跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/09 20:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉隆億
研究生(外文):Lung-Yi Yeh
論文名稱:直接式磁場導向感應馬達PID模糊速度控制
論文名稱(外文):PID-Fuzzy Speed Control of a Direct Field- Oriented Induction Motor
指導教授:何天讚
指導教授(外文):Tan-Jan Ho
學位類別:碩士
校院名稱:中原大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:41
中文關鍵詞:直接式磁場導向控制Ziegler-Nichols法則感應馬達速度控制PID模糊控制器
外文關鍵詞:direct field-controlZiegler-Nichols methodinduction motorspeed controlPID-Fuzzy controller
相關次數:
  • 被引用被引用:0
  • 點閱點閱:320
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文針對直接磁場導向控制的感應馬達速度驅動系統,提出一個PID模糊速度控制器。我們根據Ziegler-Nichols (Z-N)規則法來得到PID控制器,但在多變的操作情況下,一個固定的PID控制器無法有一個很好的表現。為了增加PID控制器的能力,我們應用了智慧型的模糊控制器來改善系統的表現。我們獲得PID模糊控制器的過程是簡單且有系統的,模糊控制器的輸入、輸出分別只使用三個模糊函數來降低計算的負擔,並且可以有很好的結果。模擬和實驗結果顯示,所提出的控制器在負載操作下有很好的強健性,並且在直接式磁場導向感應馬達趨動下可以有重大地改善。
In this paper, we present a PID-Fuzzy Logic (PID-FL) controller for the speed control of a direct field-oriented induction motor (DFOIM). Our PID controller is derived based on the Ziegler-Nichols (Z-N) method. The performance of fixed gains PID is not well under all operating conditions. In order to increase the performance of PID, we apply a fuzzy logic to improve the performance. The process to obtain the PID-FL is easily, systematic and only with three membership functions are used for each input and output for low computational burden, which can achieve very good results. The experimental results show that the proposed controller is robust under the load torque operation, and it can significantly improve the controlled speed performance of a DFOIM.
ABSTRACT (Chinese) …………………………………………………Ⅰ
ABSTRACT (English)………………………………………………………Ⅱ
ACKNOWLEDGEMENT…………………………………………………Ⅲ
LIST OF FIGURES…………………………………………………………Ⅵ
LIST OF TABLES…………………………………………………………Ⅷ
SYMBOLS…………………………………………………………………………Ⅸ
CHAPTER 1 INTRODUCTION………………………………………………1
CHAPTER 2 INDUCTION MOTOR AND
CONTROL STRUCTURE……………………………………3
2-1
Induction Motor Dynamic Equations………………………………3
2-2
Rotor Flux Estimation………………………………4
2-3
Direct Field-Oriented Control System Structure………… 5
2-3-1 Field-Oriented Control………………………… 5
2-3-2 Control Structure…………………………5
CHAPTER 3 THE PROPOSED PID-FUZZY
LOFIC CONTRLLER……………………………………7
3-1
Ziegler-Nichols tuning method.………………………………… 7
3-2
Modified Ziegler-Nichols tuning method……………………………… 8
3-3
Fuzzy Logic Control…………………………………………………9
V
CHAPTER 4 SIMULATION AND EXPERIMENTAL RESULTS…………16
4-1
Simulation Results…………………………………………………18
4-2
Experiment Results…………………………………………………22
CHAPTER 5 SUMMARY…………………………………………………26
REFERENCE………………………………………………………………………27
APPENDIX…………………………………………………………………………29
VITA…………………………………………………………………………………31


LIST OF FIGURES
Figure 1 Current model-voltage series model for rotor flux estimation………………………..5
Figure 2 Direct Field-Oriented Control structure………………………………………………6
Figure 3 Velocity control loop………………………………………………………………….7
Figure 4 Nyquist curve of the plant G(s), the identified point A and the specified point B……8
Figure 5 Step response of the closed-loop system...................................................................... 9
Figure 6 Configuration of fuzzy control system……………………………………………... 12
Figure 7 Fuzzy logic design block diagram…………………………………………………..13
Figure 8 Membership functions for fuzzy controller…………………………………………15
Figure 9 The performance of IFC disturbance rejection
(a)
The tradition PID controller…………………………………………………….. 16
(b)
The Fuzzy controller…………………………………………………………….17
(c)
The PID-Fuzzy controller……………………………………………………….17
Figure 10 Four-quadrant reference speed………………………………………………………18
Figure 11 Simulation speed responses without torque disturbance
(a)
The transient response for various controllers…………………………………..19
(b)
The speed tracking performance for various controllers………………………..19
Figure 12 Simulation error performances of the various controllers
(a)
The error performance of Z-N PID controller…………………………………... 20
(b)
The error performance of modified Z-N PID controller………………………... 20
(c)
The error performance of best trial and error PID controller……………………20
(d)
The error performance of Z-N PID FL controller……………………………….20
(e)
The error performance of modified Z-N PID FL controller……………………. 20
(f)
The error performance of best trial and error PID FL controller……………….. 21
Figure 13 Simulation speed responses with torque disturbance
(a)
The load to the shaft constantly at 5.5 sec……………………………………… 21
(b)
The load to the shaft constantly at 8 sec………………………………………... 22
Figure 14 Experimental setup…………………………………………………………………..23
Figure 15 Experimental speed responses without torque disturbance
(a)
The transient response for various controllers………………………………….. 24
(b)
The speed tracking performance for various controllers……………………….. 24
Figure 16 Experimental speed responses with torque disturbance
(a)
The load to the shaft constantly at 5.5 sec………………………………………25
(b)
The load to the shaft constantly at 8.3 sec………………………………………25


LIST OF TABLES
Table 1 PID design based on the Z-N step response method………………………………….7
Table 2 PID design based on the modified Z-N method………………………………………8
Table 3 Fuzzy rule base……………………………………………………………………... 14
Table 4 Motor Parameter Values…………………………………………………………….. 25
[1] F. Blaschke, “The principle of field orientation as applied to the new transvektor closed- loop control system for rotating-field machines,” Siemens Review, Vol. 39, No. 5, pp. 217-220, 1972.
[2] Y. Tang, L. Xu, “Fuzzy Logic Application for Intellig- ent Control of a Variable Speed Drive,” IEEE Trans. Energy Conversion, Vol. 9, No. 4, Dec. 1994.
[3] Z. Zhang, H. Xu, L. Xu, E. Heilman, “Sensorless Direct Field-Oriented Control of Three-Phase Induction Motors Based on “Sliding Mode” for Washing-Machine Drive Applications,” IEEE Trans. Industry Applications, Vol. 42, No. 3, May/June. 2006.
[4] G. M. Liaw, F. J. Lin, “A Robust Speed Controller for Induction Motor Drives, ” IEEE Trans. Industrial Electronics, Vol. 41. No. 3, Jun. 1994.
[5] I. Miki, N. Nagai, S. Nishiyama, T. Yamada, “Vector control of induction motor with fuzzy PI controller,” IEEE Conf., IAS Annu. Meeting 1991, Vol. 1, pp.341-346
[6]L. Zhen, L. Xu. “Fuzzy Learning Enhanced Speed Control of an Indirect Field-Oriented Induction Machine Drive,” IEEE Ttrans. Control Systems Technology, Vol. 8, No. 2, pp. 270-278, MAR. 2000.
[7] B. Heber, L. Xu, Y. Tang, “Fuzzy Logic Enhanced Speed Control of an Indirect Field- Oriented Induction Machine Drive,” IEEET Ttrans. Power electronics, Vol. 12, No. 5, pp. 772 – 778, Sep. 1997.
[8] B. C. Kuo., Automatic Control System, Prentice-Hall, Eighth Edition, Sep. 2002.
[9] H. Rehman, W. Mahmood, “A Fuzzy Model Reference Learning Controller Based Direct Field Oriented Control of Induction Motor,” IEEE Conf., Engineering of Intelligent System, Engineering Intelligent Systems, pp. 1-5, Sep. 2006
[10] Z. Y. Zhao, M. Tomizuka, S. Isaka, “Fuzzy Gain Scheduling of PID Controllers,” IEEE Trans. Systems, Man and Cybernetics, Vol. 23, No. 5. SEP/OCT. 1993.
[11] M. I. Jahmeerbacus,C. Bhurtun, K.M.S. Soyjaudah,M. K. Oolun, “A Current-Regulated Field-Oriented Induction Motor Drive Using a Fuzzy Controller,” in Africa., 6th IEEE Africon, Africon Conference, Vol. 2, pp. 699- 703, Oct. 2002.
[12] M. N. Uddin, T. S. Radwan, M. A. Rahman, Fellow, “Performances of Fuzzy-Logic-Based Indirect Vector Control for Induction Motor Drive,” IEEE Trans. on Industry Applications, Vol. 38, No. 5, Ssp./Oct. 2002.
[13] V. VanDoren, “Auto-Tuning Control Using Ziegler- Nichols”, Control Engineering Vol. 53,
No. 10, pp. 66-71, Oct. 2006.
[14] M. Olsson, “Simulation Comparison of Auto- Tuning Methods for PID Control”, Linköping University Electronic Press, Feb. 2008
[15] R. Gabriel, W. Leonhard, G. Nordby, “Field- Oriented Control of a Standard AC Motor Using Microprocessors,” IEEE Trans. Industry applications, Vo1. 16, No. 2, pp. 186-192, Mar. / Apr. 1980.
[16] 劉昌煥, 交流電機控制第三版, 東華書局, 2005年, 5月.
[17] P. L. Jansen, R. D. Lorenz, D. W. Novotny, “Observer-Based Direct Field Orientation Analysis and Comparison of Alternative Methods,” IEEE Trans. Industry Applications, Vol. 30, No. 4, pp. 945-953, July/Aug. 1994.
[18] L. A. Zadeh, “Outline of a new approach to the analysis of complex systems and decision processes,” IEEE Trans. Systems, Man and Cybernetics, Vol.3, No. 1, pp. 28-44, 1973.
[19] E. H. Mamdani, J. J. Ostergaaed, and E. Lembessis, “Uses of fuzzy logic for implementing rule-base control of industrial processes,” Fuzzy sets and Systems, Vol. 16, pp. 310-321, 1988.
[20] M. Seguno and G. T. Kang, “Fuzzy modeling and control of multilayer incinerator,” Fuzzy sets and Systems, Vol.18, pp.329-346, 1986.
[21] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its application to modeling and control,” IEEE Trans. Systems, Man and Cybernetics, Vol.15, No. 1, pp.116-132, 1985.
[22] 王文俊, 認識Fuzzy 第三版, 全華書局, 2006年, 10月.
[23] 台灣仿真科技股份有限公司, MATLAB 即時控制系統 version 2.11, 台北縣中和市.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊