跳到主要內容

臺灣博碩士論文加值系統

(44.222.134.250) 您好!臺灣時間:2024/10/08 04:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭百鈞
研究生(外文):Pai-Chu Kao
論文名稱:通道熱電子注入於非重疊離子植入記憶體元件之電荷分佈研究
論文名稱(外文):Charge profiling of channel hot electron injection in NOI devices
指導教授:鄭湘原
指導教授(外文):Erik. S. Jeng
學位類別:博士
校院名稱:中原大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:97
語文別:英文
論文頁數:117
中文關鍵詞:熱電子注入非揮發性記憶體Lucky Electron Model
外文關鍵詞:non-volatile memoryLucky Electron ModelChannel hot electron injection (CHEI)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:369
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
近來來隨著半導體製程的精進與微縮,能儲存多記憶位元於單一
元件內的新型非揮發性記憶體發展,逐漸地受到注目與重視。而相較
於以往利用浮動閘極儲存記憶元的非揮發性記憶體,新型的非揮發性
記憶體更強調在製程上簡化以降低製造成本,因此如何利用現行的標
準邏輯製程開發出新型的多記憶元非揮發性記憶體,為現今各方所努
力的方向與目標。
此論文研究之主題即為一新型嵌入性非揮發記憶體(NOI),除具
有與現行邏輯製程相容之特性,更具有在單一元件內儲存雙位元的優
點。相較於SONOS 是利用閘極介電質中的氮化矽來儲存電荷,NOI 則
是利用氮化矽側壁 (SiN4 Sidewall)來儲存電荷,因此可以解決
SONOS 在元件微縮時所產生的位元合併(Bit-Merging)的問題。
此論文乃首次利用Charge Pumping (CP)來研究電荷於NOI 氮化
矽側壁中的分佈情況,並輔以電腦模擬軟體TSUPREM4 和MEIDI 來佐
證此電荷分佈狀況。從實驗與模擬結果可得知,利用通道熱電子所注
入的電子,在臨界電壓漂移 0.8 伏特(△Vth=0.8V)時, 儲存電荷的
分佈範圍大小約為90nm,且其最大儲存電荷密度的位置乃是靠近汲
極邊界。


Recently, the discrete charge trapping non-volatile memory (NVM) devices
received much attention due to their potential multi-bit storage in a unit cell. In
contrast to those floating gates memories, oxide-nitride-oxide (ONO) charge
trapping structures are explored to store charges in NROM and TwinMONOS
for high density NVM devices. Newly developed gate-to-drain non-overlapped
implantation (NOI) MOSFETs are proposed by using the silicon nitride (SiN)
spacers as charge trapping media. NOI are fully compatible with existing
industrial CMOS fabrications without adding process modification and mask
tooling cost. Channel hot electron injection (CHEI) and band-to-band hot hole
enhanced injection (HHEI) are used to program and erase the NOI device for
NVM operations.
Novel gate-to-drain non-overlapped implantation (NOI) nMOSFETs have
been developed as potential multi-bit-per-cell non-volatile memory (NVM)
devices. The lateral charge distribution of the NOI NVM device programmed by
channel hot electron injection (CHEI) is investigated by charge pumping (CP)
techniques with presumed interface trap distributions. For the first time, the CP
results have revealed the lateral charge distribution and trapping density at the
NOI’s programmed state (ΔVth=0.8V). The maximum trapping charge density
locates near its drain junction. The charge distribution is estimated about 90nm
in length and spread widely over the NOI region. 2-D simulators with charge
bars using the same charge trapping distribution confirm the experimental
results by fitting their IDS-VG curves.


中文摘要 I
Abstract II
Acknowledgments III
Contents IV
Figure Captions VII
Table Captions…………………………….…………………………XIII
第一章 非揮發性記憶元件之回顧與介紹 IX
第二章 NOI非揮發性記憶體之電性操作與原理 X
第三章 電荷幫浦於NOI記憶體元件之應用 XI
第四章 電荷分佈之電腦模擬驗證 XII
Chapter1 Introduction to Non-Volatile Memory Devices 1
1-1 Role of Non-Volatile Memory Devices in Microelectronic systems …………………………………………1
1-2 Evolution of NVM Devices 3
1-3 Floating Gate Memory Devices 12
1-3.1 Stacked Gate Memory Devices 12
1-3.2 Split-Gate Memory Devices 13
1-4 Charge-Trapping Memory Devices 16
1-4.1 Metal-Nitride-Oxide-Silicon (MNOS) 17
1-4.2 Metal Oxide Nitride Oxide Silicon (MONOS) and Poly-Silicon Oxide Nitride Silicon (SONOS) 18
1-4.3 NROM 19
1-4.4 Twin-MONOS 20
1-5 NVM Devices Development Trends 21
Chapter2 Electrical Operations and Principles of NOI Memory Devices 23
2-1 NOI Cell Structure and Brief Fabrication Flow 24
2-2 The Band-to-Band Tunneling Effect (BTBT) 28
2-3 Hot Carrier Injection 32
2-3-1 Substrate Hot-Electron (SHE) Injection 33
2-3-2 Channel Hot Electron Injection (CHEI) 35
2-3-3 Channel Initiated Secondary Electron (CHISEL) Injection 38
2-3-4 Drain Avalanche Hot Carrier (DAHC) Injection 40
2-3-5 The BTBT Induced Hot Carrier Injection (BBHC) ……………………………………………………….41
2-4 Charge Transportation in Silicon Nitride 43
2-5 NOI Memory Device Operation 44
2-5.1 Program 45
2-5.2 Erase 46
2-5.3 Read 47
2-5.3.1 Forward Read 49
2-5.3.2 Reverse Read 50
Chapter3 Charge Pumping Techniques and Application on NOI Memory Device 52
3-1 Nonvolatile Memory Reliability Concerns 52
3-2 Charge Pumping Techniques 53
3-3 Charge Pumping Experiments 59
3-3.1 Experimental Setup 60
3-3.2 Experimental Procedures 61
3-4 Charge Profiling and Discussion 65
Chapter4 Simulation for Charge Profiling Verification 78
4-1 Process simulation: Doping profile and device X-section ……………………………………………………………..78
4-2 Device Simulation: Verification of charge profiling 79
4-3 Results and Discussion 81
4-4 Program Efficiency Evaluation by TCAD simulation 82
4-5 Conclusion 87
Reference ……………………………………………………………..90

Figure Captions

Figure 1-1. Worldwide Non-volatile and Total Memory Markets, 2002-2010. (Source: BBC, Inc.)…………………………1
Figure 1-2. Types of Semiconductor Memory ………………………4
Figure 1-3. History of Non-Volatile Memories ……………………...4
Figure 1-4. Two classes of nonvolatile semiconductor memory devices: (a) Floating gate devices; (b) Charge-trapping devices (MIOS device)…………………………………...7
Figure 1-5. Current-voltage characteristic of a memory device in the erased and programmed state, showing the Vt shift and the memory window. (a) Charge trapped in floating gate. (b) Threshold voltage shifted when the charges are trapped in floating gate.…………………………………9
Figure 1-6. (a) EPROM Programming (b) EEPROM Erasing mechanism for stacked gate memory devices…………11
Figure 1-7. The cross section of the split gate memory device. (a) Cross Section of Split Gate device Structure, (b) Program: Channel Hot Electron Injection and (c) Erase: FN Tunneling. …………………………………………..16
Figure 1-8. Structure of charge-trapping device. High deep-level trap density dielectrics such as Si3N4 or Al2O3 are used to trap charges. …………………………………………17
Figure 1-9. Schematic cross section of SONOS……………………18
Figure 1-10. (a) Cell array layout of NROM. (b) Cross section of NROM along a word line. The electron storage regions are indicated by arrows, and will be referred to as Bit-1 and Bit-2. ……………………………………………….19
Figure 1-11. Schematic cross section of twin-MONOS. ……………21
Figure 2-1. NOI Memory device brief fabrication flow…………..25.
Figure 2-2. (a) Band diagram of Thermal Equilibrium (b) Band diagram of Band-to-Band tunneling or Zener breakdown. ……………………………………………..29
Figure 2-3. Scheme of BTBT mechanism. …………………………31
Figure 2-4. Band diagram of band-to-band tunneling across the oxide. ……………………………………………………32
Figure 2-5. (a) Schematic and (b) energy band diagram of the substrate hot electrons injection. ……………………..34
Figure 2-6. The lateral electric field in the channel shows that the highest electric field is near the drain junction. ……..36
Figure 2-7. (a) Schematic description of the lucky electron model. (b) Energy band diagram of channel hot electron injection. ………………………………………………..37
Figure 2-8. (a) CHE program operation (Vb=0). (b) CHISEL program operation (Vb<0). (c) Energy band diagram of CHE and CHISEL. …………………………………….39
Figure 2-9. Gate current versus gate voltage for n-MOS at a constant high drain bias. ………………………………40
Figure 2-10. The high VD reverse the vertical field is found at 0<VG<VD. ……………………………………………….41
Figure 2-11. The schematic of BBHC in (a) n-MOSFET and (b) p-MOSFET. …………………………………………….41
Figure 2-12. Charge transportation mechanisms in silicon nitride. (a) Poole-Frenkel conduction and (b) hopping conductance.. …………………………………………...44
Figure 2-13. The schematic of NOI device programming by Channel hot electron injection. ………………………………….46
Figure 2-14. The schematic of NOI device Erasing by BTBT Hot hole injection. …………………………………………..47
Figure 2-15. Two-bit operation for NOI Memory device. …………48
Figure 2-16. Forward Read Mechanism. …………………………...50
Figure 2-17. Reverse Read Mechanism. …………………………….51
Figure 3-1. Overview of charge pumping measurements: (a) Pulse waveform for base voltage sweep; pulse amplitude is constant. (b) Pulse waveform for amplitude sweep; base voltage is constant. …………………………………….55
Figure 3-2. Circuit diagram and energy bands for charge pumping measurements. …………………………………………56
Figure 3-3. NOI Structure and Dimension. ……………………….59
Figure 3-4. Basic experimental system setup for charge pumping.61
Figure 3-5. Initial/programmed charge pumping current collected at drain side. ……………………………………………64
Figure 3-6. Initial/programmed charge pumping current collected at source side. …………………………………………..65
Figure 3-7. Type (a): Initial State Nit(x) distribution (Uniform), Type (b): InitialProgrammed State Nit(x) (Uniform), Type (c): Programmed State Nit(x) (Non-uniform).NOI device. ………………………………………………….67
Figure 3-8. (a) Formation of transfer curve by integrating type-b Nit(x) assumption. (b) Initial/Program state transfer curves for type-b Nit(x) assumption. …………………68
Figure 3-9. Transferring scheme from Icp(Vh) to local threshold voltage Vth (x). …………………………………………69
Figure 3-10. (a) Formation of transfer curve by integrating type-b Nit(x) assumption. (b) Initial/Program state transfer curves for type-b Nit(x) assumption. ………………….70
Figure 3-11. Combining the Vth(x)_D and Vth(x)_S and ruling out the far-end inaccuracy to complete the initial/programmed local threshold voltage Vth(x) in the NOI device. …….72
Figure 3-12. Fringing capacitance ΔCfr corresponds to each distance x in the SiN spacer. ………………………………….…74
Figure 3-13. Local threshold voltage Vth(x) for Nit assumption of three types along the lateral position in a programmed NOI device. Vth(x) mismatch between type-a, type-b, and type-c Nit(x) is Δxa-b = 22nm and Δxa-b = 5nm, respectively. …………………………………………….75
Figure 3-14. Local threshold voltage Vth(x) of the programmed and initial states for obtaining the ΔVth(x). The maximum Vth(x) located near the drain junction. ……………….76
Figure 3-15. The nitride trapped charge distribution with relative positions of NOI MOSFETs. Nnt(x) peaks near the drain junction edge. …………………………………………..77
Figure 4-1. Simulated doping profile underneath the SiN spacer in NOI device with 125 nm spacer length. ………………78
Figure 4-2. The nitride trapped charge distribution with relative positions of NOI MOSFETs. Nnt(x) peaks near the drain junction edge. …………………………………………..79
Figure 4-3. Program state negative charges in spacer nitride node in Drain side. …………………………………………...80
Figure 4-4. The IDS - VG comparison of simulated and experimental results. …………………………………………………..81
Figure 4-5. Maximum programmed oxide fields above the NOI and the central channels of the simulated NOI devices are compared among different VG and VD. The maximum oxide field increases as VG increases and declines as VD increases. ……………………………………………….83
Figure 4-6. Channel potential distributions of NOI devices having different SiN spacer length are simulated under programming condition. The potential distribution is divided into three segments, corresponding to two NOI channels under SiN spacer and the central channel region under the polygate. …………………………….84
Figure 4-7. Oxide field distributions of NOI devices having different SiN spacer length are simulated under programming condition. The maximum oxide field to program the new NOI device reaches only about 6.25MV/cm in the central channel region. …………...85
Figure 4-8. Lateral channel field distribution under a SiN spacer with different SiN spacer length are simulated under specified programming conditions. Compared to the NOI devices with 65nm and 80nm SiN spacers, the NOI device with 125nm SiN spacer shows the decreased maximum lateral electric field near its drain junction………………………………………………….86

Table Captions

Table 1-1. The Trapping Mechanisms of Memory products. …..11
Table 2-1. Resultant mechanisms relate to different carrier energies. ………………………………………………..36
Table 2-2. Operation conditions of the NOI Device as an NVM. …………………………………………………...49
Table 3-1. Operation of charge pumping conditions of the NOI Device as an NVM. …………………………………….60





Reference
Chapter 1.
[1.1] BBC (Business Communications Co.) Research, “GB-316
Non-Volatile Memory Markets ”, BBC Inc. , July, 2005.
[1.2] T. Hagiwara, Y. Tatsuda, R. Kondo, S. Minami, T. Aoto, and Y.
Itoh, ”A new electrically alterable, non-destructive read-only storage
device,” IEEE IEDM Tech. Dig., Washington, D.C., 1967.
[1.3] W. Johnson, G. Perlegos, A. Renninger, G. Kuhn, and T. Ranganath,
“A 16Kb electrically erasable nonvolatile memory,” IEEE ISSCC
Dig. Tech. Pap., p.152, 1980.
[1.4] H. C. Pao and O’Connell, “Memory Behavior of an MNS
Capacitor”, Appl. Phys. Lett., Vol. 12, pp. 260, 1968
[1.5] H. A. R. Wegener, A. J. Lincoln, H. C. Pao, M. R. O’Connel, and R.
E. Oleksiak, “The Variable Threshold Transistor, A New
Electrically-Alterable, Non-destructive Read-only storage Device”,
IEEE IEDM Abstract, pp. 420, 1967.
[1.6] L. A. Kasprzak, R. B. Laibowitz, and M. Ohring, “Dependence of
the Si-SiO2 Barrier Height on SiO2 Thickness in MOS Tunnel
Structures”, J. Appl. Phys., Vol. 48, pp. 4281, 1977.
[1.7] S. Lai, “Flash Memories: Where we are and where we are going”,
IEDM Tech. Dig., pp. 971-973, 1988.
[1.8] M. L. French and M. H. White, “Scaling of multidielectric
nonvolatile SONOS memory structures”, Solid State Electron, Vol.
37, pp. 1913, 1995.
[1.9] Y. L. Yang, A. Purwar, and M. H. White, “Reliabilityconsiderations
in scaled SONOS nonvolatile memory devices”, Solid State Electron,
Vol. 43, pp. 2025, 1999.
[1.10] M. H. White, Y. L. Yang, A. Purwar and M. L. French, “A Low
Voltage SONOS Nonvolatile Semiconductor Memory Technology”,
NVSM, pp. 52, 1996.
[1.11] Y. L. Yang, M. H. White, “Charge retention of scaled SONOS
nonvolatile memory devices at elevated temperatures”, Solid State
Electron, Vol. 44, pp. 949, 2000.
[1.12] J. Bu and M. H. White, “Effects of Two-Step High Temperature
Deuterium Anneals on SONOS Nonvolatile Memory Devices”,
IEEE Elect. Dev. Lett., Vol. 22, pp. 17, 2001.
[1.13] D. Kahng and S. M. Sze, “A floating gate and its application to
memory devices”, Bell Syst. Tech. J., vol. 46, p.1288, 1967.
[1.14] Frohman-Bentchkowsky D., “Memory behavior in a floating-gate
avalanche-injection MOS (FAMOS) structure”, Applied Physics
Letters, 18, pp. 332-334, 1971.
[1.15] Frohman-Bentchkowsky D., “FAMOS – a new semiconductor
charge storage device”, Solid-State Electronics, 17, p. 517, 1974.
[1.16] G. Samachisa, C. S. Su, Y. S. Kao, G. Smarandoiu, C. Y. M. Wang,
T. Wang and C. Hu, “A 128K Flash EEPROM using
double-polysilicon technology”, IEEE J. Solid-State Circuit, Vol.
SC-22, No. 5, pp. 676-682, 1987.
[1.17] Sohrab Kianian, Amitay Levi, Dana Lee, Yaw-Wen Hu, “A novel
3 volts-only, small sector erase, high density flash EEPROM”,
Symposium of VLSI Technology Digest of Technical Papers, p. 71,
1994.
[1-18] W. D. Brown, and J. E. Brewer, Nonvolatile Semiconductor
Memory Technology, IEEE Press, 1998.
[1-19] H. A. R. Wegener, A. J. Lincoln, H. C. Pao, M. R. O’Connell, and
R. E. Oleksiak, “The variable threshold transistor, a new
electrically-alterable, non-destructive read-only storage device,”
IEDM Tech. Dig., pp. 70, 1967.
[1-20] Y. Kamigaki and S. Minami, “MNOS Nonvolatile Semiconductor
Memory Technology: Present and Future,” IEICE Trans. Electron,
Vol. E84-C, No. 6, pp. 713-723, 1984.
[1-21] H. C. Pao and M. O’Connell, “Memory behavior of a MNS
capacitor,” Appl. Phys. Lett., Vol.12, No.8, pp. 260-263, April 1968.
[1-22] D. Frohman-bentchkowsky and M. Lenzlinger, “Charge transport
and storage in Metal-Nitride-Oxide-Silicon (MNOS) structure,” J.
Appl. Phys., Vol. 40, pp. 3307-3319, July 1969.
[1-23] J. J. Chang, “Nonvolatile semiconductor memory device,” IEEE
Trans. Electron Devices, Vol. 64, No. 7, pp. 1039-1059, July 1976.
[1-24] J. J. Chang, “Theory of MNOS memory transistor,” IEEE Trans.
Electron Devices, Vol. ED-24, No. 5, pp. 511-518, May 1977.
[1-25] L. Lukndkvist, I. Lundstrom, and C. Svensson, “Discharge of
MNOS structures,” Solid-State Electron., Vol. 16, pp. 811-818, July
1973.
[1-26] S. Minami and Y. Kamigaki, “New scaling guidelines for MNOS
nonvolatile memory devices,” IEEE Trans. Electron Devices, Vol.
38, No. 11, pp. 2519-2526, Nov. 1991.
[1-27] Y. Yatsuda, T. Hagiwara, S. Minami, R. Kondo, and K. Uchida,
“Scaling down MNOS nonvolatile memory device,” Japan J. Appl.
Phys., Vol. 21, 1982.
[1-28] P. C. Chen, “Threshold-alterable Si gate MOS devices,” IEEE
Trans. Electron Devices, ED-24, pp. 584-586, 1977.
[1-29] B. Eitan, P. Pavan, I. Bloom, E. Aloni, A. Frommer, and D.
Finzi, ”NROM: A novel localized trapping, two-bit nonvolatile
memorycell,” IEEE Electron Device Lett., Vol. 21, pp.543-545, Nov.
2000.
[1-30] I. Bloom, P. Pavan and B. Eitan, “NROMTM-a new technology
for nonvolatile memory products”, Solid-State Electronics, Vol.46,
No.7, pp.1753-1763, 2002.
[1-31] E. Lusky, I. Bloom, and B. Eitan, “Investigation of the Spatial
Distribution of CHE Injection Utilizing the Subthreshold Slope and
the Gate Induced Drain Leakage (GIDL) Characteristics of the
NROMTM Device”, IEEE NVSMW, Session #3, 2003.
[1-32] Y. Shin, C. Lee, S. Hur, J. Choi, and K. Kim, “High Reliable
SONOS-type NAND Flash Memory Cell with Al2O3 for Top
Oxide”, IEEE NVSMW, pp. 58-59, 2003.
[1-33] T. Sugizaki, M. Kobayashi, H. Minakata, M. Yamaguchi, Y.
Tamura, Y. Sugiyama, H. Tanaka, T. Nakanishi, and Y. Nara, “New
2-bit/Tr MONOS Type Flash Memory using Al2O3 as Charge
Trapping Layer”, IEEE NVSMW, pp. 60-61, 2003.
[1-34] Y. Hayashi, S. Ogura, T. Saito, and T. Ogura, “Twin MONOS Cell
with Dual Control Gates”, VLSI Technology Symposium, pp.
122-123, 2000.
Chapter 2.
[2.1] T. Y. Chan, K. K. Young, C. Hu,” A true Single Transistor
Oxide-Nitride-Oxide EEPROM”, IEEE Electron Device Letters,
EDL-8, No. 3, pp. 93-95, March, 1987.
[2.2] H. Lee, S. Chang, J. Lee and H. Shin, “Characteristics of MOSFET
with Non-overlapped Source-drain to Gate”, IEICE Trans. Electron.,
Vol. E85-C, No. 5, pp. 1079-1085, 2002.
[2.3] T. Y. Chan, K. K. Young, C. Hu,” A true Single Transistor
Oxide-Nitride-Oxide EEPROM”, IEEE Electron Device Letters,
EDL-8, No. 3, pp. 93-95, March, 1987.
[2.4] Y. Taur and T. H. Ning, “Fundamentals of Modern VLSI Devices”,
pp. 97, 1998.
[2.5] T. Vogelsang and W. Hansch, “The electron High-Energy
Distribution Function: A comparison of Analytical Models with
Monte Carlo Calculations”, J. Appl. Phys., Vol. 69, pp. 3592, 1991.
[2.6] T. Ning, C. Osburn and H. Yu, “Emission probability of Hot
Electrons from Silicon into Silicon Dioxide”, J. Appl. Phys., Vol. 48,
pp. 286, 1977.
[2.7] C. Hu, S. Tam, F. Hsu, P. Ko, T. Chan and K. Terrill,
“Hot-Electron-Induced MOSFET Degradation-Model, Monitor and
Improvement”, IEEE Trans. Electron Devices, ED-32, pp. 375,
1985.
[2.8] M. S. Liang, C. Chang, W. Yang, C. Hu and R. W. Brodersen, “Hot
Carriers Induces Degradation in Thin Gate Oxide MOSFETs”, Int.
Electron Devices Meeting, pp. 186, 1983.
[2.9] C. Y. Chang and S. M. Sze, “ULSI Devices”, pp.111.
[2.10] G. Groeseneken, R. Degraeve, T. Nigam, G. Van den bosch, H. E.
Maes, “Hot carrier degradation and time-dependent dielectric
breakdown in oxides”, Microelectronic Engineering 49, pp. 27,
1999.
[2.11] Medici Manual pp.2-101, 1999.
[2-12] Jao-Hsian Shiue, Joseph Ya-min Lee, and Tien-Sheng Chao, “A
Study of Interface Trap Generation by Fowler–Nordheim and
Substrate-Hot-Carrier Stresses for 4-nm Thick Gate Oxides,” IEEE
TRANSACTIONS ON ELECTRON DEVICES, Vol. 46, NO. 8, pp.
1705-1710, AUGUST 1999.
[2-13] Cheng T. Wang, Hot Carrier Design Considerations for MOS
Devices and Circuits, Van Nostrand Reinhold, 1990.
[2-14] K. Hasnat, C.-F. Yeap, S. Jallepalli, W.-K. Shin, S. A. Hareland, V.
M. Agostinelli, A. F. Tasch and C. M. Maziar, “A Pseudo-Lucky
electron model for simulation of electron fate current in submicron
NMOSFET’s”, IEEE TRANSACTION on Electron Devices,
VOL.43, NO.8, pp.1264-1273, August 1996.
[2-15] Simon Tam, Ping-Keung Ko, Cheming Hu, and Richard S. Muller,
“Correlation between substrate and gate currents in MOSFET,”
IEEE Transactions on Electron Devices, VOL. ED-29, NO. 11, pp.
1740-1744, NOVEMBER, 1982.
[2-16] Chenming Hu, “Lucky-electron model of channel hot electron
emission,” International Electron Devices Meeting, VOL. 25, pp.
22-25, 1979.
[2-17] P. E. Cotrell, R. R. Troutman, and T. H. Ning, “Hot Electron
Emission inN-Channel IGFET’s,” IEEE Journal of Solid State
Circuits, Vol. 14, p.442, 1979.
[2-18] Luca Selmi and David Esseni, “A Better Understanding of
Substrate Enhanced Gate Current in VLSI MOSFET’s and Flash
Cells-Part II: Physical Analysis”, IEEE TRANSACTION on
Electron Devices, VOL.46, NO.2, pp.376-381, February 1999.
[2-19] Souvik Mahapatra, S. Shukuri, and Jeff Bude, “CHISEL Flash
EEPROM—Part I: Performance and Scaling,” IEEE
TRANSACTIONS ON ELECTRON DEVICES, VOL. 49, NO. 7,
pp. 1296-1301, JULY 2002.
[2-20] David Esseni, Luca Selmi, Andrea Ghetti, and Enrico Sangiorgi,
“Injection Efficiency of CHISEL Gate Currents in Short MOS
Devices: Physical Mechanisms, Device Implications, and Sensitivity
to Technological Parameters,” IEEE TRANSACTIONS ON
ELECTRON DEVICES, VOL. 47, NO. 11, pp. 2194-2200,
NOVEMBER 2000.
[2-21] Lei Sun, Liyang Pan, Ying Zeng, John Chen, Huiqing Pang, Xiyou
Li, and Jun Zhu, “Effects of CHE and CHISEL Programming
Operation on the Characteristics of SONOS Memory,” Solid-State
and Integrated Circuits Technology, Vol. 1, pp. 695-698, October
2004.
[2-22] KARL R. HOFMANN, CHRISTOPH WERNER, WERNER
WEBER, AND GERHARD DORDA, “ Hot-Electron and
Hole-Emission Effects in Short n-Channel MOSFET‘s,” IEEE
TRANSACTIONS ON ELECTRON DEVICES, VOL. ED-32, NO.
3, pp. 691-699, MARCH 1985.
[2-23] Oleg Semenov, Andrzej Pradzynski, and Manoj Sachdev, “Impact
of Gate Induced Drain Leakage on Overall Leakage of
Submicrometer CMOS VLSI Circuits,” IEEE TRANSACTION on
SEMICONDUCTOR MANUFACTURING, Vol. 15, pp. 9,
FEBRUARY 2002.
[2-24] T. Y. Chan, J. Chan, P. K. Ko, and C. Hu, “The Impact of
Gate-Induced Drain Leakage Current on MOSFET Scaling,” IEEE
IEDM, Vol. 33, pp. 718-721, 1987.
[2.25] L. Selimi and D. Esseni, "A better understanding of substrate
enhanced gate current in VLSI MOSFET's and flash cells - Part II:
Physical analysis", IEEE Trans. Electron Devices, vol. 40,
pp.137-145, 1995.
[2.26] J. J. Ellis-Monaghan, R. B. Hulfachor, K. W. Kim, and M. A.
Little-John, "Ensemble Monte Carlo study of interface-state
generation in low voltage scaled silicon MOS devices", IEEE Trans.
Electron Devices, vol. 43, pp. 1123-1131, 1996.
[2.27] I. Bloom, P. Pavan, and B. Eitan, “NROM – a new technology for
nonvolatile memory products”, Solid State Electron., vol. 46,
pp.1757-1763, 2002.
Chapter 3.
[3.1] W. D. Brown and J. E. Brewer, “Nonvolatile Semiconductor
Memory Technology: a Comprehensive Guide to Understanding and
Using NVSM Devices”, IEEE, vol. 58, p.1207, 1970.
[3.2] P. Cappelletti, C. Golla, P. Olivio, and E. Zanoni, “Flash Memories”,
Kluwer Academic Publishers, 2000.
[3.3] J. S. Brugler and P. G. A. Jaspers, “Charge pumping in MOS
Devices”, IEEE Trans. Electron Dev. ED-16, 297-302, 1969.
[3.4] M. Tsuchiaki, H. Hara, T.Morimoto, and H. Iwai, “A new charge
pumping method for determining the spatial distribution of
hot-carrier-induced fixed charge in p-MOSFETs,” IEEE Trans.
Electron Devices, vol. 40, no. 10, pp. 1768–1779, Oct. 1993.
[3.5] R. Giahn-Horng Lee, J.-S. Su, and S. S. Chung, “A new method for
characterizing the spatial distributions of interface states and
oxide-trapped charges in LDD n-MOSFETs,” IEEE Trans. Electron
Devices, vol. 43, no. 1, pp. 81–89, Jan. 1996.
[3.6] W. Chen, A. Balasinski, and T.-P. Ma, “Lateral profiling of oxide
charge and interface traps near MOSFET junctions,” IEEE Trans.
Electron Devices, vol. 40, no. 1, pp. 187–196, Jan. 1993.
[3.7] Y.-L. Chu, D.-W. Lin, and C.-Y. Wu, “A new charge-pumping
technique for profiling the interface-states and oxide-trapped charges
in MOSFET’s,” IEEE Trans. Electron Devices, vol. 47, no. 2, pp.
348–353, Feb. 2000.
[3.8] E. Lusky, Y. Shacham-Diamand, G. Mitenberg, A. Shappir, I.
Bloom, and B. Eitan, “Investigation of channel hot electron injection
by localized charge-trapping nonvolatile memory devices,” IEEE
Trans. Electron Devices, vol. 51, no. 3, pp. 444–451, Mar. 2004.
[3.9] M. Tsuchiaki, H. Hara, T. Morimoto, and H. Iwai, “A new charge
pumping method for determining the spatial distribution of
hot-carrier-induced fixed charge in p-MOSFET’s,” IEEE Trans.
Electron Devices, vol. 40, no. 10, pp. 1768–1779, Oct. 1993.
[3.10] S. Mahapatra, V. R. Rao, J. Vasi, B. Cheng, and J. C. S. Woo, “A
study of hot-carrier induced interface-trap profiles in lateral
asymmetric channel MOSFETs using a novel charge pumping
technique,” Solid State Electron., vol. 45, no. 10, pp. 1717–1723,
Oct. 2001.
[3.11] K. Suzuki, “Parasitic capacitance of submicrometer MOSFET’s,”
IEEE Trans. Electron Devices, vol. 46, no. 9, pp. 1895–1900, Sep.
1999.
[3.12] N. Wakita and N. Shigyo, “Verification of overlap and fringing
capacitance models for MOSFETs,” Solid State Electron., vol. 44,
no. 6, pp. 1105–1109, Jun. 2000.
[3.13] C. H. Wang, “Identification and measurement of scaling-dependent
parasitic capacitances of small-geometry MOSFET’s,” IEEE Trans.
Electron Devices, vol. 43, no. 6, pp. 965–972, Jun. 1996.
[3.14] E. Lusky, Y. Shacham-Diamand, I. Bloom, and B. Eitan,
“Characterization of channel hot electron injection by the
subthreshold slope of NROMTM device,” IEEE Electron Device
Lett., vol. 22, no. 11, pp. 556–558, Nov. 2001
Chapter 4.
[4-1] MEDICI Users Manual, TMA Associates, 2003.
[4.2] E. Lusky, Y. Shacham-Diamand, I. Bloom, and B. Eitan,
“Characterization of channel hot electron injection by the
subthreshold slope of NROMTM device,” IEEE Electron Device
Lett., vol. 22, no. 11, pp. 556–558, Nov. 2001
[4-3] C.-S. Hsieh, P.-C. Kao, C.-S. Chiu, C.-H. Hon, C.-C. Fan, W.-C.
Kung, Z.-W. Wang, and E. S. Jeng, “NVM characteristics of
single-MOSFET cells using nitride spacers with gate-to-drain NOI,”
IEEE Trans. Electron Devices, vol. 51, no. 11, pp. 1811–1817, Nov.
2004.
[4-4] M. Fukuda, T. Nakanishi, and Y. Nara, “New nonvolatile memory
with charge-trapping sidewall,” IEEE Electron Device Lett., vol. 24,
no. 8, pp. 490–492, Jul. 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 64. 黃婉寧:〈楊樹達先生金文研究之理論與方法初探〉,《中國學術年刊》,第23期,2002年
2. 15. 黃沛榮:〈大陸儒林傳──楊樹達〉,《國文天地》,4卷4期,1988年9月
3. 盧增緒(1985)。 教育評鑑初探。師大學報,30,115-148。
4. 潘慧玲(2002)。方案評鑑的緣起與概念。教師天地,117,26-31。
5. 張英鵬(2002)。從高高屏資源班評鑑談資源班老師如何面對資源班評鑑工作。屏師特殊教育,3,66-75。
6. 蔡振發、陸正威(2001)。論特殊教育評鑑及其在實務之應用—以南投縣特教評鑑為例。特教園丁,17(1),28-33。
7. 楊益風(2003)。從教師觀點談校務評鑑。教育資料與研究,50,42-46。
8. 吳美麗、楊宗仁和鄭友泰(2003)。八十九年直轄市及縣市辦理國民小學啟智類特殊教育班訪視報告摘要。特殊教育季刊,86,24-29。
9. 吳明清(1995)。教育方案評鑑模式及其應用。教育資料與研究,4,44-48。
10. 100. 李淑萍:〈論轉注字之成因及其形成先後,成大中文學報 第十八期,2007年10月
11. 5. 姚榮松:〈古代漢語同源詞研究探源──從聲訓到右文說〉,《國文學報》第十二期,1983年6月
12. 82. 劉學倫:〈許說轉注、假借和同源字的關係〉,《中極學刊》第四輯(國立暨南國際大學中國語文學系,2004年12月)
13. 67. 蘇耀宗:〈陳寅恪「積微居小學金石論叢續稿序」抽稿管窺(上)〉,《大陸雜誌》,104卷第4期,2002年
14. 60. 曾昭聰:〈楊樹達先生有關「形聲字生中有義」之研究述評〉,《中國語文通訊》58期,2001年6月