh, P.-C. Kao, C.-S. Chiu, C.-H. Hon, C.-C. Fan, W.-C. Kung, Z.-W. Wang, and E. S. Jeng, “NVM characteristics of single-MOSFET cells using nitride spacers with gate-to-drain NOI,” IEEE Trans. Electron Devices, vol. 51, no. 11, pp. 1811–1817, Nov. 2004. [4-4] M. Fukuda, T. Nakanishi, and Y. Nara, “New nonvolatile memory with charge-trapping sidewall,” IEEE Electron Device Lett., vol. 24, no. 8, pp. 490–492, Jul. 2003.
|